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Abstract. In this work, the effect of the scintillator on EPIDs signal transfer properties was examined. Modulation 
Transfer Function, Signal Power Spectrum and Light Output were assessed by analytical models while radiation 
incidence was estimated by Monte Carlo techniques. The frequency dependent Contrast Transfer Function (CTF) of a 
Gd2O2S:Tb based EPID system was experimentally determined by imaging the QC3 phantom in an iViewGT™ 
R3.4.1 MV Portal Imaging system for 6MV, 2MU and 400 DR irradiation conditions. In addition, an approximation of 
experimental MTF was determined. The Eu activator showed the highest light output per incident photon. A more 
detailed study should include the effect of scatter on MTF and the determination of the experimental MTF through CTF. 
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1. INTRODUCTION 

Electronic Portal Imaging Systems (EPIDs) are used 
in Radiotherapy treatment as part of the patient 
positioning verification check [1]-[7]. Previously 
published investigations have applied methods for 
EPID quality assurance and image evaluation based on 
measuring the Modulation Transfer Function (MTF), 
the Noise Power Spectrum (NPS), using specific 
phantoms and dedicated software [8]-[11]. Studies, are 
investigating various EPID issues such as the effects of 
external aluminum target beam of the LINAC on EPID, 
the effect of the irradiation beam size the effect of the 
detector layers and the use of EPID for dosimetry [1]-
[13]. The theoretical and experimental evaluation of 
Gd2O2S granular phosphor properties as well as, the 
light emission efficiency of phosphor-based detectors in 
medical imaging have been reported in literature [13]-
[23]. EPIDs use scintillator materials to convert the 
energy of absorbed ionizing photons to optical photons. 
Since an ionizing radiation photon can produce 
numerous optical photons with lower energy, the signal 
(photons) is amplified. In EPID systems a Gd2O2S:X 
based granular scintillator, is used where X is the 
activator [1], [3], [4], [7], [8]. The activator is 
responsible to provide the required energy levels for the 
optical emission decay. The Gd2O2S a material with 
density 7.34 g/cm3 and a 50% packing is customary 
combined with Tb activator. However, in X-ray imaging 
has also been studied combined with Eu and Pr 
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activators as well [13]-[17], [21]. The activator role is 
crucial since it affects the energy and the number of the 
generated optical photons, which in turn affect the 
interactions of the optical photons inside the scintillator 
and their spatial distribution in the phosphor exit, thus 
affecting the system’s imaging performance. In 
addition, the emitted optical spectra should match the 
sensitivity curves of the optical detectors, providing a 
high detecting efficiency, also known as spectral 
matching factor [13]-[23]. The aim of the present work 
was to investigate the effect of activator type on the 
signal transfer properties of EPIDs (spatial resolution, 
light emission efficiency of their scintillator, signal 
power, etc.). To this aim, parameters related to spatial 
resolution and light output, such as the Modulation 
Transfer Function (MTF), the Contrast Transfer 
Function (CTF) [11], [24], the number of emitted 0ptical 
photons as well as the Signal Power Spectrum (SPS), 
were studied employing theoretical and experimental 
methods [11], [13], [18], [22], [25]. The effect of the 
activator was examined by considering three different 
ones, namely Tb, Eu and Pr. The spectral matching 
factor of the Gd2O2S host combined with Tb, Eu and Pr 
can be obtained from literature [13], [14], [16], [17]. 

2.MATERIALS AND METHODS 

The PENELOPE based MC software package [26]-
[29] was used to simulate x-ray beam incidence and 
energy deposition. A narrow cone beam geometry with 
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a cross section of 0.00053 cm2 at 100 cm distance was 
considered. The beam was assumed to impinge on 
1.8 cm Al in contact with 2 cm water equivalent 
phantom, simulating the bulk materials of QC3V EPID 
phantom assuming that for high energies water and 
plastic demonstrated similar radiation interaction 
properties [33]. At 160 cm distance a Gd2O2S based 
scintillator, as part of an EPID responsible for detecting 
X-rays was considered, with thickness 0.018 cm 
(Figure 1) [7], [8], [11]. The photon energy was 2 MeV. 
The energy deposition in Gd2O2S was determined and 
the corresponding MTF was calculated using an 
analytical model (1). The model is based on an analytical 
description of the optical photon generation in the 
scintillator and the light propagation to the output [15], 
[23], [25]. In this framework MTF was expressed as 
follows: 
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where, f: number of photons, Q(E): fraction of energy 
absorbed in layer i, Eabs: Energy absorbed in Gd2O2S, 
nC Eabs/Eλ gives the number of optical photons 
produced, G(u): the spatial frequency distribution to the 
output of the photons generated in layer i given by [15], 
[23], [25]: 
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where σ: reciprocal diffusion length (shows optical 
photon propagation and is affected by optical photon 
absorption and scattering), u: spatial frequency divided 
by the material’s packing density, τ: inverse relaxation 
length (affected by the optical photons’ absorption and 
scattering), ρ: reflection to output (0) or input (1), 
T: scintillator thickness [18], [25]. 

 
Figure 1. Monte Carlo experimental Set-up 

Analytical calculations were performed for three 
different activators, i.e. Tb, Eu and Pr within a Gd2O2S 
powder phosphor host. The absorbed dose and 1D depth 
dose distribution were calculated in Gd2O2S using 
Peneasy software. Finally, the frequency dependent 
Contrast Transfer Function (CTF) of a Gd2O2S:Tb based 
EPID system was experimentally determined by 
imaging the QC3 phantom [19] in an iViewGT™ R3.4.1 

MV Portal Imaging system for 6MV, 2MU and 400 DR 
irradiation conditions. A QC3 phantom was irradiated 
in an iViewGT™ R3.4.1 MV Portal Imaging system for 
6MV, 2MU and 400 DR irradiation conditions. An 
approximated MTF (aMTF) was calculated by means of 
the Coltman formula [11], [24]:  
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where μmax,min corresponds to the min and max pixel 
value of a bar pattern image. 

Finally, based on the theoretical MTF data, the 
Signal Power Spectrum, indicating the distribution of 
absolute signal in the spatial frequency domain, was 
calculated as follows: 

 
2

( ) ( )SPS u Signal MTF u= 
  (6) 

where Signal corresponds to the light output, calculated 
through the equation (1), described by the denominator. 
The phosphor related parameters used are shown in 
Table 1 [13], [15], [16], [25], [30]-[32]. 

Table 1. The parameters of the three scintillator materials 

 Gd2O2S:Tb Gd2O2S:Eu Gd2O2S:Pr 

Vendor/ 
code 

Derby 
Luminescen
ce GD1016 

Phosphor 
Technology 
UKL63/N-

R1 

Phosphor 
Technology 

UKL59/N-R3 

Eλ 2.46 eV 1.99 eV 2.16 eV 

nC 0.1722 0.1194 0.108 

σ 30 cm2/g 6.1 cm2/g 600 cm2/g 

τ 1000 cm2/g 203.3 cm2/g 20000 cm2/g 

ρ1= ρ0 1 1 1 

Τ 0.018 cm 0.018 cm 0.018 cm 

Grain size 7 µm 8 µm 8 µm 

Activator - 0.92% 1% 

3.RESULTS AND DISCUSSION 

Figure 2 shows the 1D dose distribution with depth 
within the scintillator mass. The statistical uncertainties 
of the simulations were below 1.5%. In order to calculate 
the fraction of energy absorbed in each layer i, (Qi) each 
energy bin per Δt was divided by the sum of Qi when all 
energy bins are considered (Figure 2). The simulation 
presented in this work considers a narrow X-ray beam 
passing through slabs of different materials and the 
optical phenomena are described through an analytical 
formula. The size of the beam and the type of the 
materials and the thickness of the Cu sheet used, 
significantly affect the EPID response. In addition, the 
effect of the optical transport in the photodiode 
modifies the PSF of the system and subsequently the 
calculated MTF [3], [4].  

It was found that the MTF of Gd2O2S:Tb phosphor 
was superior to that of Gd2O2S:Eu, having a value of 
approximately 0.51 at 24 lp/cm spatial frequency 
(Figure 3). The corresponding value for Gd2O2S:Eu at 
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24 lp/cm spatial frequency for the 0.018 cm thickness 
scintillator was 0.25. Pr activator exhibited the highest 
MTF, but the light output results were significantly 
inferior to the other phosphors making the use of 
Gd2O2S:Pr an impractical choice (Figure 4). If the 
optical data for the UFC version of Gd2O2S:Pr were 
available a significantly higher performance would be 
anticipated. The Eu activator showed the highest light 
output per incident photon. This result can be affected 
by the size and the shape of the grains of the scintillator 
materials. The signal power spectrum was calculated as 
the square of the nominator of theoretical MTF 
calculation formula.  

Figure 5 shows data on SPS for the three materials. 
Eu produces the highest signal, up to 13380 (photons)2. 
Tb has a significantly lower amount, approximately 
3372 (photons)2 and Pr has the lowest, nearly zero. The 
shapes of the curves are different in the sense that the 
Gd2O2S:Eu values roll off very fast, however being 
clearly higher than those of Gd2O2S:Tb, in the whole 
frequency range. The Eu activator showed medium 
values at very low frequencies, approximately 
5000 (photons)2. For higher spatial frequencies the 
values decrease exponentially. 

The deviation in the experimental CTF was below 
5% at 7.89 lp/cm spatial frequency (Figure 6). The 
corresponding normalized CTF value at 7.89 lp/cm was 
close to 0.25.  

In Figure 7, the experimental (aMTF) is 
demonstrated. The difference between the theoretical 
MTF and the experimental aMTF are due to the effect of 
pixel sampling, the effect of scatter radiation and any 
software algorithms that are imposed in the image [6], 
[11].  

 

Figure 2. 1D dose distribution 

 

Figure 3. Theoretical MTFs of the three scintillator materials 

  

Figure 4. Signal in terms of light output  
for the scintillators under investigation  

 

Figure 5. SPS of the three materials 

  

Figure 6. Experimental CTF calculation using QC3 phantom 

  

Figure 7. Experimental aMTF 
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The theoretically calculated MTF of Gd2O2S:Tb 
demonstrates higher values than the experimental one, 
for the available spatial frequencies 0 up to 8 lp/cm. The 
experimental MTF besides the scintillator incorporates 
the effect of pixel sampling and the effect of scatter 
radiation in the scintillator. The experimental MTF was 
measured by an irradiated image of a 6 MV X-ray 
spectrum, while the theoretical one was calculated by 
considering 2 MeV ionizing radiation, where 2 MeV is 
the average energy of the 6 MV photon spectrum. 

CONCLUSION 

The MTF and the signal transfer properties of a 
scintillator based EPID has been investigated by 
theoretical and experimental methods. It was found that 
Tb activator practically presents an optimum activator 
choice. A more detailed study should include the effect 
of scatter in MTF and the determination of the 
experimental MTF through CTF. The Pr activator 
provides the highest MTF, but practically zero signal. 
The Tb activator demonstrates higher MTF values than 
the Eu activator, mainly due to the optical photon 
propagation characteristics. The Tb activator 
demonstrates higher MTF values than the Eu activator. 
The Eu activator shows the highest light output and 
signal power spectrum (SPS). A comparison with the 
experimental MTF, should also consider the effects of 
pixel size and scatter in the scintillator. Finally a future 
investigation may include the UFC version Gd2O2S:Pr 
and Gd2O2S: (Pr, Ce, F) phosphor performance 
characteristics. In addition, different component layers 
and thicknesses may be considered in EPID setup.  
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