

EFFECTS OF ANNEALING TEMPERATURE ON THE CRYSTALLOGRAPHIC, MORPHOLOGICAL AND ELECTRICAL CHARACTERISTICS OF E-BEAM DEPOSITED AI/Eu₂O₃/N-Si (MOS) CAPACITORS

Ozan Yilmaz^{1,2}, Ercan Yilmaz^{1,2*}

¹Physics Department, Bolu Abant Izzet Baysal University, Bolu, Turkey ²Nuclear Radiation Detectors Application and Research Center (NÜRDAM), Bolu Abant Izzet Baysal University, Bolu, Turkey

Abstract. Rare earth oxides (REOs) play an important role in the semiconductor technology. Europium oxide (Eu_2O_3) is one of REOs and it has been used in many applications such as optoelectronics, telecommunications, microelectronics and optical devices. However, in this study, Eu_2O_3 MOS capacitors have been fabricated by using the Electron Beam Evaporation (E-Beam) technique and the effects of different annealing temperatures on them have been investigated. Before and after annealing, the crystallographic and morphological properties of the Eu_2O_3 films have been analyzed by X-ray Diffraction and Atomic Force Microscopy. The electrical properties of the devices have been investigated using measuring C-V, G/ω -V characteristics. This preliminary study shows that Europium oxide can be suitable for application as a thin film.

Keywords: Europium Oxide, MOS structure, Capacitance-Voltage, Conductance-Voltage

1. INTRODUCTION

Metal-oxide-semiconductor (MOS) capacitors have a very important role in microelectronic applications [1]. The SiO₂ layer is conventionally used in MOSbased devices [1], [2]. However, for the last few decades, rare earth oxides (REOs), such as Er₂O₃, $Yb_2O_3,\,Gd_2O_3,\,Dy_2O_3,\,and\,Y_2O_3$ [3]–[8], draw attention in the field of microelectronics. The REOs have lots of properties that can be used as a gate dielectric when their performance compares with SiO₂. Among those properties are wide bandgap (Eg=4-6 eV), high dielectric constant (ϵ =7-20), high recrystallization temperature, thermodynamic stability, high-quality interface with Si with low interfacial state density, and lower leakage conduction than SiO₂ at an equivalent oxide thickness. Europium oxide (Eu2O3) is one of REOs and it has features such as high dielectric constant (ϵ =14) [9], large energy band gap (Eg=4.4 eV) [10], [11], high chemical durability and thermal stability [12]. In the account of these properties, Eu_2O_3 has some advantages compared to a silicon dioxide (SiO₂) as a gate dielectric in many applications such as optoelectronics, telecommunications, microelectronics, and optical devices [9].

In this study, Eu_2O_3 MOS capacitors have been fabricated by using the Electron Beam Evaporation (E-Beam) technique and the effects of different annealing temperatures on them have been investigated. The C–V and G/ ω –V measurements of the generated $\mathrm{Eu}_2\mathrm{O}_3$ MOS capacitor were measured at 1 MHz.

2. EXPERIMENTAL PROCEDURE

Europium oxide thin film was deposited onto a 500 µm thick n-type silicon (n-Si) wafer with a resistivity of 2-4 Ω cm by the E-Beam deposition technique. Before the deposition of the oxides, the wafer was cleaned by following the standard radio corporation of America's (RCA) cleaning procedures. The 99.99% pure Eu₂O₃ granules were used as target material during the film deposition. The base chamber pressure and the substrate temperature were adjusted to below 7.4×10-4 Pa and 150°C, respectively, before the Eu₂O₃ deposition. The thickness of the europium oxide is approximately determined to be 40 nm with the Spectroscopic Ellipsometer (AngstromSun Technology-Sr100). Then, this wafer was cut into five pieces. One of them was kept as deposited and the others were annealed at 300°C, 500°C, 700°C, and 900°C in a N2 environment for 40 min, respectively. The chemical characteristics of the Eu₂O₃/n-Si structure were determined by a Perkin Elmer Spectrum Two FTIR-ATR (Fourier Transform InfraRed – Attenuated Total Reflectance) spectrophotometer. The crystallographic of Eu₂O₃ thin film was analyzed by a Rigaku Multiflex diffractometer employing CuKa radiation while the morphological change of Eu₂O₃ thin film depending on annealing temperatures was studied by Atomic Force Microscopy.

^{* &}lt;u>yilmaz@ibu.edu.tr</u>

In order to make the front and back contacts of these devices (Fig.1), the aluminum (Al 99.999%) sputter target was used. The process and sputtering pressures were adjusted below 7.0 \times 10–4, and 1 Pa, respectively. The capacitance–voltage and conductance–voltage for the fabricated Al/ Eu₂O₃/n-Si MOS capacitors were obtained at 1 MHz at room temperature using Impedance Analyzer (MODEL HIOKI 3532-50 LCR meter).

3. RESULTS AND DISCUSSION

3.1. FTIR, XRD, and AFM results

The FTIR spectrum of Eu_2O_3 on Si after annealing at as-deposited and different temperatures can be seen as Figure 2. The peaks (at 2335 cm⁻¹, 2100 cm⁻¹, 1992 cm⁻¹, 1240 cm⁻¹, and 1110 cm⁻¹) of Eu_2O_3 thin films are getting smaller with increasing of annealing temperature, while it is observed that some small peaks emerge between 840 cm⁻¹ and 700 cm⁻¹. These peaks are related to the Eu-O bending modes[13], [14].

Figure 2. FTIR spectra of Eu_2O_3 /Si thin films at different annealing temperatures.

Figure 3. The XRD pattern of the $\rm Eu_2O_3/Si$ structure as deposited and annealed at 300 °C, 500 °C, 700 °C, 900 °C.

The diffraction patterns of the annealed thin films (Fig. 3) can be indexed to the cubic phase, which is consistent with the values in the standard card (JSPDS no. 34-0392, quality «*», a value of 10.86 nm) [15], [16]. The grain size (D) of the film was calculated using Debye-Scherrer formula [17].

$$D = \frac{0.9 * \lambda}{\beta \cos \theta} \tag{1}$$

The values of grain size and crystallinity of the films increase with the increasing annealing temperatures, except for 900°C annealed sample[18], [19] (Table 1).

Table 1. Grain size (nm), Crystallinity (%), and RMS
Roughness (nm) of deposited Eu ₂ O ₃ /Si depend on annealing.

Annealing Temp.(°C)	Grain size (nm)	Crystallinity (%)	RMS Roughness (nm)
As-deposited	-	-	0.135
300	23.69	15.70	0.156
500	24.28	15.81	0.200
700	26.45	29.39	0.238
900	12.15	18.01	0.664

Figure 4. The AFM pictures of the Eu₂O₃/Si structure a) as- deposited and annealed at b) 300 °C, c) 500 °C, d) 700 °C, e) 900 °C.

The effects of annealing temperature on the surface morphology of the Eu_2O_3 thin films were investigated by AFM measurements (Fig. 5). Although there is no obvious effect of the annealing in the obtained measurements, the slight rises in the root-mean-square (RMS) roughness that have been observed by calculating in the AFM analysis program (Table 1) [12], [20].

3.2. Electrical characteristics results

The electrical properties of Eu_2O_3 MOS capacitor were investigated by capacitance-voltage and conductance-voltage measurements at the 1MHz (Fig. 5, a and b). The graphs of the C-V and G/w-V analyses show an increasing trend with the increasing annealing temperature up to the annealed sample at 900 °C. This phenomenon can appear because of the recovery of stoichiometry that results in the reduction of structural defects [21], [22]. On the other hand, the condition of the sample annealed at 900 °C can be owing to the phase transition depending on the annealing temperature [19], [23].

b -5 -4 -3 -2 -1 0 1 2 3 4 5 Voltage (V)

Figure 5. The electrical (a) C-V and (b) G/ω -V characteristics of Al/Eu₂O₃/Si/Al MOS capacitors at 1MHz.

4. CONCLUSION

In this study, Eu₂O₃ MOS capacitors have been fabricated by using the Electron Beam Evaporation (E-Beam) technique. The effects of different annealing temperatures on them have also been investigated. The crystallinity of Eu₂O₃ thin films is sensitive to the annealing, while the grain size of films slightly increases with annealing temperature increase. The results of ATR-FTIR measurements show some changes in the structure of Eu₂O₃ thin film because of the annealing. The process of annealing was caused by a small increase in the RMS values of Eu₂O₃ thin films found using AFM analysis. The annealing has been shown to be effective on the electrical properties of the Eu₂O₃ MOS capacitor. The measurement capacitance and the measurement conductance of Eu2O3 MOS capacitors increase with the annealing temperature increase.

The results show that Eu_2O_3 rare earth materials can be good candidates for microelectronic applications, but more detailed research is required on this rare earth oxide. Acknowledgements: This work is supported by the Presidency of Turkey, Presidency of Strategy and Budget under Contract Number 2016 K 12-2834.

References

- S. M. Sze, K. K. Ng, *Physics of Semiconductor Devices*, 3rd ed., Hoboken (NJ), USA: J. Wiley and Sons, 2007. DOI: 10.1002/9780470068328.fmatter
- H. Ono, T. Katsumata, "Interfacial reactions between thin rare-earth-metal oxide films and Si substrates," *Appl. Phys. Lett.*, vol. 78, no. 13, pp. 1832 – 1834, 2001.
 DOI: 10.1063/1.1357445
- [3] S. Kaya, E. Yilmaz, "Modifications of structural, chemical, and electrical characteristics of Er2O3/Si interface under Co-60 gamma irradiation," *Nucl. Instrum. Methods Phys. Res. B*, vol. 418, pp. 74 – 79, Mar. 2018.
 - DOI: 10.1016/j.nimb.2018.01.010
- [4] A. Kahraman, H. Karacali, E. Yilmaz, "Impact and origin of the oxide-interface traps in Al/Yb2O3/n-Si/Al on the electrical characteristics," J. Alloys Compd., vol. 825, article no. 154171, Jun. 2020. DOI: 10.1016/j.jallcom.2020.154171
- [5] A. Kahraman, "Understanding of post deposition annealing and substrate temperature effects on structural and electrical properties of Gd2O3 MOS capacitor," J. Mater. Sci. Mater. Electron., vol. 29, no. 1, pp. 7993 – 8001, May 2018. DOI: 10.1007/s10854-018-8804-y
- [6] A. Kahraman, S. C. Deevi, E. Yilmaz, "Influence of frequency and gamma irradiation on the electrical characteristics of Er2O3, Gd2O3, Yb2O3, and HfO2 MOS-based devices," *J. Mater. Sci.*, vol. 55, no. 81, pp. 7999 – 8040, Jul. 2020. DOI: 10.1007/s10853-020-04531-8
- [7] U. Gurer, O. Yilmaz, H. Karacali, S. Kaya, E. Yilmaz, "Co-60 gamma radiation influences on the electrochemical, physical and electrical characteristics rare-earth dysprosium oxide (Dy2O3)," *Radiat. Phys. Chem.*, vol. 171, article no. 108684, Jun. 2020.
- [8] DOI: 10.1016/j.radphyschem.2020.108684
 [8] S. Abubakar, S. Kaya, H. Karacali, E. Yilmaz, "The gamma irradiation responses of yttrium oxide capacitors and first assessment usage in radiation sensors," Sens. Actuator A Phys., vol. 258,
 - pp. 44 48, May 2017. DOI: 10.1016/j.sna.2017.02.022
- [9] S. Kumar, R. Prakash, V. Singh, "Synthesis, Characterization, and Applications of Europium Oxide: A Review," *Rev. Adv. Sci. Eng.*, vol. 4, no. 4, pp. 247 – 257, Dec. 2016. DOI: 10.1166/rase.2015.1102
- [10] L. Petit, A. Svane, Z. Szotek, W. M. Temmerman, "First-principles study of rare-earth oxides," *Phys. Rev. B*, vol. 72, no. 20, pp. 1 – 9, Nov. 2005. DOI: 10.1103/PhysRevB.72.205118
- M. P. Singh, S. A. Shivashankar, "Structural and optical properties of polycrystalline thin films of rare earth oxides grown on fused quartz by low pressure MOCVD," *J. Cryst. Growth*, vol. 276, no. 1 2, pp. 148 157, Mar. 2005. DOI: 10.1016/j.jcrysgro.2004.11.325
- [12] S. A. Lourenço et al., "Eu3+ photoluminescence enhancement due to thermal energy transfer in Eu2O3-doped SiO2–B2O3–PbO2 glasses system," J. Lumin., vol. 131, no. 5, pp. 850 – 855, May 2011. DOI: 10.1016/j.jlumin.2010.11.028
- [13] J. G. Kang, Y. Jung, B. K. Min, Y. Sohn, "Full characterization of Eu(OH)3 and Eu2O3 nanorods," *Appl. Surf. Sci.*, vol. 314, pp. 158 – 165, Sep. 2014.

DOI: 10.1016/j.apsusc.2014.06.165

[14] M. Majumder, R. B. Choudhary, A. K. Thakur, U. Kumar, "Augmented gravimetric and volumetric capacitive performance of rare earth metal oxide (Eu2O3) incorporated polypyrrole for supercapacitor applications," *J. Electroanal. Chem.*, vol. 804, pp. 42 – 52, Nov. 2017.

DOI: 10.1016/j.jelechem.2017.09.048

- S. Mukherjee, C. H. Chen, C. C. Chou, H. D. Yang, "Anomalous dielectric behavior in nanoparticle Eu2O3: SiO2 glass composite system," *EPL*, vol. 92, no. 5, article no. 57010, Dec. 2010. DOI: 10.1209/0295-5075/92/57010
- Z. Mo, Y. Zhao, R. Guo, P. Liu, T. Xie, "Preparation and characterization of graphene/europium oxide composites," *Mater. Manuf. Process.*, vol. 27, no. 5, pp. 494 – 498, 2012. DOI: 10.1080/10426914.2011.593241
- B. D. Cullity, Elements of X-ray diffraction, 2nd ed., Boston (MA), USA: Addison-Wesley, 1978. Retrieved from: http://library.lol/main/5F3BD811A44EEDFB22943 BC771EF49F8 Retrieved on: Jan. 24, 2019
- [18] A. A. Dakhel, "Poole-Frenkel electrical conduction in europium oxide films deposited on Si(100)," *Cryst. Res. Technol.*, vol. 38, no. 11, pp. 968 – 973, Nov. 2003. DOI: 10.1002/crat.200310122

- M. P. Singh, K. Shalini, S. A. Shivashankar, G. C. Deepak, N. Bhat, "Structural and electrical properties of low pressure metalorganic chemical vapor deposition grown Eu2O3 films on Si(100)," *Appl. Phys. Lett.*, vol. 89, no. 20, article no. 201901, Nov. 2006.
 DOI: 10.1063/1.2388128
- [20] S. Kumar, R. Prakash, R. J. Choudhary, D. M. Phase, "Structural, morphological and electronic properties of pulsed laser grown Eu2O3 thin films," in *Proc.* 2nd Int. Conf. Condensed Matter And Applied Physics (ICC 2017), Bikaner, India, 2018, pp. 3 – 8. DOI: 10.1063/1.5032948
- H. Nakane, A. Noya, S. Kuriki, G. Matsumoto,
 "Dielectric properties of europium oxide films," *Thin Solid Films*, vol. 59, no. 3, pp. 291 293, May 1979. DOI: 10.1016/0040-6090(79)90438-3
- [22] M. K. Jayaraj, C. P. G. Vallabhan, "Dielectric and optical properties of europium oxide films," *Thin Solid Films*, vol. 177, no. 1 – 2, pp. 59 – 67, Oct. 1989.

DOI: 10.1016/0040-6090(89)90556-7

 P. Zhang et al., "Preparation and Magnetic Properties of Polycrystalline Eu2O3 Microwires," J. Electrochem. Soc., vol. 159, no. 4, pp. D204–D207, Jan. 2012.
 DOI: 10.1149/2.047204jes

10