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Abstract. The primary aim of this study is to classify space radiation using existing models trained and analysed with 
a prepared dataset. Leveraging techniques such as Logistic Regression, Decision Tree, Random Forest, and Ensemble 
methods, the research aims to classify various types of space radiation, including gamma rays and hadrons. The goal 
is to build a classification prediction system capable of accurately distinguishing between different types of space 
radiation, facilitating the effective identification and analysis of radiation-induced effects in semiconductor devices. By 
discriminating between various types of radiation, this study aids in the detection and characterization of radiation-
induced effects, crucial for evaluating the reliability and performance of semiconductor devices in space conditions. The 
outcomes of this research contribute to advancing the understanding of space radiation effects on semiconductor devices 
and assist in devising mitigation strategies to enhance their resilience in space missions. The study found that Random 
Forest and XGBoost were the top performers, achieving 99% accuracy in classifying space radiation, and Decision Tree 
also showed strong results at 98% accuracy. 
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1. INTRODUCTION 

The detection and characterization of space 
radiation events play a vital role in understanding their 
impact on semiconductor devices, particularly in the 
context of Single Event Effects (SEEs) [1], [2] and Total 
Ionizing Dose (TID) effects [3]-[11]. TID is generally 
caused by gamma and x-rays, while SEEs are induced by 
energetic particles. Both phenomena are relevant in the 
space environment. Figure 1 refers to the transient and 
non-destructive alterations in the behaviour of 
semiconductor devices caused by ionizing radiation in 
space environments. Accurately classifying different 
types of space radiation, such as gamma rays and 
hadrons, is essential for identifying and analysing the 
radiation-induced effects in electronic circuits. The 
objective of this research is to create a machine learning 
model for categorizing space radiation events and 
utilizing it to examine SEEs in semiconductor devices. 
Employing techniques such as Logistic Regression, 
Decision Tree, Random Forest, and Ensemble methods, 
the study aims to construct a reliable classification 
system capable of effectively differentiating between 
different types of space radiation. 

The primary objective is to facilitate the detection 
and characterization of radiation-induced effects in 
semiconductor devices by accurately classifying 
different types of space radiation. This classification 
prediction system will enable researchers to identify 
and analyse TID effects and SEEs more efficiently, thus 
contributing to the assessment of semiconductor device 
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reliability and performance in space environments. The 
findings of this research hold significant implications 
for space missions and satellite technologies. For 
instance, these findings can be applied by implementing 
the ML model in hardware to enable online analysis of 
radiation, where the reliability of semiconductor  
devices is critical for mission success. By advancing  
our understanding of space radiation effects on 
semiconductor devices and developing effective 
mitigation strategies, this research contributes to 
enhancing the resilience and durability of 
semiconductor devices in space applications. 

 

Figure 1. Mechanisms of particle interaction  
with a p-n junction in CMOS inverter 

Space exploration and satellite technologies  
turned out to be integral parts of modern society, being 
at the core of numerous applications, such as 
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communications, navigation, weather forecasting, 
environmental monitoring, etc. With the introduction of 
5G and 6G mobile networks, the orbital satellites will be 
integrated into Non-Terrestrial Networks (NTNs) [12], 
that will be combined with conventional terrestrial 
networks to provide global coverage. 

Understanding the mechanisms and effects of space 
radiation on semiconductor devices is essential for 
ensuring the reliability, longevity, and safety of space 
missions. Accurate characterization and classification of 
space radiation events are essential for this endeavour 
as different types of radiation have unique effects on 
electronic components. In addressing this critical task, 
consideration of both online and offline classification 
methods is paramount. Online classification involves 
real-time analysis during space missions, facilitating 
immediate response to radiation events to ensure 
electronic system safety and integrity. Meanwhile, 
offline classification allows for detailed analysis and 
algorithm refinement based on historical data, 
contributing to ongoing improvements in detection and 
mitigation strategies. By integrating both approaches, a 
comprehensive framework is established to tackle the 
challenges of space radiation and enhance the reliability 
of electronic components in space missions. For 
instance, gamma rays deposit energy directly into 
semiconductor structures, while hadrons (such as 
protons and neutrons) can generate secondary particles 
that interact with device materials, leading to SEEs. 

2. MOTIVATION 

The motivation behind this research stems from the 
critical need to address the challenges posed by space 
radiation to semiconductor devices used in space 
missions. Semiconductor devices are essential 
components of spacecraft, satellites, and other space 
borne systems, playing crucial roles in communication, 
navigation, scientific research, and exploration. 
However, the harsh radiation environment of space 
presents significant risks to the reliability and 
performance of these devices. Space radiation 
encompasses a diverse range of energetic particles, 
including protons, electrons, heavy ions, and photons, 
originating from sources such as the sun, cosmic rays, 
and galactic cosmic radiation. Particle flux in space 
varies, and the intensity of particle flux may increase 
several orders of magnitude due to solar particle events. 
So, dynamic fault tolerance is an economic approach, 
that is, to activate the protection just when radiation 
intensity is critical. These particles can penetrate 
spacecraft shielding and interact with semiconductor 
material, and further, may induce SEEs like Single 
Event Latchup (SEL), Single Event Upset (SEU), Single 
Event Transient (SET), and other irregular behaviours 
in semiconductor devices, that can jeopardize mission-
critical operations. 

Accurate classification of space radiation events is 
essential for understanding their effects on 
semiconductor devices and developing effective 
mitigation strategies to minimize the occurrence of 
radiation-induced failures. Researchers can determine 
which kinds of space radiations are responsible for 
causing SEEs in a component and how they affect the 
component. Moreover, TID information is important 
since it has the same electrical effect as aging, that is, 
threshold voltage shift. Thus, it is necessary to provide 

a means of distinguishing TID from ageing, especially 
for self-aware systems. The advancement of machine 
learning based classification models presents a 
promising avenue for tackling this challenge. Machine 
learning algorithms have exhibited remarkable 
proficiency in analysing intricate datasets and 
uncovering patterns and trends that may elude 
traditional analytical methods. Through the utilization 
of machine learning techniques, researchers can 
construct classification models that are adept at 
precisely discerning between various types of space 
radiation events, leveraging their distinct signatures 
and characteristics. 

The ML model will utilize data obtained from space 
radiation interactions with semiconductor devices. 
Specifically, it will analyse sensor-based measurements 
of different radiation types (e.g., gamma rays, protons, 
and neutrons) and their resulting effects, such as Single 
Event Effects (SEEs) and Total Ionizing Dose (TID) 
impacts. These data inputs will be instrumental in 
training the classification system, enabling it to 
distinguish between various space radiation events and 
evaluate their influence on semiconductor reliability. 

The motivation behind this research is to harness 
the power of machine learning to develop a  
robust classification model for accurately identifying 
space radiation events and investigating their effects  
on semiconductor devices. By advancing our 
understanding of space radiation effects and developing 
effective mitigation strategies, this research aims to 
enhance the reliability, performance, and safety of 
semiconductor devices in space missions, ultimately 
contributing to the success and longevity of future space 
exploration endeavours. 

3. LITERATURE REVIEW 

In their early work, Bock et al. [13] introduced 
pioneering approaches for multidimensional event 
classification through the analysis of images captured 
by a Cherenkov gamma-ray telescope [14], [15]. 
Building upon this foundation, D. Gaggero and  
M. Valli [1] investigated the cosmic-ray propagation 
models and astrophysical uncertainties. Their study 
sheds light on the nuanced intricacies involved in 
interpreting indirect detection signals.  

Additionally, F. Arneodo et al. [16] conducted a 
comprehensive examination of the technological and 
operational requirements necessary to achieve precise 
gamma radiation detection on-board. This review 
provides invaluable insights for the development of 
CubeSat-based systems dedicated to space-based 
gamma radiation monitoring, thereby advancing the 
frontiers of space exploration. 

M. Sharma et al. [17] have shown significant 
advancements in the field of gamma/hadron 
segregation, a crucial aspect of data analysis in gamma-
ray astronomy. They addressed the challenge of 
distinguishing between gamma rays, which are of 
astrophysical interest, and hadronic cosmic rays, which 
are background events detected by Cherenkov 
telescopes. They employed machine learning methods, 
with a particular emphasis on Random Forest, to 
develop a robust classification model capable of 
effectively separating gamma rays from hadrons based 
on features extracted from the Cherenkov telescope 
data. Exploring gamma rays can yield insights into dark 



Z. Stamenkovic et al., ML models for radiation classification, RAP Conf. Proc., vol. 9, 2024, 63–69 
 

 65 

matter annihilation [18]. Both leptonic and hadronic 
particles have the potential to produce gamma rays. 

In [14], the authors explored the ASTRI Mini-
Array’s potential in reconstructing Cherenkov events, a 
crucial aspect of astrophysical research into high-energy 
cosmic rays. Their work integrates advanced machine 
learning techniques, aiming to refine the accuracy and 
efficiency of event reconstruction within this specific 
context. Utilizing ensemble methods, they navigate the 
complexities inherent in detecting and interpreting 
Cherenkov light emissions resulting from cosmic 
particles interacting with Earth’s atmosphere. This 
research substantially contributes to the realm of space 
radiation effects on semiconductor devices and the 
strategies employed to mitigate them. The principal 
contributions of this study can be encapsulated as 
follows: 

• Development of a Machine Learning-Based 
Classification Model: The study introduces the 
creation and assessment of a machine learning 
model designed to precisely classify space radiation 
events, encompassing gamma rays and hadrons. 
Utilizing machine learning algorithms, the model 
attains elevated levels of classification accuracy, 
precision, recall, and F1-score. Consequently, it 
facilitates the efficient identification of various types 
of space radiation. 

• Application in Investigating Single Event Effects 
(SEEs): The developed classification model is 
applied to investigate Single Event Effects (SEEs) in 
semiconductor devices exposed to space radiation. 
The top-performing models, such as Random Forest 
and XGBoost, demonstrated high accuracy in 
classifying space radiation events, which is critical 
for identifying SEEs. By accurately distinguishing 
between different types of radiation, these models 
can facilitate the detection and characterization of 
SEEs, aiding in the evaluation of the reliability and 
performance of semiconductor devices in space 
conditions. However, further validation and detailed 
analysis are required to ensure that SEEs can be 
effectively analysed using these models, as the 
current results primarily establish the models’ 
classification accuracy. 

• Enhancement of Space Mission Reliability: The 
research outcomes significantly bolster the 
reliability and performance of semiconductor 
devices utilized in space missions. Through precise 
forecasting of space radiation effects on electronic 
systems, the developed classification model 
empowers the formulation of resilient mitigation 
strategies aimed at reducing the occurrence and 
magnitude of SEEs. Consequently, this enhances the 
overall reliability and success rate of space missions. 

4. DATASET DESCRIPTION 

The provided dataset [19] comprises simulated data 
generated using Monte Carlo methods, aimed at the 
simulation of the process of high-energy gamma 
particles and hadrons registration in a ground-based 
atmospheric Cherenkov gamma telescope. This 
telescope operates by detecting the radiation emitted by 
charged particles within electromagnetic showers 
initiated by gamma rays in the atmosphere. Within the 
dataset, information is included regarding the pulses of 

Cherenkov photons recorded on photomultiplier tubes, 
organized within a camera plane. These pulses generate 
distinguishable patterns, referred to as the shower 
image, which are crucial for discerning between signals 
produced by primary gamma rays and background 
noise generated by hadronic showers initiated by 
cosmic rays in the upper atmosphere. 

Additionally, the dataset encompasses various 
parameters extracted from principal component 
analysis (PCA) conducted on the camera plane. These 
parameters encompass characteristics such as the major 
and minor axes of ellipses representing the shower 
images, along with metrics pertaining to size, 
concentration ratios, asymmetry, and angular 
properties. The analysis of the Magic Telescope dataset 
shows that outliers play a crucial role in revealing 
potentially significant or anomalous observations 
(Figure 2). By identifying outliers in specific features 
such as fwidth, fsize, fm3trains, etc., we can gain 
insights into exceptional events or data points that 
deviate significantly from the norm. These outliers are 
removed from the dataset to ensure robust scientific 
interpretations and accuracy. 

To ensure reliable scientific interpretations, outliers 
are initially examined for their relevance, and only those 
that compromise data integrity are excluded. This 
approach maintains a balance between preserving 
meaningful variations and enhancing model accuracy. 

The dataset comes from the Major Atmospheric 
Gamma Imaging Cherenkov (MAGIC) telescopes, which 
specialize in detecting high-energy cosmic gamma rays. 
It is primarily used for binary classification, 
distinguishing gamma-ray signals from hadronic 
background noise. Comprising 19,020 instances and 11 
attributes, it includes 10 features describing various 
properties of recorded shower images. These features 
include fLength (major axis length), fWidth (minor axis 
width), fSize (total light intensity), fConc (ratio of light 
concentration in the brightest pixels), fConc1 (light 
concentration in the brightest pixel), fAsym (asymmetry 
of the image), fM3Long (third moment along the major 
axis), fM3Trans (third moment along the minor axis), 
fAlpha (angle of the major axis relative to the image 
centre), and fDist (distance from the image centre). The 
class label has two categories: "g" for gamma-ray events 
and "h" for hadronic background noise. 

The dataset was generated using the CORSIKA 
Monte Carlo program, configured with parameters to 
observe events with energies reaching as low as 50 GeV. 
It comprises features like the length of the major and 
minor axes, size metrics, concentration ratios, 
asymmetry measurements, and angular attributes. 
Additionally, each data instance is labelled as either a 
gamma signal or a background hadron. The gamma 
signal class encompasses 12332 instances, whereas the 
background hadron class consists of 6688 instances in 
Figure 3 [20-22]. 

This study used a standardization technique to scale 
features by removing the mean and adjusting to unit 
variance, ensuring consistency in data distribution for 
improved model performance. 

Figure 4 illustrates the bivariate distribution of 
features, showcasing relationships and dependencies 
between paired variables. This analysis helps in 
identifying correlations, trends, and interactions within 
the dataset, offering valuable insights into feature 
behaviour and its influence on classification outcomes. 
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Figure 2. Detection of outliers in the dataset 

This dataset serves as a valuable resource for 
training and evaluating machine learning models 
designed to differentiate between gamma signals and 
background noise. The study trained machine learning 
models, including Logistic Regression, Decision Tree, 
Random Forest, and XGBoost, using a prepared dataset 
of space radiation events. Tools like Python, Scikit-
learn, Pandas, NumPy, Matplotlib, Seaborn, and the 
XGBoost library were utilized for data pre-processing, 
model training, and evaluation [20-22]. 

The models were trained on an 80:20 split of the 
dataset, with the training set used for learning and the 
test set for performance evaluation using metrics such 

as accuracy, AUC, precision, recall, and F1-score. The 
primary purpose of classification is to distinguish 
between gamma radiation and hadrons (protons, 
neutrons, pions, and kaons). This classification can 
facilitate the detection and analysis of total dose and 
single event effects in semiconductor devices, aiding in 
the development of mitigation strategies to enhance 
device reliability in space missions. Utilizing boxplot as 
pre-processing enhances data analysis by effectively 
identifying and mitigating outliers in the dataset. 

 

Figure 3. Instances in the dataset 

5. RESULT DISCUSSION 

In this research, a variety of machine learning 
algorithms were employed to classify space radiation 
events [23], [24]. The results are shown in Figure 3 and 
Table 1. 

Decision Tree is a non-parametric supervised 
learning algorithm that solves classification tasks. It 
constructs a tree-like structure where each internal 
node signifies a decision based on features, and each 
leaf node denotes a class label. The resultant tree 
structure enables straightforward interpretation and 
visualization of decision rules. In this investigation, the 
Decision Tree algorithm attained an accuracy of 98% 
and an AUC of 0.98, with precision, recall, and F1-score 
all registering at 0.98. 

Random Forest is an ensemble learning 
technique that builds multiple decision trees during 
training and outputs the mode of the classes for 
classification tasks. It introduces randomness by 
training each tree on a random subset of the data and 
selecting a random subset of features for each split. In 
the present study, the Random Forest algorithm 
exhibited exceptional performance, yielding an 
accuracy of 99%, an AUC of 0.99, and precision, recall, 
and F1-score all at 0.99. 

K-Nearest Neighbours (KNN) is a 
straightforward, instance-based learning algorithm 
employed for classification tasks. It categorizes data 
points by considering the majority class of their  
k-nearest neighbours in the feature space. KNN does 
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not impose any assumptions about the underlying data 
distribution and can accommodate non-linear decision 
boundaries. In this investigation, KNN attained an 
accuracy of 92%, an AUC of 0.99, and precision, recall, 
and F1-score all at 0.92. 

Support Vector Machine (SVM) is a supervised 
learning algorithm that identifies the optimal 
hyperplane to segregate data points into distinct classes. 
It endeavours to maximize the margin between classes 
while minimizing classification errors. SVM can manage 
high-dimensional data and is efficacious in scenarios 
where the data isn’t linearly separable, achieved by 
transforming the feature space. In this research, SVM 
demonstrated an accuracy of 86%, an AUC of 0.96, and 
precision, recall, and F1-score all at 0.86. 

Logistic Regression is a linear classification 
algorithm employed for binary classification tasks. It 

models the probability of a binary outcome’s occurrence 
based on one or more predictor variables. In this 
investigation, Logistic Regression demonstrated 
comparatively lower performance, yielding an accuracy 
of 50%, an AUC of 0.73, and precision, recall, and  
F1-score all at 0.50. 

Gaussian Naive Bayes is a probabilistic 
classification algorithm founded on Bayes’ theorem and 
the presumption of feature independence. It models the 
conditional probability of each class given the features, 
employing Gaussian distributions for continuous 
features. In this examination, Gaussian Naive Bayes 
demonstrated moderate performance, registering an 
accuracy of 53%, an AUC of 0.74, and precision, recall, 
and F1-score all at 0.53.  

 

 

Figure 4. Bivariate Distribution of features 
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Table 1. Performance of machine learning and deep learning algorithms 

Algorithms Accuracy AUC Precision Recall F1-score 

Decision Tree 0.98 0.98 0.98 0.98 0.98 

Random Forest 0.99 0.99 0.99 0.99 0.99 

K-Nearest Neighbours 0.92 0.99 0.92 0.92 0.92 

Support Vector Machine 0.86 0.96 0.86 0.86 0.86 

Logistic Regression 0.50 0.73 0.51 0.50 0.50 

Gaussian Naive Bayes 0.53 0.74 0.54 0.53 0.53 

Extreme Gradient Boosting 0.992 0.99 0.99 0.99 0.99 

Long Short-Term Memory Network 0.94 0.06 1.000 0.900 0.95 

Gated Recurrent Unit Network 0.94 0.06 1.000 0.900 0.95 

 

Extreme Gradient Boosting (XGBoost) is an 
ensemble learning algorithm rooted in gradient 
boosting decision trees. It constructs a sequence of 
decision trees sequentially, with each tree endeavouring 
to rectify the errors of the preceding ones. XGBoost 
employs gradient descent optimization to minimize a 
loss function and incorporates regularization 
techniques to mitigate overfitting. In this research, it 
showcased exceptional performance, boasting an 
accuracy of 99%, an AUC of 0.99, and precision, recall, 
and F1-score all at 0.99. 

Long Short-Term Memory Network (LSTM) 
and Gated Recurrent Unit Network (GRU) are 
types of recurrent neural networks (RNNs) designed to 
model sequential data with long-term dependencies. 
They use memory cells and gates to store and update 
information over time, allowing them to capture 
temporal patterns in the data. In this study, LSTM and 
GRU networks achieved relatively high accuracy (0.94), 
precision, recall, and F1-score, but exhibited low AUC, 
indicating potential challenges in training and 
generalization. 

Although the dataset is tabular, LSTM and GRU 
were selected for their ability to capture hidden 
dependencies among features. These models effectively 
learn complex relationships that influence 
classification. Moreover, experimental results 
demonstrated their higher accuracy compared to 
traditional methods. 

The low AUC in LSTM and GRU models can be 
attributed to overfitting, highly skewed probability 
distributions, and their reliance on sequential 
dependencies, which may not align well with the 
dataset. However, their high accuracy indicates strong 
classification performance, even though they may not 
rank predictions effectively across different thresholds. 

The findings indicate that Decision Tree, Random 
Forest, and Ensemble methods surpass Logistic 
Regression in both classification accuracy and 
robustness, achieving accuracies of up to 99%. 
Furthermore, the ML model exhibits high precision, 
recall, and F1-score in distinguishing between different 
types of space radiation events, enabling accurate 
identification and analysis of SEEs in semiconductor 
devices. Decision Tree achieved values of 0.98 across 
these metrics, while Random Forest slightly surpassed 
it with values of 0.99. In contrast, Logistic Regression 
and Gaussian Naive Bayes exhibited poor performance, 
with accuracy values of 0.50 and 0.53, respectively. 
Support Vector Machine also demonstrated lower 
effectiveness, scoring 0.86 in accuracy, precision, recall, 
and F1-score. 

K-Nearest Neighbours maintained the respectable 
accuracy (0.92) and AUC (0.99), but it lagged behind in 

the precision, recall, and F1-score, all scoring 0.92. 
XGBoost consistently performed well across all metrics, 
with values of 0.99. However, the Long Short-Term 
Memory (LSTM) Network and Gated Recurrent Unit 
(GRU) Network, while achieving high accuracy (0.94), 
precision, recall, and F1-score (all scoring 0.95), 
suffered from extremely low AUC (both scoring 0.06). 
Overall, Decision Tree, Random Forest, and XGBoost 
emerged as superior performers, while Logistic 
Regression, Gaussian Naive Bayes, and Support Vector 
Machine showed lower effectiveness. 

Overall, the results highlight the effectiveness of 
machine learning algorithms, particularly Decision 
Tree, Random Forest, and XGBoost, in accurately 
classifying space radiation events and facilitating the 
investigation of radiation-induced effects in 
semiconductor devices. These findings underscore the 
potential of machine learning techniques in advancing 
our understanding of space radiation effects on 
electronic systems and improving device reliability in 
space missions. Further research is warranted to 
explore optimization strategies and novel algorithms to 
address the challenges posed by space radiation and 
enhance the resilience of semiconductor devices in 
space environments. 

6. CONCLUSIONS 

This study delves into the application of machine 
learning algorithms for categorizing space radiation 
occurrences and their repercussions on semiconductor 
devices, particularly in the context of TID and SEEs. 
Decision Tree, Random Forest, and XGBoost 
algorithms exhibit promises in accurately identifying 
these events, providing valuable insights for swift 
detection and analysis, thereby bolstering the reliability 
of space missions. Moving forward, there is a need to 
concentrate on refining strategies, introducing novel 
algorithms, and employing advanced data pre-
processing techniques to tackle the challenges posed by 
space radiation and fortify the resilience of 
semiconductor devices. Collaboration among space 
agencies, research institutions, and industry partners is 
imperative to expedite progress in space radiation 
mitigation and enhance device reliability. Regarding 
practical implementation, these machine learning 
models could initially operate on PCs for analysis but 
must eventually transition to hardware for real-time 
radiation analysis during space missions, ensuring 
prompt decision-making and response. Incorporating 
these models into onboard systems would facilitate 
continuous monitoring and mitigation of radiation-
induced effects, elevating mission safety and success. To 
sum up, this research expands our comprehension of 
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space radiation effects on semiconductor devices, laying 
the groundwork for innovative solutions to mitigate 
radiation-induced effects and enhance device reliability 
in space missions. In our future research, we are going 
to thoroughly explore more advanced techniques that 
could enhance classification accuracy. More precisely, 
our final goal is to develop a robust validation frame-
work based on k-fold cross-validation and independent 
test sets. This study recognizes the use of simulated data 
and aims to validate the models with real-world 
radiation measurements in the future. It also suggests 
applying classification results to develop adaptive fault-
tolerant mechanisms and radiation-hardened system 
designs for effective mitigation strategies. 

Acknowledgements: The work described is a part of 
the project supported by the German Federal Ministry 
for Education and Research in form of a Brandenburg-
Bayern initiative for integration of the AI hardware 
subjects in university curriculum (no. 16DHBKIO20). 

REFERENCES 

1. D. Gaggero, M. Valli, “Impact of cosmic-ray physics 
on dark matter indirect searches,” Adv. High Energy 
Phys., vol. 2018, spec. issue, pp. 1 – 23, Dec. 2018. 
DOI: 10.1155/2018/3010514 

2. T. Xiao et al., “A detector designed for diagnosing 
single event effect,” in Proc. Int. Conf. Radiation 
Effects of Electronic Devices (ICREED), Beijing, 
China, 2018, pp. 1 – 2. 
DOI: 10.1109/ICREED.2018.8905088 

3. P. I. Vaz, G. I. Wirth, F. F. Vidor, T. H. Both, “TID 
effects on I–V characteristics of bulk CMOS STD and 
ELT-based devices in 600 nm,” Microelectron. J., 
vol. 97, 104722, Mar. 2020. 
DOI: 10.1016/j.mejo.2020.104722 

4. B. Liang et al., “Total ionizing dose effect modelling 
method for CMOS digital-integrated circuit,” Nucl. 
Sci. Tech., vol. 35, 26, Feb. 2024. 
DOI: 10.1007/s41365-024-01378-5 

5. F. Faccio et al., “TID and displacement damage effects 
in vertical and lateral power MOSFETs for integrated 
DC-DC converters,” IEEE Trans. Nucl. Sci., vol. 57, 
no. 4, pp. 1790 – 1797, Aug. 2010. 
DOI: 10.1109/TNS.2010.2049584 

6. D. K. Nichols, “A review of dose rate dependent 
effects of total ionizing dose (TID) irradiations,” IEEE 
Trans. Nucl. Sci., vol. 27, no. 2, pp. 1016 – 1024, 
Apr. 1980. 
DOI: 10.1109/TNS.1980.4330968 

7. J. Jiang et al., “Total ionizing dose (TID) effects on 
finger transistors in a 65 nm CMOS process,” in Proc. 
IEEE Int. Symp. Circuits and Systems (ISCAS), 
Montreal (QC), Canada, 2016, pp. 5 – 8. 
DOI: 10.1109/ISCAS.2016.7527156 

8. M. Marcisovska et al., “A comparative study of the 
TID radiation effects on ASICs manufactured in 
180 nm commercial technologies,” J. Instrum., 
vol. 13, no. 12, C12003, Dec. 2018. 
DOI: 10.1088/1748-0221/13/12/C12003 

9. F. Yuan et al., “Total ionizing dose (TID) effects of ray 
radiation on switching behaviours of Ag/AlOx/Pt 
RRAM device,” Nanoscale Res. Lett., vol. 9, 452, 
Aug. 2014. 
DOI: 10.1186/1556-276X-9-452 

10. S. Bala, R. Kumar, A. Kumar, “Total ionization dose 
(TID) effects on 2D MOS devices,” Trans. Electr. 
Electron. Mater., vol. 22, no. 6, pp. 1 – 9, Feb. 2021. 
DOI: 10.1007/s42341-020-00255-3 

11. L. E. Seixas et al., “Minimizing the TID effects due to 
gamma rays by using diamond layout for MOSFETs,” 
J. Mater. Sci.: Mater. Electron., vol. 30, pp. 4339 – 
4351, Mar. 2019. 
DOI: 10.1007/s10854-019-00747-w 

12. F. Rinaldi et al., “Non-terrestrial networks in 5G and 
beyond: A survey,” IEEE Access, vol. 8, pp. 165178 – 
165200, Sep. 2020. 
DOI: 10.1109/ACCESS.2020.3022981 

13. R. K. Bock et al., “Methods for multidimensional 
event classification: A case study using images from a 
Cherenkov gamma-ray telescope,” Nucl. Instrum. 
Methods Phys. Res. Sec. A, vol. 516, no. 2 – 3,  
pp. 511 – 528, Jan. 2004. 
DOI: 10.1016/j.nima.2003.08.157 

14. A. Pagliaro, G. Cusumano, A. La Barbera,  
V. La Parola, S. Lombardi, “Application of machine 
learning ensemble methods to ASTRI mini-array 
Cherenkov event reconstruction,” Appl. Sci., vol. 13, 
no. 14, 8172, Jul. 2023. 
DOI: 10.3390/app13148172 

15. S. Scuderi et al., “The ASTRI mini-array of Cherenkov 
telescopes at the Observatorio del Teide,” J. High 
Energy Astrophys., vol. 35, pp. 52 – 68, Aug. 2022. 
DOI: 10.1016/j.jheap.2022.05.001 

16. F. Arneodo, A. Di Giovanni, P. Marpu, “A review of 
requirements for gamma radiation detection in space 
using CubeSats,” Appl. Sci., vol. 11, no. 6, 2659,  
Mar. 2021. 
DOI: 10.3390/app11062659 

17. M. Sharma, J. Nayak, M. K. Koul, S. Bose, A. Mitra, 
“Gamma/hadron segregation for a ground-based 
imaging atmospheric Cherenkov telescope using 
machine learning methods: Random forest leads,” 
Res. Astron. Astrophys., vol. 14, no. 11, pp. 1491 – 
1503, Nov. 2014. 
DOI: 10.1088/1674-4527/14/11/012 

18. D. Horns, A. Jacholkowska, “Gamma rays as probes 
of the universe,” Comp. Rendus Phys., vol. 17, no. 6, 
pp. 632 – 648, Jun.-Jul. 2016. 
DOI: 10.1016/j.crhy.2016.04.006 

19. R. Bock, MAGIC Gamma Telescope, UCI Machine 
Learning Repository, Irvine (CA), USA, 2004. 
DOI: 10.24432/C52C8B. 

20. F. Pedregosa et al., “Scikit-learn: Machine Learning in 
Python”, J. Mach. Learn. Res., vol. 12, pp. 2825 – 
2830, Oct. 2011. 
Retrieved from: 
https://www.jmlr.org/papers/volume12/pedregosa1
1a/pedregosa11a.pdf 
Retrieved on: Mar. 12, 2024 

21. J. D. Hunter, “Matplotlib: A 2D Graphics 
Environment”, Comput. Sci. Eng., vol. 9, no. 3,  
pp. 90 – 95, May-Jun. 2007. 
DOI: 10.1109/MCSE.2007.55 

22. S. Van der Walt, S. C. Colbert, G. Varoquaux, “The 
NumPy Array: A Structure for Efficient Numerical 
Computation,” Comput. Sci. Eng., vol. 13, no. 2, 
pp. 22 – 30, Mar.-Apr. 2011. 
DOI: 10.1109/MCSE.2011.37 

23. X.-W. Chen, X. Lin, “Big data deep learning: 
Challenges and perspectives,” IEEE Access, vol. 2, 
pp. 514 – 525, May 2014. 
DOI: 10.1109/ACCESS.2014.2325029 

24. D.-E. Choe, H.-C. Kim, M.-H. Kim, “Sequence-based 
modelling of deep learning with LSTM and GRU 
networks for structural damage detection of floating 
offshore wind turbine blades,” Renew. Energy, 
vol. 174, pp. 218 – 235, Aug. 2021. 
DOI: 10.1016/j.renene.2021.04.025 
 
 

 

https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf

