Vol. 8, 2023
Medical Physics
TOWARDS THE IMPLEMENTATION OF A PHANTOM FOR THE LOW CONTRAST EVALUATION OF ELECTRONIC PORTAL IMAGING DETECTORS (EPID): A THEORETICAL STUDY
Nektarios Kalyvas, Marios K. Tzomakas, Vasiliki Peppa, Antigoni Alexiou, Georgios Karakatsanis, Anastasios Episkopakis, Christos Michail, Ioannis Valais, George Fountos, Ioannis S. Kandarakis
Pages: 1-4
Abstract | References | Full Text (PDF)
- S. -H. Baek et al., “Clinical Efficacy of an Electronic Portal Imaging Device versus a Physical Phantom Tool for Patient-Specific Quality Assurance,” Life, vol. 12, no. 11, 1923, Nov. 2022.
DOI: 10.3390/life12111923
PMid: 36431058
PMCid: PMC9694583 - L. E. Antonuk, “Electronic portal imaging devices: a review and historical perspective of contemporary technologies and research,” Phys. Med. Biol. , vol. 47, no. 6, pp. R31 – R65, Mar. 2002.
DOI: 10.1088/0031-9155/47/6/201
PMid: 11936185 - C. K. McGarry, M. W. D. Grattan, V. P. Cosgrove, “Optimization of image quality and dose for Varian aS500 electronic portal imaging (EPIDs),” Phys. Med. Biol. , vol. 52, no. 23, pp. 6865 – 6877, Dec. 2007.
DOI: 10.1088/0031-9155/52/23/006
PMid: 18029980 - A. Mans et al., “3D Dosimetric verification of volumetric-modulated arc therapy by portal dosimetry,” Radiother. Oncol., vol. 94, no. 2, pp. 181 – 187, Feb. 2010.
DOI: 10.1016/j.radonc.2009.12.020
PMid: 20089323 - K. Ślosarek et al., “Portal dosimetry in radiotherapy repeatability evaluation,” J. Appl. Clin. Med. Phys., vol. 22, no. 1, pp. 156 – 164, Jan. 2021.
DOI: 10.1002/acm2.13123
PMid: 33314643
PMCid: PMC7856497 - W. van Elmpt et al., “A literature review of electronic portal imaging for radiotherapy dosimetry,” Radiother. Oncol., vol. 88, no. 3, pp. 289 – 309, Sep. 2008.
DOI: 10.1016/j.radonc.2008.07.008
PMid: 18706727 - L. C. G. G, Persoon et al., “Interfractional trend analysis of dose differences based on 2D transit portal dosimetry,” Phys. Med. Biol., vol. 57, no. 20, pp. 6445 – 6458, Oct. 2012.
DOI: 10.1088/0031-9155/57/20/6445
PMid: 23001452 - I. Olaciregui-Ruiz, R. Rozendaal, B. Mijnheer, M. van Herk, A. Mans, “Automated in vivo portal dosimetry of all treatments,” Phys. Med. Biol. , vol. 58, no. 22, pp. 8253 – 8264, Nov. 2013.
DOI: 10.1088/0031-9155/58/22/8253
PMid: 24201085 - F. Cremers et al., “Performance of electronic portal imaging devices (EPIDs) used in radiotherapy: image quality and dose measurements,” Med. Phys. , vol. 31, no. 5, pp. 985 – 996, May 2004.
DOI: 10.1118/1.1688212
PMid: 15191282 - S. Y. Son et al., “Evaluation of image quality for various electronic portal imaging devices in radiation therapy,” J. Radiol. Sci. Technol. , vol. 38, no. 4, pp. 451 – 461, Dec. 2015.
DOI: 10.17946/JRST.2015.38.4.16 - B. K. Rout, M. C. Shekar, A. Kumar, K. K. D. Ramesh, “Quality control test for electronic portal imaging device using QC-3 phantom with PIPSpro,” Int. J. Cancer Ther. Oncol., vol. 2, no. 4, 02049, Sep. 2014.
DOI: 10.14319/ijcto.0204.9 - I. J. Das et al., “A quality assurance phantom for electronic portal imaging devices,” J. Appl. Clin. Med. Phys., vol. 12, no. 2, pp. 391 – 403, Feb. 2011.
DOI: 10.1120/jacmp.v12i2.3350
PMid: 21587179
PMCid: PMC5718680 - I. J. Das, F. Salvat, PENELOPE: a Code system for Monte Carlo simulation of electron and photon transport , OECD Nuclear Energy Agency, Issy-les-Moulineaux, France, 2015.
Retrieved from: https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/nsc-doc2015-3.pdf
Retrieved on: Jun. 12, 2023 - J. Sempau, E. Acosta, J. Baro, J. M. Fernández-Varea, F. Salvat, “An algorithm for Monte Carlo simulation of coupled electron-photon transport,” Nucl. Instrum. Methods Phys. Res. B, vol. 132, no. 3, pp. 377 – 390, Nov. 1997.
DOI: 10.1016/S0168-583X(97)00414-X - J. Baro, J. Sempau, J. M. Fernández-Varea, F. Salvat, “PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter,” Nucl. Instrum. Methods Phys. Res. B , vol. 100, no. 1, pp. 31 – 46, May 1995.
DOI: 10.1016/0168-583X(95)00349-5 - C. M. Michail et al., “Experimental and theoretical evaluation of a high resolution CMOS based Detector under X-ray imaging conditions,” IEEE Trans. Nucl. Sci. , vol. 58, no. 1, pp. 314 – 322, Feb. 2011.
DOI: 10.1109/TNS.2010.2094206 - J. Sempau, A. Badal, L. Brualla, “A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields,” Med. Phys., vol. 38, no. 11, pp. 5887 – 5895, Nov. 2011.
DOI: 10.1118/1.3643029
PMid: 22047353 - I. Kandarakis, D. Cavouras, G. S. Panayiotakis, C. D. Nomicos, “Evaluating x-ray detectors for radiographic applications: a comparison of ZnSCdS:Ag with Gd2O2S:Tb and Y2O2S:Tb screens,” Phys. Med. Biol., vol. 42, no. 7, pp. 1351 – 1373, Jul. 1997.
DOI: 10.1088/0031-9155/42/7/009
PMid: 9253044 - N. Kalyvas, P. Liaparinos, “Analytical and Monte Carlo comparisons on the optical transport mechanisms of powder phosphors,” Opt. Mater., vol. 88, pp. 396 – 405, Feb. 2019.
DOI: 10.1016/j.optmat.2018.12.006 - NIST Physical Measurement Laboratory Elemental Data Index: X-ray Form Factor, Attenuation and Scattering Tables , NIST, Gaithersburg (MD), USA.
Retrieved from: https://physics.nist.gov/PhysRefData/Elements/index.html
Retrieved on: Jun. 15, 2023 - D. Parsons, J. L. Robar, “The effect of copper conversion plates on low Z target image quality,” Med. Phys.,vol. 39, no. 9, pp. 5362 – 5371, Sep. 2012
DOI: 10.1118/1.4742052
PMid: 22957604 - A. Kosunen, D. W. Rogers, “Beam quality specification for photon beam dosimetry,” Med. Phys.,vol. 20, no. 4, pp. 1181 – 1188, Jul. 1993.
DOI: 10.1118/1.597150
PMid: 8413028
Radiation Protection
MONITORING OF 210Po AND URANIUM IN VEGETABLES AND FRUITS IN KUWAIT
Aishah Alboloushi, Omar Alboloushi
Pages: 5-7
Abstract | References | Full Text (PDF)
- Natural and induced radioactivity in food, IAEA-TECDOC-1287, IAEA, Vienna, Austria, 2002.
Retrieved from: https://www.iaea.org/publications/6291/natural-and-induced-radioactivity-in-food
Retrieved on: Sep. 17, 2022 - F. Carvalho et al., The Environmental Behaviour of Polonium, Tech. Rep. Series no. 484, IAEA, Vienna, Austria, 2017.
Retrieved from: https://www.iaea.org/publications/10845/the-environmental-behaviour-of-polonium
Retrieved on: Sep. 17, 2022 - J. Alexander et al., “Uranium in foodstuffs, in particular mineral water,” EFSA J., vol. 7, no. 4, 1018, Apr. 2009.
DOI: 10.2903/j.efsa.2009.1018 - K. D. Arunachalam et al., “Ingestion of Polonium (210Po) via dietary sources in high background radiation areas of south India,” Int. J. Radiat. Biol., vol. 90, no. 10, pp. 867 – 875, Oct. 2014.
DOI: 10.3109/09553002.2014.922720
PMid: 24844373 - I. Louw, A. Faanhof, D. Kotze, “Determination of Polonium-210 in various foodstuffs after microwave digestion,” Radioprotection, vol. 44, no. 5, pp. 89 – 95, 2009.
DOI: 10.1051/radiopro/20095022 - S. Sdraulig, B. Orr, D. Urban, R. Tinker, Radiation doses from the average Australian diet, Tech. Rep. 181, ARPANSA, Melbourne, Australia, 2019.
Retrieved from: https://www.arpansa.gov.au/sites/default/files/tr181.pdf
Retrieved on: Sep. 17, 2022 - L. Zikovsky, “Determination of uranium in food in Quebec by neutron activation analysis,” J. Radioanal. Nucl. Chem., vol. 267, no. 3, pp. 695 – 697, Mar. 2006.
DOI: 10.1007/s10967-006-0106-9 - F. Monroy-Guzmán, “Isolation of uranium by anionic exchange resins,” J. Chem. Chem. Eng., vol. 10, no. 2, pp. 90 – 95, 2016.
DOI: 10.17265/1934-7375/2016.02.005 - A Procedure for Determination of Po-210 in Water Samples by Alpha Spectrometry, IAEA/AQ/12, IAEA, Vienna, Austria, 2010.
Retrieved from: https://www.iaea.org/publications/8200/a-procedure-for-determination-of-po-210-in-water-samples-by-alpha-spectrometry
Retrieved on: Sep. 17, 2022 - K. S. Din, “Determination of 210Po in various foodstuffs and its annual effective dose to inhabitants of Qena City, Egypt,” Sci. Total Environ., 2011, vol. 409, no. 24, pp. 5301 – 5304, Nov. 2011.
DOI: 10.1016/j.scitotenv.2011.09.001
PMid: 21959247
Novelties in Covid-19 research
CLIMATE EFFECTS OF AEROSOLS AND RADON ON COVID-19 PANDEMIC IN BUCHAREST METROPOLITAN AREA
Maria Zoran, Roxana Savastru, Dan Savastru, Marina Tautan
Pages: 8-14
Abstract | References | Full Text (PDF)
- Europe’s Air Quality Status 2022, Rep. 04/2022, Eur. Environ. Agency, Copenhagen, Denmark, 2022.
DOI: 10.2800/049755 - D. Kikaj et al., “Investigating the vertical and spatial extent of radon-based classification of the atmospheric mixing state and impacts on seasonal urban air quality,” Sci. Total Environ., vol. 872, no. 2, 162126, May 2023.
DOI: 10.1016/j.scitotenv.2023.162126
PMid: 36773908 - M. Hosoda et al., “A unique high natural background radiation area - Dose assessment and perspectives,” Sci. Total Environ., vol. 750, no. 5, 142346, Jan. 2021.
DOI: 10.1016/j.scitotenv.2020.142346
PMid: 33182182 - L. Borro et al., “The role of air conditioning in the diffusion of Sars-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children’s hospital,” Environ. Res., vol. 193, 110343, Feb. 2021.
DOI: 10.1016/j.envres.2020.110343
PMid: 33068577
PMCid: PMC7557177 - E. Burgio, P. Piscitelli, L. Migliore, “Ionizing radiation and human health: reviewing models of exposure and mechanisms of cellular damage. An epigenetic perspective,” Int. J. Environ. Res. Public Health, vol. 15, no. 9, 1971, Sep. 2018.
DOI: 10.3390/ijerph15091971
PMid: 30201914
PMCid: PMC6163535 - I. Yarmoshenko, M. Zhukovsky, A. Onishchenko, A. Vasilyev, G. Malinovsky, “Factors influencing temporal variations of radon concentration in high-rise buildings,” J. Environ. Radioact., vol. 232, 106575, Jun. 2021.
DOI: 10.1016/j.jenvrad.2021.106575
PMid: 33711618 - F. Loffredo et al., “Indoor Radon Concentration and Risk Assessment in 27 Districts of a Public Healthcare Company in Naples, South Italy,” Life , vol. 11, no. 3, 178, Feb. 2021.
DOI: 10.3390/life11030178
PMid: 33668261
PMCid: PMC7996231 - P. P. S. Otahal et al., “Low-Level Radon Activity Concentration-A MetroRADON International Intercomparison,” Int. J. Environ. Res. Public Health , vol. 19, no. 10, 5810, May 2022.
DOI: 10.3390/ijerph19105810
PMid: 35627347
PMCid: PMC9141648 - V. Weilnhammer et al., “Extreme weather events in Europe and their health consequences - A systematic review,” Int. J. Hyg. Environ. Health , vol. 233, no. 9, 113688, Apr. 2021.
DOI: 10.1016/j.ijheh.2021.113688
PMid: 33530011 - N. S. M. Nor et al., “Particulate matter (PM2.5) as a potential SARS-CoV-2 carrier,” Sci. Rep., vol. 11, no. 1, 2508, Jan. 2021.
DOI: 10.1038/s41598-021-81935-9
PMid: 33510270
PMCid: PMC7844283 - T. Borisova, S. Komisarenko, “Air pollution particulate matter as a potential carrier of SARS-CoV-2 to the nervous system and/or neurological symptom enhancer: arguments in favor,” Environ. Sci. Pollut. Res. Int ., vol. 28, no. 30, pp. 40371 – 40377, Aug. 2021.
DOI: 10.1007/s11356-020-11183-3
PMid: 33051841
PMCid: PMC7552951 - M. Mullerova, K. Holy, P. Blahusiak, M. Bulko, “Study of radon exhalation from the soil,” J. Radioanal. Nucl. Chem., vol. 315, no. 2, pp. 237 – 241, Feb. 2018.
DOI: 10.1007/s10967-017-5657-4 - M. Zoran, D. Savastru, A. Dida, “Assessing urban air quality and its relation with radon (222Rn),” J. Radioanal. Nucl. Chem., vol. 309, pp. 909 – 922, Aug. 2016.
DOI: 10.1007/s10967-015-4681-5 - J. Maya et al., “Radon Risks Assessment with the Covid-19 Lockdown Effects,” J. Appl. Math. Phys., vol. 8, no. 7, pp. 1402 – 1412, Jul. 2020.
DOI: 10.4236/jamp.2020.87106 - A. J. Blomberg et al., “The Role of Ambient Particle Radioactivity in Inflammation and Endothelial Function in an Elderly Cohort,” Epidemiology , vol. 31, no. 4, pp. 499 – 508, Jul. 2020.
DOI: 10.1097/EDE.0000000000001197
PMid: 32282436
PMCid: PMC7269805 - M. Jerrett et al., “Air pollution and meteorology as risk factors for COVID-19 death in a cohort from Southern California,” Environ. Int., vol. 171, 107675, Jan. 2023.
DOI: 10.1016/j.envint.2022.107675
PMid: 36565571
PMCid: PMC9715495 - E. F. Yates et al., “Review on the biological, epidemiological, and statistical relevance of COVID-19 paired with air pollution,” Environ. Adv ., vol. 8, no. 4, 100250, Jul. 2022.
DOI: 10.1016/j.envadv.2022.100250
PMid: 35692605
PMCid: PMC9167046 - M. Travaglio et al., “Links between air pollution and COVID-19 in England,” Environ. Pollut., vol. 268, part A, 115859, Jan. 2021.
DOI: 10.1016/j.envpol.2020.115859
PMid: 33120349
PMCid: PMC7571423 - Y. M. Baron, “Could changes in the airborne pollutant particulate matter acting as a viral vector have exerted selective pressure to cause COVID-19 evolution?,” Med. Hypotheses, vol. 146, 110401, Jan. 2021.
DOI: 10.1016/j.mehy.2020.110401
PMid: 33303307
PMCid: PMC7679512 - M. Jerrett et al., “Air pollution and meteorology as risk factors for COVID-19 death in a cohort from Southern California,” Environ. Int., vol. 171, 107675, Jan. 2023.
DOI: 10.1016/j.envint.2022.107675
PMid: 36565571
PMCid: PMC9715495 - B. Neupane et al., “Long-term exposure to ambient air pollution and risk of hospitalization with community-acquired pneumonia in older adults,”Am. J. Respir. Crit. Care Med., vol. 181, no. 1, pp. 47 – 53, Jan. 2010.
DOI: 10.1164/rccm.200901-0160OC
PMid: 19797763 - Y. M. Baron, L. Camilleri, “The Emergence of Ten SARS-CoV-2 Variants and Airborne PM2.5,” Virol. Curr. Res., vol. 5, no. 6, 141, Nov. 2021.
Retrieved from: https://www.hilarispublisher.com/open-access/the-emergence-of-ten-sarscov2-variants-and-airborne-pmsub25sub-83896.html
Retrieved on: Feb. 8, 2023 - Y. M. Baron, “Are there medium to outdoor multifaceted effects of the airborne pollutant PM2.5 determining the emergence of SARS-CoV-2 variants?,” Med. Hypotheses, vol. 158, 110718, Jan. 2022.
DOI: 10.1016/j.mehy.2021.110718
PMid: 34758423
PMCid: PMC8526108 - A. Facciola, P. Lagana, G. Caruso, “The COVID-19 pandemic and its implications on the environment,” Environ. Res., vol. 201, 111648, Oct. 2021.
DOI: 10.1016/j.envres.2021.111648
PMid: 34242676
PMCid: PMC8261195 - T. Sagawa et al., “Exposure to particulate matter upregulates ACE2 and COVID-19 Environmental Dependence 21 TMPRSS2 expression in the murine lung,” Environ. Res., vol. 195, 110722, Apr. 2021.
DOI: 10.1016/j.envres.2021.110722 - M. A. Zoran, R. S. Savastru, D. M. Savastru, M. N. Tautan, “Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy,” Sci. Total Environ ., vol. 738, no. 6, 139825, Oct. 2020.
DOI: 10.1016/j.scitotenv.2020.139825
PMid: 32512362
PMCid: PMC7265857 - M. A. Zoran, R. S. Savastru, D. M. Savastru, M. N. Tautan, “Impacts of exposure to air pollution, radon and climate drivers on the COVID-19 pandemic in Bucharest, Romania: A time series study,” Environ. Res., vol. 212, part D, 113437, Sep. 2022.
DOI: 10.1016/j.envres.2022.113437
PMid: 35594963
PMCid: PMC9113773 - J. L. Domingo, M. Marqu`es, J. Rovira, “Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review,” Environ. Res., vol. 188, 109861, Sep. 2020.
DOI: 10.1016/j.envres.2020.109861
PMid: 32718835
PMCid: PMC7309850 - J. L. Domingo, J. Rovira, “Effects of air pollutants on the transmission and severity of respiratory viral infections,” Environ. Res., vol. 187, 109650, Aug. 2020.
DOI: 10.1016/j.envres.2020.109650
PMid: 32416357
PMCid: PMC7211639 - N. H. Orak, “Effect of ambient air pollution and meteorological factors on the potential transmission of COVID-19 in Turkey,” Environ. Res., vol. 212,
part E, 113646, Sep. 2022.
DOI: 10.1016/j.envres.2022.113646
PMid: 35688216
PMCid: PMC9172252 - A. Srivastava, “COVID-19 and air pollution and meteorology-an intricate relationship: A review,”Chemosphere, vol. 263, 128297, Jan. 2021.
DOI: 10.1016/j.chemosphere.2020.128297
PMid: 33297239
PMCid: PMC7487522 - F. Tian et al., “Ambient air pollution and low temperature associated with case fatality of COVID-19: A nationwide retrospective cohort study in China,” The Innovation, vol. 2, no. 3, 100139, Aug. 2021.
DOI: 10.1016/j.xinn.2021.100139
PMid: 34189495
PMCid: PMC8226106 - A. Sanchez-Lorenzo et al., “Did anomalous atmospheric circulation favor the spread of COVID-19 in Europe?” Environ. Res., vol. 194, 110626, Mar. 2021.
DOI: 10.1016/j.envres.2020.110626
PMid: 33345895
PMCid: PMC7746124 - N. R. Rahimi et al., “Bidirectional association between COVID- 19 and the environment: A systematic review,” Environ. Res., vol. 194, no. 2, 110692, Mar. 2021.
DOI: 10.1016/j.envres.2020.110692
PMid: 33385384
PMCid: PMC7833965 - J. D. Ford et al., “Interactions between climate and COVID-19,” Lancet Planet. Health , vol. 6, no. 10,
pp. e825 – e833, Oct. 2022.
DOI: 10.1016/S2542-5196(22)00174-7
PMid: 36208645
PMCid: PMC9534524 - V. Yilmaz, Y. Can, “Impact of knowledge, concern and awareness about global warming and global climatic change on environmental behavior,” Environ. Dev. Sustain ., vol. 22, no. 7, pp. 6245 – 6260, Oct. 2020.
DOI: 10.1007/s10668-019-00475-5 - Y. Matiiuk, R. Krikštolaitis, G. Liobikienė, “The Covid-19 pandemic in context of climate change perception and resource-saving behavior in the European Union countries,” J. Clean. Prod., vol. 395, no. 7, 136433, Apr. 2023.
DOI: 10.1016/j.jclepro.2023.136433
PMid: 36818660
PMCid: PMC9925455
Radiobiology
CHANGES IN VARIOUS AMINO ACID CONCENTRATIONS IN THE SMALL INTESTINE AND PATHOGENESIS OF INTESTINAL INJURY CAUSED BY CARBON ION IRRADIATION
Saori Nakamura, Nobuhiko Takai, Yoshino Katsuki, Akiko Uzawa, Ryoichi Hirayama, Yoshihito Ohba
Pages: 15-19
Abstract | References | Full Text (PDF)
-
T. Kamada, “Outline of Heavy Ion Radiotherapy,” in Proc. 2nd Int. Symp. Heavy-Ion Radiotherapy and Adv.
Technology,
Tokyo, Japan, 2016, pp. 1 – 4.
Retrieved from: http://www.nirs.qst.go.jp/rd/reports/proceedings/pdf/2nd_International_Symposium_2016.pdf
Retrieved on: Feb. 01, 2017 -
Y. Yoshida et al., “Evaluation of therapeutic gain for fractionated
carbon-ion radiotherapy using the tumor growth delay and crypt survival
assays,” Radiother. Oncol.,vol. 117, no. 2, pp. 351 – 357, Nov. 2015.
DOI: 10.1016/j.radonc.2015.09.027
PMid: 26454348 -
T. Ohno, “Particle radiotherapy with carbon ion beams,” EPMA J., vol. 4, no. 1, 9, Mar. 2013.
DOI: 10.1186/1878-5085-4-9
PMid: 23497542
PMCid: PMC3598788 -
A. Dubois, R. I. Walker, “Prospects for Management of Gastrointestinal
Injury Associated with the Acute Radiation Syndrome,”
Gastroenterology
, vol. 95, no. 2, pp. 500 – 507, Aug. 1988.
Retrieved from: http://www.sciencedirect.com/science/article/pii/0016508588905124
Retrieved on: Feb. 01, 2017 -
M. M. Bismar, F. A. Sinicrope, “Radiation enteritis,”
Curr. Gastroenterol. Rep.
, vol. 4, no. 5, pp. 361 – 365, Oct. 2002.
DOI: 10.1007/s11894-002-0005-3
PMid: 12228037 -
C. G. Rousseaux, “A Review of Glutamate Receptors I: Current Understanding
of Their Biology,” J. Toxicol. Pathol., vol. 21, no.
1, pp. 25 – 51, Apr. 2008.
DOI: 10.1293/tox.21.25 -
S. F. Traynelis et al., “Glutamate Receptor Ion Channels: Structure,
Regulation, and Function,” Pharmacol. Rev.,vol. 62, no. 3,
pp. 405 – 496, Sep. 2010.
DOI: 10.1124/pr.109.002451
PMid: 20716669
PMCid: PMC2964903 -
K. G. Dickman, J. G. Youssef, S. M. Mathew, S. I. Said, “Ionotropic
Glutamate Receptors in Lungs and Airways,” Am. J. Respir. Cell Mol., vol.
30, no. 2, pp. 139 – 144,
Feb. 2004.
DOI: 10.1165/rcmb.2003-0177OC
PMid: 12855408 -
J. W. Olney, “Excitotoxic Amino Acids and Neuropsychiatric Disorders,”
Annu. Rev. Pharmacol. Toxicol.
, vol. 30, pp. 47 – 71, Apr. 1990.
DOI: 10.1146/annurev.pa.30.040190.000403
PMid: 2188577 -
D. W. Choi, “Excitotoxic cell death,” J. Neurobiol., vol. 23, no. 9, pp. 1261 – 1276, Nov. 1992.
DOI: 10.1002/neu.480230915
PMid: 1361523 -
Y. M. Lu, H. Z. Yin, J. Chiang, J. H. Weiss, “Ca2+-Permeable
AMPA/Kainate and NMDA Channels: High Rate of Ca 2+ Influx
Underlies Potent Induction of Injury,” J. Neurosci., vol. 16, no.
17, pp. 5457 – 5465, Sep. 1996.
Retrieved from: http://www.jneurosci.org/content/jneuro/16/17/5457.full.pdf
Retrieved on: Feb. 01, 2017 -
C. G. Rousseaux, “A Review of Glutamate Receptors II: Pathophysiology and
Pathology,” J. Toxicol. Pathol., vol. 21, no. 3, pp. 133 – 173, Oct. 2008.
DOI: 10.1293/tox.21.133 -
L. Tenneti, D. M. D`Emilia, C. M. Troy, S. A. Lipton, “Role of Caspases in
N-Methyl-D-Aspartate-Induced Apoptosis in Cerebrocortical
Neurons,” J. Neurochem., vol. 71, no. 3, pp. 946 –
959, Sep. 1998.
DOI: 10.1046/j.1471-4159.1998.71030946.x
PMid: 9721720 -
J. A. McRoberts et al., “Role of peripheral N-methyl-D-aspartate (NMDA)
receptors in visceral nociception in rats,” Gastroenterology, vol.
120, no. 7, pp. 1737 – 1748, Jun. 2001.
DOI: 10.1053/gast.2001.24848
PMid: 11375955 -
H. Chen et al., “Identification of a homocysteine receptor in the peripheral
endothelium and its role in proliferation,” J. Vasc. Surg., vol.
41, no. 5, pp. 853 – 860, May. 2005.
DOI: 10.1016/j.jvs.2005.02.021
PMid: 15886671 -
H. Wang, R. J. Liu, R. X. Zhang, J. T. Qiao, “Peripheral NMDA receptors
contribute to activation of nociceptors: a c-fos expression study in rats,”
Neurosci. Lett., vol. 221, no. 2-3, pp. 101 – 104,
Jan. 1997.
DOI: 10.1016/S0304-3940(96)13299-7
PMid: 9121674 -
C. G. Parsons, “NMDA receptors as targets for drug action in neuropathic
pain,” Eur. J. Pharmacol., vol. 429, no. 1-3, pp. 71 – 78, Oct. 2001.
DOI: 10.1016/S0014-2999(01)01307-3
PMid: 11698028 -
A. B. Petrenko, T. Yamakura, H. Baba, K. Shimoji, “The role of
N-methyl-D-aspartate (NMDA) receptors in pain: a review,”
Anesth Analg
, vol. 97,no. 4, pp. 1108 – 1116, Oct. 2003.
DOI: 10.1213/01.ANE.0000081061.12235.55
PMid: 14500166 -
W. Rzeski, L. Turski, C. Ikonomidou, “Glutamate antagonists limit tumor
growth,” PNAS USA, vol. 98, no. 11, pp. 6372 – 6377, May 2001.
DOI: 10.1073/pnas.091113598
PMid: 11331750
PMCid: PMC33475 -
M. Ohgami et al., “Effect of N-methyl-D-aspartate receptors
antagonist on radiation-induced gut injuries in mice,” in
Proc. 5th Int. Conf. Radiation and Applications in Various Fields of
Research (RAD 2017)
, Budva, Montenegro, 2017, pp. 6 – 10.
DOI: 10.21175/RadProc.2017.02 -
M. J. Niciu, B. Kelmendi, G. Sanacora, “Overview of glutamatergic
neurotransmission in the nervous system,”
Pharmacol. Biochem. Behav
., vol. 100, no. 4, pp. 656 – 664, Feb. 2012.
DOI: 10.1016/j.pbb.2011.08.008
PMid: 21889952
PMCid: PMC3253893 -
T. Yamashita et al., “Effect of Radiation on the Expression of Taurine
Transporter in the Intestine of Mouse,” Adv. Exp. Med. Biol., vol. 975, part 2, pp. 729 – 740, 2017.
DOI: 10.1007/978-94-024-1079-2_57
PMid: 28849495 -
X. Wu et al., “Determination of amino acid neurotransmitters in rat
hippocampi by HPLC-UV using NBD-F as a derivative,”
Biomed. Chromatogr
., vol. 28, no. 4, pp. 459 – 462, Apr. 2014.
DOI: 10.1002/bmc.3062
PMid: 24132719 -
Xue-Jiao Zhao et al., “Simultaneous determination of five amino acid
neurotransmitters in rat and porcine blood and brain by two-dimensional
liquid chromatography,” J. Chromatgr. B, vol. 1163, 122507, Jan.
2021.
DOI: 10.1016/j.jchromb.2020.122507
PMid: 33387860 -
K. Hamase et al., “Regional distribution and postnatal changes of D-amino
acids in rat brain,” Biochim. Biophys. Acta Gen. Subj., vol. 1334,
no. 2-3, pp. 214 – 222, Mar. 1997.
DOI: 10.1016/s0304-4165(96)00095-5
PMid: 9101716 -
A. Furusho et al., “Development of a Highly-Sensitive Two-Dimensional HPLC
System with Narrowbore Reversed-Phase and Microbore Enantioselective
Columns and Application to the Chiral Amino Acid Analysis of the Mammalian
Brain,” Chromatography, vol. 39, no. 2, pp. 83 – 90, Apr. 2018.
DOI: 10.15583/jpchrom.2018.007 -
E. Bonfoco, D. Krainc, M. Ankarcrona, P. Nicotera,
S. A. Lipton, “Apoptosis and necrosis: Two distinct events induced,
respectively, by mild and intense insults with N-methyl-D-aspartate or
nitric oxide/superoxide in cortical cell cultures,” PNAS USA, vol.
92, no. 16,
pp. 7162 – 7166, Aug. 1995.
DOI: 10.1073/pnas.92.16.7162
PMid: 7638161
PMCid: PMC41299
Radiochemistry
VALENCE DISTRIBUTION OF As-76 ATOMS IN ARSENIC THIOCOMPOUNDS IRRADIATED WITH NEUTRONS
Héctor D. Colmán, J. F. Facetti Masulli
Pages: 20-23
Abstract | References | Full Text (PDF)
-
S. Radescu et al., “Study of the orpiment and anorpiment phases of As2S3
under pressure,” J. Phys. Conf. Ser., vol. 950, no. 4, 042018,
2017.
DOI: 10.1088/1742-6596/950/4/042018 -
V. P. Cuenca-Gotor et al., “Orpiment under compression: metavalent bonding
at high pressure. Orpiment under compression: metavalent bonding at high
pressure,” Phys. Chem. Chem. Phys., vol. 22, no. 6, pp. 3352 –
3369, Feb. 2020.
DOI: 10.1039/c9cp06298j
PMid: 31976513 -
V. P. Cuenca-Gotor, “Estudio de compuestos As2X 3
bajo presión,” Tesis doctoral, Universitat Politécnica de Valencia,
Departamento de Física Aplicada, Valencia, España, Junio 2019.
(V. P. Cuenca-Gotor, “Study of compounds As2X 3 under pressure,” Ph.D thesis, Polytechnic University of Valencia, Department of Applied Physics, Valencia, Spain, Jun. 2019.)
Retrieved from: https://riunet.upv.es/bitstream/handle/10251/125699/Cuenca%20-%20Estudio%20de%20compuestos%20As2X3%20bajo%20presi%C3%B3n.pdf?sequence=1&isAllowed=y
Retrieved on: Jun. 22, 2023 -
I. Fejes, F. Billes, V. Mitsa, “A theoretical study of the effect on the
vibrational spectrum of the stepwise sulfur by selenium substitution in
arsenic pentasulfide,” J. Mol. Struct. (Theochem), vol. 531, no. 1-3, pp. 407 – 414, Oct. 2000.
DOI: 10.1016/S0166-1280(00)00461-9 -
H. Kobayashi, H. Kanbara, M. Koga, K. Kubodera, “Third‐order nonlinear optical properties of
As2S 3 chalcogenide glass,” J. Appl. Phys.,
vol. 74, no. 6, pp. 3683 – 3687, Sep. 1993.
DOI: 10.1063/1.354511 -
M. Wuttig, V. L. Deringer, X. Gonze, C. Bichara,
J. Y. Raty, “Incipient Metals: Functional Materials with a Unique Bonding
Mechanism,”Adv. Mater., vol. 30, no. 51, 1803777, Dec.
2018.
DOI: 10.1002/adma.201803777
PMid: 30318844 -
R. Naik, R. Ganesan, K. S. Sangunni, “Optical properties change in
amorphous (As2S3)0.87Sb0.13 thin films by photo and thermal induced
process,” Mater. Chem. Phys., vol. 125, no. 3, pp. 505 – 509, Feb. 2011.
DOI: 10.1016/j.matchemphys.2010.10.025 -
J. F. Facetti-Masulli, H. D. Colman, “Chemical effects of neutron
irradiation on arsenic sulfides,”
in Proc. 8th Int. Conf. Radiation in Various Fields of Research (RAD
2020),
Herceg Novi, Montenegro, 2020, pp. 106 – 108.
DOI: 10.21175/RadProc.2020.22 -
J. W. Mellor, “Arsenic,” in
A Comprehensive Treatise on Inorganic and Theoretical Chemistry
, vol. IX, London, England: Longmans, Green and Co., 1929, ch. LI, pp. 1 – 338.
Retrieved from: https://library.lol/main/F417349834EF8BD783B7987D507F5AE6
Retrieved on: Mar. 22, 2022 - Wen Li, “Synthesis and Solubility of Arsenic Tri-sulfide and Sodium Arsenic Oxy-sulfide Complexes in Alkaline Sulfide Solutions,” M.Sc. thesis, The University of British Columbia, Mater. Eng., Vancouver, Canada, 2023.
- R. B. Firestone, V. S. Shirley, Table of Isotopes, vol. II, 8th ed., New York (NY), USA: J. Wiley & Sons, 1996.
-
J. F. Facetti-Masulli, H. Colman, A. Vallejos, “Separación por
electroforesis de AsIII y AsV en thiocompuestos de arsenico,”
Rev. Soc. Cientif. Paraguay
, vol. 10, pp. 21 – 23, Jan. 1969.
(J. F. Facetti-Masulli, H. Colman, A. Vallejos, “Separation of As III and As V in thio compounds of arsenic by High Voltage Electrophoresis,” Rev. Soc. Cientif. Paraguay , vol. 10, pp. 21 – 23, Jan. 1969.)
Retrieved from: https://www.researchgate.net/publication/281559200_Separation_of_As_III_and_As_V_in_thio_compounds_of_arsenic_by_High_Voltage_Electrophoresis_H_Colman_A_Vallejos_J_F_Facetti_Masulli_Rev_Soc_Cient_Paraguay-_2_epoca-_Vol_10_21_1969
Retrieved on: Mar. 22, 2022 -
J. F. Facetti-Masulli, H. D. Colmán, “Chemical effects of neutron capture
in thioantimony compounds,” J. Inorg. Nucl. Chem., vol. 33, no.
12, pp. 4019 – 4023, Dec. 1971.
DOI: 10.1016/0022-1902(71)80500-6 -
J. F. Facetti, A. Vallejos, “Chemical consequences of thermal annealing in
neutron activated thioantimony compounds,” J. Inorg. Nucl. Chem.,
vol. 34, no. 12, pp. 3659 – 3664, Dec. 1972.
DOI: 10.1016/0022-1902(72)80010-1 -
G. Harbottle, “Hot atom chemistry in inorganic solids,” in
Hot Atom Chemistry Status Report: Proceedings of a panel
, Vienna, Austria: IAEA, 1975, p. 25.
Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/07/239/7239657.pdf
Retrieved on: Mar. 22, 2022 -
G. Harbottle, “Hot atom chemistry in inorganic solids,” in
Hot Atom Chemistry Status Report: Proceedings of a panel
, Vienna, Austria: IAEA, 1975, pp. 19 – 24.
Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/07/239/7239657.pdf
Retrieved on: Mar. 22, 2022 -
R. B. Firestone, “Adopted data base and user tables,” in
Database of prompt gamma rays from slow neutron capture for elemental
analysis
, Vienna, Austria: IAEA, 2007, ch. 7, pp. 73 – 75.
Retrieved from: https://www.iaea.org/publications/7030/database-of-prompt-gamma-rays-from-slow-neutron-capture-for-elemental-analysis
Retrieved on: Mar. 22, 2022 -
K. Tanaka, “Chemical and medium-range orders in As2S
3
glass,” Phys. Rev. B, vol. 36, no. 18, pp. 9746 – 9752, Dec. 1987.
DOI: 10.1103/PhysRevB.36.9746 -
T. T. Meek, T. J. Isaacs, “Structure of amorphous bulk As2S5,”
J. Electron. Mater.
, vol. 10, no. 4, pp. 653 – 664, Jul. 1981.
DOI: 10.1007/BF02660126 - G. Harbottle, “Effect of nucleogenesis preceding chemical reaction: dissipation of excitation before chemical reaction,” in Chemical Effects of Nuclear Transformations in Inorganic Systems , G. Harbottle, A. G. Maddock, Eds., Amsterdam, Holland: North-Holland Pub. Co., 1979, pp. 39 – 73.
Radioecology
NATURAL AND ARTIFICIAL RADIONUCLIDES IN WOOD BIOMASS USED FOR HEATING – COMPARISON OF NORTH-EAST ITALY AND IMPORTED WOOD PELLETS
Chiara Cantaluppi, Beatrice Morelli, Raffaele Cavalli, Rosa Greco, Nicolò Pradel
Pages: 24-30
Abstract | References | Full Text (PDF)
-
M. De Cort et al.,
Atlas of Caesium Deposition on Europe after the Chernobyl Accident
, European Commission, Luxembourg, Luxembourg, 2009.
Retrieved from: https://op.europa.eu/en/publication-detail/-/publication/110b15f7-4df8-49a0-856f-be8f681ae9fd
Retrieved on: Sep. 22, 2022 -
S. Manera, D. Milani,
Pellet radioattivo Indagine radiometrica e considerazioni di
radioprotezione
, Università degli studi di Pavia, Pavia, Italia, 2009.
(S. Manera, D. Milani, Radioactive pellet Radiometric Investigation and Radioprotection considerations , University of Pavia, Pavia, Italy, 2009.)
Retrieved from: http://www.puntosicuro.info/documenti/documenti/090810_Universita_Pavia_Pellet_radioattivo.pdf
Retrieved on: Sep. 22, 2022 -
B. D. Amiro, S. C. Sheppard, F. L. Johnston,
W. G. Evenden, D. R. Harris, “Burning radionuclide question: What happens
to iodine, caesium and chlorine in biomass fires?,”
Sci. Total Environ
., vol 187, no. 2, pp. 93 – 103, Aug. 1996.
DOI: 10.1016/0048-9697(96)05125-X
PMid: 8766727 -
M. Belivermiş et al., “The usability of tree barks as long term biomonitors
of atmospheric radionuclide deposition,” Appl. Radiat. Isot., vol.
68, no. 12, pp. 2433 – 2437, Dec. 2010.
DOI: 10.1016/j.apradiso.2010.07.010
PMid: 20678943 -
M. Calabrese, M. Quarantotto, C. Cantaluppi, A. Fasson, “Caratteristiche merceologiche e radiometriche del pellet in
importazione,”
Atti del XXV Congresso Nazionale di Scienze Merceologiche
, Trieste-Udine, Italia, 2011, pag. 286 – 291.
(M. Calabrese, M. Quarantotto, C. Cantaluppi, A. Fasson, “Commodity and Radiometric Characteristics of imported pellets,” in Proc. 25th National Congress of Commodity Science , Trieste-Udine, Italy, 2011, pp. 286 – 291.)
Retrieved from: http://www.aisme.it/accademia-italiana-scienze-merceologiche/attivita/congressi.html
Retrieved on: Jan. 12, 2023 -
D. Desideri, A. Rongoni, C. Roselli, D. Saetta,
L. Feduzi, “Analytical methods for the determination of 137Cs and
90Sr in ash of fuel pellets used in Italy,”
Microchem. J
., vol. 103, pp. 131 – 134, Jul. 2012.
DOI: 10.1016/j.microc.2012.02.007 -
G. Zambelli et al., “Sostanze radioattive nelle biomasse: rischio di
esposizione a radiazioni ionizzanti nella combustione di pellets e di
biomasse di legno derivanti da aeree sensibili,” negli
Atti di 24° Convegno di Igiene Industriale
(AIDII 2018), Corvara, Italia, 2018.
(G. Zambelli et al., “Radioactive substances in biomass: risk of exposure to ionizing radiation in the combustion of pellets and wood biomass deriving from sensitive areas,” in Proc. 24th Industrial Hygiene Conf. (AIDII 2018) , Corvara, Italy, 2018.)
Retrieved from: https://www.researchgate.net/publication/324360348
Retrieved on: Jan. 12, 2023 -
M. Brambilla, P. Fortunati, F. Carini, “Modello concettuale dinamico per lo
studio del trasferimento del radiocesio dal terreno alle piante d`
interesse agrario,”
Bollettino della Società Italiana della Scienza del Suolo
, vol. 52, n. 1-2, Palermo, Italia, Giugno 2003.
(M. Brambilla, P. Fortunati, F. Carini, “Dynamic Conceptual Model for the Study of the Transfer of Radiocesium from the Soil to Plants of Agricultural Interest,” Bull. Italian Society of Soil Science, vol. 52, no. 1-2, Palermo, Italy, Jun. 2003.)
Retrieved from: https://www.scienzadelsuolo.org/_docs/bollettini/2003_bollettino_volume_52_n1_2.pdf
Retrieved on: Sep. 22, 2022 -
S. Ehlken, G. Kirchner, “Enviromental processes affecting plant root uptake
of radioactive trace elements and variability of transfer factor data: a
review,” J. Environ. Radioact., vol. 58, no. 2-3,
pp. 97 – 112, 2002.
DOI: 10.1016/s0265-931x(01)00060-1
PMid: 11814196 -
C. Papastefanou, M. Manolopoulou, S. Stoulos,
A. Ioannidou, E. Gerasopoulos, “Soil-to-plant transfer of 137Cs,
40K and 7Be,” J. Environ. Radioact., vol. 45, no. 1, pp. 59 – 65, Oct. 1999.
DOI: 10.1016/S0265-931X(98)00077-0 -
E. Smolders, K. Van Den Brande, R. Merckx, “Concentration of
137Cs and K in soil solution predict the plant availability of
137Cs in soils,” Environ. Sci. Technol., vol. 31, no. 12, pp. 3432 – 3438, Dec. 1997.
DOI: 10.1021/es970113r -
C. L. Fogh, K. G. Andersson, “Dynamic behaviour of 137Cs
contamination in trees of the Briansk region, Russia,”
Sci. Total Environ
., vol. 269, no. 1-3, pp. 105 – 115, Mar. 2001.
DOI: 10.1016/s0048-9697(00)00819-6 -
S. Donati, “Distribuzione del Contenuto di Elementi Chimici Radioattivi e
Stabili in Pinus Pinaster e Prospettive di Utilizzo in Dendroanalisi,” Tesi
di Laurea in Scienze Ambientali, Università di Bologna, Bologna, Italia,
2002.
(S. Donati, “Distribution of the content of radioactive and stable chemical elements in pinus pinasterand perspectives of use in dendroanalysis,” Environmental Sciences Degree Thesis, University of Bologna, Bologna, Italy, 2002.) -
N. V. Soukhova et al., “137Cs distribution among annual rings of
different tree species contaminated after the Chernobyl accident,”
J. Environ. Radioact
., vol. 65,
no. 1, pp. 19 – 28, 2003.
DOI: 10.1016/S0265-931X(02)00061-9
PMid: 12683726 -
I. Lovrencic et al., “Distribution of 137Cs, 40K and
7Be in silver fir-tree (abies alba L.) from Groski Kotar,
Croatia,” J. Radioanal. Nucl. Chem., vol. 275, no. 1,
pp. 71 – 79, Jan. 2008.
DOI: 10.1007/s10967-007-7009-2 -
O. Guilitte, J. Melin, L. Wallberg, “Biological pathways of radionuclides
originating from the Chernobyl fallout in a Boreal fores ecosystem,”
Sci. Total Environ
., vol. 157, no. 1-3, pp. 207 – 215, Dec. 1994.
DOI: 10.1016/0048-9697(94)04283-S
PMid: 7839113 -
R. Römmelt, L. Hiersche, G. Schaller, E. Wirth, “Influence of soil fungi
(Basidiomycetes) on the migration of 137+134Cs and 90
Sr in coniferous forest soils,” in
Proc. Workshop on The Transf. Radionucl. Nat. Semi-Natural Environ
., Villa Manin, Italy, 1989, pp. 152 – 160.
Retrieved from: https://op.europa.eu/en/publication-detail/-/publication/f558d3ff-37d0-4ef5-86f2-a9db1e084b7e
Retrieved on: Jan. 12, 2023 -
M. Gravaglia et al.,
Task 01.02.03: Livelli di riferimento, esenzione, allontanamento (anche
NORM)
, ISPRA: Dipartimento Nucleare, Rischio Tecnologico ed Industriale, Roma,
Italia, 2014, pag. 7 – 29.
(M. Gravaglia et al., TASK 01.02.03: Levels of containment, exemption, removal (also NORM) , ISPRA: Nuclear department, Technical and Industrial Risk, Rome, Italy, 2014, pp. 7 – 29.)
Retrieved from: https://www.snpambiente.it/wp-content/uploads/2018/11/Task-01.02.03-Livelli-di-allontanamento-Rev.0.pdf
Retrieved on: Jan. 12, 2023 -
N. Pradel, “Analisi del contenuto di radionuclidi nel cippato prodotto in
alcune zone della provincia di Trento,” Lauree magistrali tesi, Università
degli studi di Padova, Dipartimento Territorio e Sistemi Agro-Forestali,
Padova, Italia, 2022.
(N. Pradel, “Analysis of the radionuclide content in wood chips produced in some areas of the Trento Province,” M.Sc. thesis, University of Padua, Dept. of Territory and Agro-Forestry Systems, Padua, Italy, 2022.)
Retrieved from: https://thesis.unipd.it/handle/20.500.12608/42386
Retrieved on: Jan. 12, 2023
Radiobiology
PHOTO-INDUCED NEUTROPHIL EXTRACELLULAR TRAPS: THE ROLE OF CYTOCHROMES
Kahramon Mamatkulov, Anka Jevremović, Darya Zakrytnaya, Yersultan Arynbek, Nina Vorobjeva, Grigory Arzumanyan
Pages: 31-35
Abstract | References | Full Text (PDF)
-
H. Takei, A. Araki, H. Watanabe, A. Ichinose, F. Sendo, “Rapid killing of
human neutrophils by the potent activator phorbol 12-myristate 13-acetate
(PMA) accompanied by changes different from typical apoptosis or necrosis,”
J. Leukoc. Biol., vol. 59, no. 2, pp. 229 – 240, Feb. 1996.
DOI: 10.1002/jlb.59.2.229
PMid: 8603995 -
V. Brinkmann et al., “Neutrophil Extracellular Traps Kill Bacteria,”
Science
, vol. 303, no. 5663, pp. 1532 – 1535, Mar. 2004.
DOI: 10.1126/science.1092385
PMid: 15001782 -
B. E. Steinberg, S. Grinstein, “Unconventional roles of the NADPH oxidase:
signaling, ion homeostasis, and cell death,” Sci. STKE., vol.
2007, no. 379, p. pe11, Mar. 2007.
DOI: 10.1126/stke.3792007pe11
PMid: 17392241 -
B. Pinegin, N. Vorobjeva, V. Pinegin, “Neutrophil extracellular traps and
their role in the development of chronic inflammation and autoimmunity,”
Autoimmun. Rev., vol. 14, no. 7, pp. 633 – 640, Jul. 2015.
DOI: 10.1016/j.autrev.2015.03.002
PMid: 25797532 -
N. V. Vorobjeva, B. V. Pinegin, “Neutrophil extracellular traps: Mechanisms
of formation and role in health and disease,” Biochemistry (Mosc.), vol. 79, no. 12,
pp. 1286 – 1296, Dec. 2014.
DOI: 10.1134/S0006297914120025
PMid: 25716722 -
N. V. Vorobjeva, B. V. Chernyak, NETosis: “Molecular Mechanisms, Role in
Physiology and Pathology,” Biochemistry (Mosc.), vol. 85, no. 10,
pp. 1178 – 1190, Oct. 2020.
DOI: 10.1134/S0006297920100065
PMid: 33202203
PMCid: PMC7590568 -
S. B. Owusu, S. Dupré-Crochet, T. Bizouarn, C. Houée-Levin, L. Baciou,
“Accumulation of Cytochrome b 558 at the Plasma
Membrane: Hallmark of Oxidative Stress in Phagocytic Cells,”
Int. J. Mol. Sci.,
vol. 23,no. 2, 767, Jan. 2022.
DOI: 10.3390/ijms23020767
PMid: 35054950
PMCid: PMC8775928 -
F. Rijken et al., “Pathophysiology of photoaging of human skin: Focus on
neutrophils,” Photochem. Photobiol. Sci., vol. 5, no. 2, pp. 184 –
189, Feb. 2006.
DOI: 10.1039/b502522b
PMid: 16465304 -
G. J. Fisher et al., “Ultraviolet irradiation increases matrix
metalloproteinase-8 protein in human skin in vivo,”
J. Invest. Dermatol
., vol. 117, no. 2, pp. 219 – 226, Aug. 2001.
DOI: 10.1046/j.0022-202X.2001.01432.x
PMid: 11511297 -
S. Cho et al., “Infrared plus visible light and heat from natural sunlight
participate in the expression of MMPs and type I procollagen as well as
infiltration of inflammatory cell in human skin in vivo,”
J. Dermatol. Sci
., vol. 50, no. 2, pp. 123 – 133, May 2008.
DOI: 10.1016/j.jdermsci.2007.11.009
PMid: 18194849 -
S. Skopelja-Gardner et al., “The early local and systemic Type I interferon
responses to ultraviolet B light exposure are cGAS dependent,”
Sci. Rep
., vol. 10, no. 1, 7908, May 2020.
DOI: 10.1038/s41598-020-64865-w
PMid: 32404939
PMCid: PMC7220927 -
S. Skopelja-Gardner et al., “Acute skin exposure to ultraviolet light
triggers neutrophil-mediated kidney inflammation,”
Proc. Natl. Acad. Sci. U.S.A
., vol. 118,
no. 3, e2019097118, Jan. 2021.
DOI: 10.1073/pnas.2019097118
PMid: 33397815
PMCid: PMC7826360 -
S. B. Owusu, S. Dupré-Crochet, T. Bizouarn, C. Houée-Levin, L. Baciou,
“Accumulation of Cytochrome b558 at the Plasma Membrane: Hallmark of
Oxidative Stress in Phagocytic Cells,” Int. J. Mol. Sci., vol. 23, no. 2, 767, Jan. 2022.
DOI: 10.3390/ijms23020767
PMid: 35054950
PMCid: PMC8775928 -
C. Kohchi, H. Inagawa, T. Nishizawa, G. I. Soma, “ROS and innate immunity,”
Anticancer Res., vol. 29, no. 3,
pp. 817 – 821, Mar. 2009.
PMid: 19414314 -
T. I. Karu, “Multiple roles of cytochrome c oxidase in mammalian cells
under action of red and IR-A radiation,” IUBMB Life, vol. 62, no. 8, pp. 607 – 610, Aug. 2010.
DOI: 10.1002/iub.359
PMid: 20681024 -
S. Hallén, P. Brzezinski, “Light-induced structural changes in cytochrome c
oxidase: implication for the mechanism of electron and proton gating,”
Biochim. Biophys. Acta Bioenerg., vol. 1184, no. 2-3, pp. 207 – 218, Mar. 1994.
DOI: 10.1016/0005-2728(94)90225-9
PMid: 8130251 - M. Kato, K. Shinzawa, S. Yoshikawa, “Cytochrome oxidase is a possible photoreceptor in mitochondria,” Photobiochem. Photobiophys., vol. 2, no. 4-5, 263 – 270, 1981.
-
D. Pastore, M. Greco, S. Passarella, “Specific helium-neon laser sensitivity of the purified cytochrome c oxidase,”
Int. J. Radiat. Biol., vol. 76, no. 6, pp. 863 – 870,
Jun. 2000.
DOI: 10.1080/09553000050029020
PMid: 10902741 -
B. Amulic, C. Cazalet, G. L. Hayes, K. D. Metzler,
A. Zychlinsky, “Neutrophil function: From mechanisms to disease,”
Annu. Rev. Immunol
., vol. 30, pp. 459 – 489, 2012.
DOI: 10.1146/annurev-immunol-020711-074942
PMid: 22224774 -
A. S. Rohrbach, D. J. Slade, P. R. Thompson, K. A. Mowen, “Activation of PAD4 in NET formation,” Front.
Immunol., vol. 3, 360, Nov. 2012.
DOI: 10.3389/fimmu.2012.00360
PMid: 23264775
PMCid: PMC3525017 -
M. Freitas, G. Porto, J. L. F. C. Lima, E. Fernandes, “Isolation and
activation of human neutrophils in vitro. The importance of the
anticoagulant used during blood collection,” Clin. Biochem., vol.
41, no. 7-8, pp. 570 – 575, May 2008.
DOI: 10.1016/j.clinbiochem.2007.12.021
PMid: 18226596 -
S. Mütze et al., “Myeloperoxidase-derived Hypochlorous Acid Antagonizes the
Oxidative Stress-mediated Activation of Iron Regulatory Protein 1,”
J. Biol. Chem
., vol. 278, no. 42, pp. 40542 – 40549, Oct. 2003.
DOI: 10.1074/jbc.M307159200
PMid: 12888561 -
М. А. Симонян, М. А. Бабаян, Г. М. Симонян, “Цитохромы b-558 из сыворотки
крови и мембран эритроцитов. выделение, очистка и краткие характеристики,”
Биохимия, том 60, но. 12,
стр. 1977 – 1987, 1995.
(M. A. Simonyan, M. A. Babayan, G. M. Simonyan, “Cytochromes b-558 from blood serum and erythrocyte membranes; isolation, purification and characteristics,” Biochemistry, vol. 60, no. 12, pp. 1977 – 1987, 1995.)
Retrieved from: https://biochemistrymoscow.com/ru/archive/1995/60-12-1977/
Retrieved on: Sep. 12, 1995 -
C. Zang et al., “Ultrafast Proteinquake Dynamics in Cytochrome c,”
J. Am. Chem. Soc
., vol. 131, no. 8,
pp. 2846 – 2852, Mar. 2009.
DOI: 10.1021/ja8057293
PMid: 19203189 -
M. Reth, “Hydrogen peroxide as second messenger in lymphocyte activation,”
Nat. Immunol., vol. 3, no. 12,
pp. 1129 – 1134, Dec. 2002.
DOI: 10.1038/ni1202-1129
PMid: 12447370
Pharmaceutical Sciences
VACCINE PROPHYLAXIS AS THE KEY TO SUCCESS AGAINST POLIOMIELYTIS
Jasmina Jovanović Mirković , Milica Stanojević, Christos Alexopoulos, Bojana Miljković, Marko Jovanović, Dragana Đorđević Šopalović
Pages: 36-39
Abstract | References | Full Text (PDF)
-
P. E. Sartwell, “The incubation period of poliomyelitis,”
Am. J. Public Health Nations Health
, vol. 42, no. 11, pp. 1403 – 1408, Nov. 1952.
DOI: 10.2105/ajph.42.11.1403
PMid: 12986020
PMCid: PMC1525998 -
V. R. Racaniello, “One hundred years of poliovirus pathogenesis,”
Virology
, vol. 344, no. 1, pp. 9 – 16, Jan. 2006.
DOI: 10.1016/j.virol.2005.09.015
PMid: 16364730 -
J. R. Paul, D. M. Horstmann, “A survey of poliomyelitis virus antibodies in
French Marocco,” Am. J. Trop. Med. Hyg., vol. 4, no. 3, pp. 512 –
524, May 1955.
DOI: 10.4269/ajtmh.1955.4.512
PMid: 14376777 -
A. B. Sabin et al., “Live, orally given poliovirus vaccine. Effects of
rapid mass immunization on population under conditions of massive enteric
infection with other viruses,” JAMA, vol. 173, no. 14, pp. 1521 –
1526, Aug. 1960.
DOI: 10.1001/jama.1960.03020320001001
PMid: 14440553 -
A. B. Sabin, “Present position of immunization against poliomyelitis with
live virus vaccines,” Br. Med. J., vol. 1, no. 5123, pp. 663 –
680, Mar. 1959.
DOI: 10.1136/bmj.1.5123.663
PMid: 13629086
PMCid: PMC1993129 -
R. N. Basu, “Magnitude of problem of poliomyelitis in India,”
Indian Pediatr.
, vol. 18, no. 8, pp. 507 – 511, Aug. 1981.
PMid: 7309212 -
S. Mueller, E. Wimmer, J. Cello, “Poliovirus and poliomyelitis: a tale of
guts, brains, and an accidental event,” Virus Res., vol. 111, no.
2, pp. 175 – 193, Aug. 2005.
DOI: 10.1016/j.virusres.2005.04.008
PMid: 15885840 -
J. E. Salk et al., “Formaldehyde treatment and safety testing of
experimental poliomyelitis vaccines,”
Am. J. Public Health Nations Health, vol. 44, no. 5, pp. 563 –
570, May 1954.
DOI: 10.2105/ajph.44.5.563
PMid: 13148396
PMCid: PMC1620937 -
A. J. Mohammed et al., “Fractional doses of inactivated poliovirus vaccine
in Oman,” N. Engl. J. Med., vol. 362, no. 25, pp. 2351 – 2359,
Jun. 2010.
DOI: 10.1056/NEJMoa0909383
PMid: 20573923 -
D. L. Heymann, R. W. Sutter, R. B. Aylward,
“A vision of a world without polio: the OPV cessation strategy,”
Biologicals,
vol. 34, no. 2, pp. 75 – 79, Jun. 2006.
DOI: 10.1016/j.biologicals.2006.03.005
PMid: 16682224 -
D. A. Gust et al., “Parent attitudes toward immunizations and healthcare
providers the role of information,” Am. J. Prev. Med., vol. 29,
no. 2, pp. 105 – 112, Aug. 2005.
DOI: 10.1016/j.amepre.2005.04.010
PMid: 16005806 -
B. Abbotts, L. M. Osborn, “Immunization status and reasons for immunization
delay among children using public health immunization clinics,”
Am. J. Dis. Child.,
vol. 147, no. 9 , pp. 965 – 968, Sep. 1993.
DOI: 10.1001/archpedi.1993.02160330055018
PMid: 8362813 -
Global poliomyelitis eradication by the year 2000 - plan of action.
Global Programme for Vaccines and Immunization. Expanded Programme on
Immunization,
WHO, Geneva, Switzerland, 1996.
Retrieved from: https://apps.who.int/iris/bitstream/handle/10665/63160/WHO_EPI_GEN_96.03.pdf?sequence=1&isAllowed=y
Retrieved on: May 20, 2023 -
W. Atkins, S. Wolfe, J. Hamborsky, “Poliomyelitis,”inEpidemiology
and Prevention of Vaccine-Preventable Diseases, 12th ed., Washington
DC, USA: Public Health Foundation, 2012, pp. 249 – 262.
Retrieved from: https://www.cdc.gov/vaccines/pubs/pinkbook/downloads/table-of-contents.pdf
Retrieved on: May 20, 2023 -
Polio vaccines and polio immunization in the pre-eradication era: WHO
position paper
, WER8523, WHO, Geneva, Switzerland, 2010, pp. 213 – 228.
Retrieved from: https://www.who.int/publications/i/item/WER8523
Retrieved on: May 20, 2023 -
B. Guyer, N. Hughart, “Increasing childhood immunization coverage by
improving the effectiveness of primary health care systems for children,”
Arch. Pediatr. Adolesc. Med., vol. 148,
no. 9, pp. 901 – 902, Sep. 1994.
DOI: 10.1001/archpedi.1994.02170090015001
PMid: 8075731 -
L. Roberts, “Polio eradication. Looking for a little luck,”
Science
, vol. 323, no. 5915, pp. 702 – 705, Feb. 2009.
DOI: 10.1126/science.323.5915.702
PMid: 19197035 -
R. B. Aylward et al., “Disease eradication as a public health strategy: a
case study of poliomyelitis eradication,” Bull. World Health Organ., vol. 78, no. 3, pp. 285 – 297, 2000.
PMid: 10812724
PMCid: PMC2560720 -
K. M. Thompson, R. J. Tebbens, “Eradication versus control for
poliomyelitis: an economic analysis,” Lancet,vol. 369, no. 9570,
pp. 1363 – 1371, Apr. 2007.
DOI: 10.1016/S0140-6736(07)60532-7
PMid: 17448822
Novelties in Covid-19 research
MONITORING THE CONSUMPTION OF DRUGS BEFORE, DURING AND AFTER THE COVID-19 PANDEMIC
Violeta Ilić Todorović, Jasmina Jovanović Mirković, Christos Alexopoulos, Momčilo Todorović, Nemanja Nenezić, Zorica Kaluđerović
Pages: 40-44
Abstract | References | Full Text (PDF)
-
D. Galato, L. M. Galafassi, G. M. Alano, S. C. Trauthman, “Responsible
self-medication: Review of the process of pharmaceutical attendance,”
Braz. J. Pharm. Sci.,
vol. 45, no. 4, pp. 625 – 633, Dec. 2009.
DOI: 10.1590/S1984-82502009000400004 -
K. Wilbur, S. E. Salam, E. Mohammadi, “Patient perceptions of pharmacist
roles in guiding self-medication of over-the-counter therapy in Qatar,”
Patient Prefer. Adherence, vol. 4, no. 3, pp. 87 – 93, May 2010.
DOI: 10.2147/ppa.s9530
PMid: 20517469
PMCid: PMC2875718 -
E. A. Chrischilles, J. H. Lemke, R. B. Wallace, G. A. Drube, “Prevalence
and characteristics of multiple analgesic drug use in an elderly study
group,” J. Am. Geriatr. Soc.,vol. 38, no. 9, pp. 979 – 984, Sep.
1990.
DOI: 10.1111/j.1532-5415.1990.tb04419.x
PMid: 2212451 -
A. Blenkinsopp, C. Bradley, “Patients, society, and the increase in
self-medication,” BMJ,vol. 312, no. 7031, pp. 629 – 632, Mar. 1996.
DOI: 10.1136/bmj.312.7031.629
PMid: 8595343
PMCid: PMC2350384 -
M. J. Sculpher, I. Watt, A. Gafni, “Shared decision making in a publicly
funded health care system,” BMJ,vol. 319, no. 7212, pp. 725 – 726,
Sep. 1999.
DOI: 10.1136/bmj.319.7212.725
PMid: 10487985
PMCid: PMC1116585 -
G. S. Lau, K. K. Lee, C. T. Luk, “Self-medication among university students
in Hong Kong,” Asia Pac. J. Public Health, vol. 8, no. 3, pp. 153
– 157, Jul. 1995.
DOI: 10.1177/101053959500800301
PMid: 10050180 -
S. I. Sharif, O. H. M. Ibrahim, L. Mouslli, R. Waisi, “Evaluation of
Self-Medication among Pharmacy Students,”
Am. J. Pharmacol. Toxicol.
, vol. 7, no. 4, pp. 135 – 140, Dec. 2012.
DOI: 10.3844/ajptsp.2012.135.140 -
S. A. Sallam, N. M. Khallafallah, N. K. Ibrahim, A. O. Okasha,
“Pharmacoepidemiological study of self-medication in adults attending
pharmacies in Alexandria, Egypt,” East. Mediterr. Health J., vol.
15, no. 3, pp. 683 – 691, May 2009.
PMid: 19731784 -
C. L. Lam, M. G. Catarivas, C. Munro, I. J. Lauder, “Self-medication among
Hong Kong Chinese,” Soc. Sci. Med.,vol. 39, no. 12, pp. 1641 –
1647, Dec. 1994.
DOI: 10.1016/0277-9536(94)90078-7
PMid: 7846561 -
N. Morrow, O. Hargie, H. Donnelly, C. Woodman, ““Why do you ask?” A study
of questioning behaviour in community pharmacist-client consultations”
Int. J. Pharm. Pract., vol. 2, no. 2, pp. 90 – 94, Jul. 1993.
DOI: 10.1111/j.2042-7174.1993.tb00732.x -
P. B. Richman, G. Garra, B. Eskin, A. H. Nashed, R. Cody, “Oral Antibiotic
Use without Consulting a Physician: A Survey of ED Patients,”
Am. J. Emerg. Med.
, vol. 19, no 1, pp. 57 – 60, Jan. 2001.
DOI: 10.1053/ajem.2001.20035
PMid: 11146021 -
H. James, S. S. Handu, K. A. J. Al-Khaja, R. P. Sequeira, “Influence of
medical training on self-medication by students,”
Int. J. Clin. Pharmacol. Ther.
, vol. 46, no. 1, pp. 23 – 29, Jan. 2008.
DOI: 10.5414/cpp46023
PMid: 18218294 -
F. R Chang, P. K. Trivedi, “Economics of self‑medication: Theory and
evidence,” Health Econ., vol. 12, no. 9, pp. 721 ‑ 739, Sep. 2003.
DOI: 10.1002/hec.841
PMid: 12950092 -
J. R. Laporte, “Automedicación: la información de los usuarios aumenta al
mismo tiempo que el consumo?,” Med. Clin. (Barc)., vol. 109, no.
20, pp. 795 ‑ 796, Dec. 1997.
(J. R. Laporte, “Self‑medication: Does information to users increase at the same rate as consumption,” Med. Clin. (Barc)., vol. 109, no. 20, pp. 795 ‑ 796, Dec. 1997.)
PMid: 9493159 -
M. E. Ruiz, “Risks of self‑medication practices,” Curr. Drug Saf.,
vol. 5, no. 4, pp. 315 ‑ 323, Oct. 2010.
DOI: 10.2174/157488610792245966
PMid: 20615179 -
M. A. Flaiti, K. A. Badi, W. O. Hakami, S. A. Khan, “Evaluation of
self-medication practices in acute diseases among university students in
Oman,” J. Acute Dis., vol. 3, no. 3, pp. 249 – 252, 2014.
DOI: 10.1016/S2221-6189(14)60056-1 -
J. S. Mogil, “Sex differences in pain and pain inhibition: Multiple
explanations of a controversial phenomenon,” Nat. Rev. Neurosci.,
vol. 13, no. 12, pp. 859 – 866, Dec. 2012.
DOI: 10.1038/nrn3360
PMid: 23165262
Pharmaceutical Sciences
HEALTH EDUCATION OF THE POPULATION ABOUT THE PREVENTION POSSIBILITIES OF HPV INFECTION
Milica Stanojević, Jasmina Jovanović Mirković, Nataša Rančić, Christos Alexopoulos, Violeta Ilić Todorović, Svetlana Čapaković
Pages: 45-49
Abstract | References | Full Text (PDF)
-
M. Muller et al., “Chimeric papillomavirus-like particles,”
Virology
, vol. 234, no. 1, pp. 93 – 111, Jul. 1997.
DOI: 10.1006/viro.1997.8591
PMid: 9234950 -
E. M. Smith et al., “Human papillomavirus and risk of laryngeal cancer,”
Ann. Otol. Rhinol. Laryngol., vol. 109, no. 11, pp. 1069 – 1076,
Nov. 2000.
DOI: 10.1177/000348940010901114
PMid: 11090000 -
J. S. Smith et al., “Human papillomavirus type distribution in invasive
cervical cancer and high-grade cervical lesions: a meta-analysis update,”
Int. J. Cancer, vol. 121, no. 3, pp. 621 – 632, Aug. 2007.
DOI: 10.1002/ijc.22527
PMid: 17405118 -
D. M. Da Silva et al., “Physical interaction of human papillomavirus
virus-like particles with immune cells,” Int. Immunol., vol. 13,
no. 5, pp. 633 – 641, May 2001.
DOI: 10.1093/intimm/13.5.633
PMid: 11312251 -
F. X. Bosch et al., “Epidemiology and natural history of human
papillomavirus infections and type-specific implications in cervical
neoplasia,” Vaccine, vol. 26, suppl. 10, pp. K1 – K16, Aug. 2008.
DOI: 10.1016/j.vaccine.2008.05.064
PMid: 18847553 -
D. Dias et al., “Optimization and validation of a multiplexed luminex assay
to quantify antibodies to neutralizing epitopes on human papillomaviruses
6, 11, 16, and 18,” Clin. Diagn. Lab. Immunol., vol. 12, no. 8,
pp. 959 – 969, Aug. 2005.
DOI: 10.1128/CDLI.12.8.959-969.2005
PMid: 16085914
PMCid: PMC1182182 -
L. K. Borysiewicz et al., “A recombinant vaccinia virus encoding human
papillomavirus types 16
and 18, E6 and E7 proteins as immunotherapy
for cervical cancer,” Lancet, vol. 347, no. 9014,
pp. 1523 – 1527, Jun. 1996.
DOI: 10.1016/s0140-6736(96)90674-1
PMid: 8684105 -
D. M. Harper et al., “Efficacy of a bivalent L1 virus-like particle vaccine
in prevention of infection with human papillomavirus types 16 and 18 in
young women: a randomised controlled trial,” Lancet,
vol. 364, no. 9447, pp. 1757 – 1765, Nov. 2004.
DOI: 10.1016/S0140-6736(04)17398-4
PMid: 15541448 -
G. M. Clifford, J. S. Smith, M. Plummer, N. Munoz, S. Franceschi, “Human
papillomavirus types in invasive cervical cancer worldwide: a
meta-analysis,” Br. J. Cancer, vol. 88, no. 1, pp. 63 – 73, Jan.
2003.
DOI: 10.1038/sj.bjc.6600688
PMid: 12556961
PMCid: PMC2376782 -
A. T. Lorincz et al., “Human papillomavirus infection of the cervix:
relative risk associations of
15 common anogenital types,” Obstet. GynecoI.,
vol. 79, no. 3, pp. 328 – 337, Mar. 1992.
DOI: 10.1097/00006250-199203000-00002
PMid: 1310805 -
J. R. Daling et al., “A population-based study of squamous cell vaginal
cancer: HPV and cofactors,” Gynecol. Oncol., vol. 84, no. 2, pp.
263 – 270,
Feb. 2002.
DOI: 10.1006/gyno.2001.6502
PMid: 11812085 -
T. C. Wright, T. V. Ellerbrock, M. A. Chiasson, N. Van Devanter, X. W. Sun,
“Cervical intraepithelial neoplasia in women infected with human
immunodeficiency virus: Prevalence, risk factors, and validity of
Papanicolaou smears,” Obstet. Gynecol., vol. 84, no. 4, pp. 591 –
597, Oct. 1994.
Retrieved from: https://pubmed.ncbi.nlm.nih.gov/8090399/
Retrieved on: May 20, 2023 -
K. B. Michels, H. Z. Hausen, “HPV vaccine for all,” Lancet, vol.
374, no. 9686, pp. 268 – 270, Jul. 2009.
DOI: 10.1016/S0140-6736(09)61247-2
PMid: 19586657 -
L. L. Villa et al., “Immunologic responses following administration of a
vaccine targeting human papillomavirus Types 6, 11, 16, and 18,”
Vaccine
, vol. 24, no. 27-28, pp. 5571 – 5583, Jul. 2006.
DOI: 10.1016/j.vaccine.2006.04.068
PMid: 16753240 -
K. Schafer et al., “Immune response to human papillomavirus 16 L1E7
chimeric virus-like particles: induction of cytotoxic T cells and specific
tumor protection,” Int. J. Cancer, vol. 81, no. 6, pp. 881 – 888,
Nov. 1999.
Retrieved from: https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0215(19990611)81:6%3C881::AID-IJC8%3E3.0.CO;2-T
Retrieved on: May 20, 2023 -
P. Mayaud, D. Mabey, “Approaches to the control of sexually transmitted
infections in developing countries: old problems and modern challenges,”
Sex. Transm. Infect., vol. 80, no. 3, pp. 174 – 182, Jun. 2004.
DOI: 10.1136/sti.2002.004101
PMid: 15169997
PMCid: PMC1744836 -
R. E. Rupp, L. R. Stanberry, S. L. Rosenthal, “Vaccines for sexually
transmitted infections,” Pediatr. Ann. , vol. 34, no. 10,
pp. 818 – 824, Oct. 2005.
DOI: 10.3928/0090-4481-20051001-14
PMid: 16285635 -
S. H. Vermund et al., “High risk of human papillomavirus infection and
cervical squamous intraepithelial lesions among women with symptomatic
human immunodeficiency virus infection,” Am. J. Obstet. Gynecol.,
vol. 165, no. 2, pp. 392 – 400, Aug. 1991.
DOI: 10.1016/0002-9378(91)90101-v
PMid: 1651648 -
J. Berumen et al., “Asian-American variants of human papillomavirus 16 and
risk for cervical cancer: a case-control study,”
J. Natl. Cancer Inst.
, vol. 93, no. 17, pp. 1325 – 1330, Sep. 2001.
DOI: 10.1093/jnci/93.17.1325
PMid: 11535707 -
F. X. Bosch et al., “Prevalence of human papillomavirus in cervical cancer:
a worldwide perspective. International biological study on cervical cancer
(IBSCC) Study Group,” J. Natl. Cancer Inst., vol. 87, no. 11, pp.
796 – 802, Jun. 1995.
DOI: 10.1093/jnci/87.11.796
PMid: 7791229 -
A. N. Fiander et al., “Prime-boost vaccination strategy in women with
high-grade, noncervical anogenital intraepithelial neoplasia: clinical
results from a multicenter phase II trial,” Int. J. Gynecol. Cancer, vol. 16, no. 3, pp. 1075 – 1081, Jun.
2006.
DOI: 10.1111/j.1525-1438.2006.00598.x
PMid: 16803488 -
Y. Lu et al., “Immunological protection against HPV16 E7-expressing human
esophageal cancer cell challenge by a novel HPV16-E6/E7 fusion protein
based vaccine in a Hu-PBL-SCID mouse model,” Biol. Pharm. Bull.,
vol. 30, no. 1, pp. 150 – 156, Jan. 2007.
DOI: 10.1248/bpb.30.150
Pharmaceutical Sciences
THE IMPORTANCE OF IMMUNIZATION AS A PREVENTIVE MEASURE IN THE FIGHT AGAINST TUBERCULOSIS
Jasmina Jovanović Mirković , Violeta Ilić Todorović, Christos Alexopoulos, Bojana Miljković, Dragana Đorđević Šopalović, Zorica Kaluđerović
Pages: 50-53
Abstract | References | Full Text (PDF)
-
E. Vynnycky, P. E. Fine, “Lifetime risks, incubation period, and serial
interval of tuberculosis,” Am. J. Epidemiol.,vol.152, no.
3, pp. 247 – 263, Aug. 2000.
DOI: 10.1093/aje/152.3.247
PMid: 10933272 -
S. M. Blower, T. Chou, “Modeling the emergence of the “hot zones”:
tuberculosis and the amplification dynamics of drug resistance,”
Nat. Med.
, vol. 10, no. 10, pp. 1111 – 1116, Oct. 2004.
DOI: 10.1038/nm1102
PMid: 15378053 -
D. Watrelot-Virieux, E. Drevon-Gaillot, Y. Toussaint, P. Belli, “Comparison
of three diagnostic detection methods for tuberculosis in French cattle,”
J. Vet. Med. B, vol. 53, no. 7, pp. 321 – 325, Sep. 2006.
DOI: 10.1111/j.1439-0450.2006.00957.x
PMid: 16930276 -
J. Kamerbeek et al., “Simultaneous detection and strain differentiation of
Mycobacterium tuberculosis for diagnosis and epidemiology,”
J. Clin. Microbiol.
, vol. 35, no. 4, pp. 907 – 914, Apr. 1997.
DOI: 10.1128/jcm.35.4.907-914.1997
PMid: 9157152
PMCid: PMC229700 -
C. Dye, Z. Fengzeng, S. Scheele, B. G. Williams, “Evaluating the impact of
tuberculosis control: number of deaths prevented by short-course
chemotherapy in China,” Int. J. Epidemiol., vol. 29, no. 3, pp. 558
– 564, Jun. 2000.
DOI: 10.1093/intjepid/29.3.558
PMid: 10869331 -
R. H. Wichelhausen, T. M. D. Brown, “Tuberculous peritonitis treated with
streptomycin,” Am. J. Med., vol. 8, no. 4, pp. 421 – 444, Apr.
1950.
DOI: 10.1016/0002-9343(49)90225-9
PMid: 18115173 -
G. B. Migliori et al., “Frequency of recurrence among MDR-TB cases
“successfully” treated with standardized short-course chemotherapy,”
Int. J. Tuberc. Lung Dis.
, vol. 6, no. 10, pp. 858 – 864, Oct. 2002.
Retrieved from: https://books.google.rs/books?id=5wFM7Bu8FG0C&pg=PA647&lpg=PA647&dq=7.+G.+B.+Migliori+et+al.,+%22Frequency+of+recurrence+among+MDR-TB+cases+%E2%80%9Csuccessfully%E2%80%9D+treated+with+standardized+short
Retrieved on: Jun. 10, 2023 -
D. Marinova, J. Gonzalo-Asensio, N. Aguilo, C. Martin, “Recent developments
in tuberculosis vaccines,” Expert Rev. Vaccines, vol. 12, no. 12,
pp. 1431 – 1448, Dec. 2013.
DOI: 10.1586/14760584.2013.856765
PMid: 24195481 -
R. L. Riley, “The contagiosity of tuberculosis,”
Schweiz. Med. Wochenschr.,
vol. 113, no. 3, pp. 75 – 79, Jan. 1983.
PMid: 6338584 -
R. Copin, M. Coscolla, E. Efstathiadis, S. Gagneux, J. D. Ernst, “Impact of
in vitro evolution on antigenic diversity of Mycobacterium bovis bacillus
Calmette-Guerin (BCG),” Vaccine, vol. 32, no. 45, pp. 5998 – 6004,
Oct. 2014.
DOI: 10.1016/j.vaccine.2014.07.113
PMid: 25211768
PMCid: PMC4539939 -
R. De la Rua-Domenech, “Human Mycobacterium bovis infection in the United
Kingdom: Incidence, risks, control measures and review of the zoonotic
aspects of bovine tuberculosis,” Tuberculosis,vol. 86,
no. 2, pp. 77 – 109, Mar. 2006.
DOI: 10.1016/j.tube.2005.05.002
PMid: 16257579 -
E. Sumartojo, “When tuberculosis treatment fails. A social behavioral
account of patient adherence,” Am. Rev. Respir. Dis., vol. 147,
no. 5, pp. 1311 – 1320, May 1993.
DOI: 10.1164/ajrccm/147.5.1311
PMid: 8484650 -
T. L. Miller, S. J. N. McNabb, P. Hilsenrath, J. Pasipanodya, S. E. Weis,
“Personal and societal health quality lost to tuberculosis,”
PLoS ONE
, vol. 4, no. 4, e5080, Apr. 2009.
DOI: 10.1371/journal.pone.0005080
PMid: 19352424
PMCid: PMC2660416 -
C. Dye, P. Glaziou, K. Floyd, M. Raviglione, “Prospects for tuberculosis
elimination,” Annu. Rev. Public Health, vol. 34, no. 34, pp. 271 –
286, Dec. 2013.
DOI: 10.1146/annurev-publhealth-031912-114431
PMid: 23244049 -
K. Lonnroth, E. Jaramillo, B. G. Williams, C. Dye, M. Raviglione, “Drivers
of tuberculosis epidemics: The role of risk factors and social
determinants,” Soc. Sci. Med., vol. 68, no. 12, pp. 2240 – 2246,
Jun. 2009.
DOI: 10.1016/j.socscimed.2009.03.041
PMid: 19394122 -
C. Dye et al., “Measuring tuberculosis burden, trends, and the impact of
control programmes,” Lancet Infect. Dis., vol. 8, no. 4, pp. 233 –
243, Apr. 2008.
DOI: 10.1016/S1473-3099(07)70291-8
PMid: 18201929 -
G. G. Guerrero, A. S. Debrie, C. Locht, “Boosting with mycobacterial
heparin-binding haemagglutinin enhances protection of Mycobacterium bovis
BCG-vaccinated newborn mice against M. tuberculosis,” Vaccine,
vol. 28, no. 27, pp. 4340 – 4347, Jun. 2010.
DOI: 10.1016/j.vaccine.2010.04.062
PMid: 20447476 -
P. Beverley, “TB vaccine failure was predictable,” Nature, vol.
503, no. 7477, 469, Nov. 2013.
DOI: 10.1038/503469e
PMid: 24284721 -
S. J. Moore, M. Good, “The tuberculosis eradication programme in Ireland: a
review of scientific and policy advances since 1988,”
Vet. Microbiol
., vol. 112, no. 2-4, pp. 239 – 251, Dec. 2006.
DOI: 10.1016/j.vetmic.2005.11.022
PMid: 16337345
Radon and Thoron
ANOMALOUS RADON EMISSION AS PRE-SIGNAL OF MODERATE TO STRONG EARTHQUAKES IN VRANCEA GEOTECTONIC ACTIVE REGION IN ROMANIA
Dan Savastru, Maria Zoran, Roxana Savastru, Marina Tautan
Pages: 54-59
Abstract | References | Full Text (PDF)
-
I. Čeliković et al., “Outdoor radon as a tool to estimate radon priority
areas—a literature overview,” Int. J. Environ. Res. Public Health,
vol. 19, no. 2, 662, Jan. 2022.
DOI: 10.3390/ijerph19020662
PMid: 35055485
PMCid: PMC8775861 -
Y. Chen et al., “Occurrence characteristics and influencing factors of
uranium and radon in deep-buried thermal storage aquifers,”
J. Radioanal. Nucl. Chem
., vol. 331, no. 2, pp. 755 – 767, Feb. 2022.
DOI: 10.1007/s10967-021-08137-5 -
T. Chetia, S. Baruah, C. Dey, S. Baruah, S. Sharma, “Seismic induced soil
gas radon anomalies observed at multiparametric geophysical observatory,
Tezpur (Eastern Himalaya), India: an appraisal of probable model for
earthquake forecasting based on peak of radon anomalies,”
Nat. Hazards
, vol. 111, no. 3, pp. 3071 – 3098, Apr. 2022.
DOI: 10.1007/s11069-021-05168-9 -
D. H. K. Mohammed, F. Külahcı, A. Muhammed, “Determination of possible
responses of Radon-222, magnetic effects, and total electron content to
earthquakes on the North Anatolian Fault Zone, Turkiye: an ARIMA and Monte
Carlo Simulation,” Nat. Hazards, vol. 108, no. 3, pp. 2493 – 2512,
Sep. 2021.
DOI: 10.1007/s11069-021-04785-8 -
R. C. Tiwari, H. P. Jaishi, S. Singh, R. P. Tiwari,
“A study of soil radon and seismicity along active fault region in
northeastern India,” Arab. J. Geosci., vol. 16, 253, Mar. 2023.
DOI: 10.1007/s12517-023-11341-0 -
S. Pulinets, D. Ouzounov, “Lithosphere–atmosphere– ionosphere coupling
(LAIC) model—A unified concept for earthquake precursors validation,”
J. Asian Earth Sci
., vol. 41, no. 4-5, pp. 371 – 382, Jun. 2011.
DOI: 10.1016/j.jseaes.2010.03.005 -
M. Radulian et al., “Revised catalogue of earthquake mechanisms for the
events occurred in Romania until the end of twentieth century: REFMC,”
Acta Geod. Geophys
., vol. 54, no. 1, pp. 3 – 18, Mar. 2019.
DOI: 10.1007/s40328-018-0243-y -
L. Petrescu, F. Borleanu, M. Radulian, A. Ismail-Zadeh, L. Maţenco,
“Tectonic regimes and stress patterns in the Vrancea Seismic Zone: Insights
into intermediate-depth earthquake nests in locked collisional settings,”
Tectonophysics, vol. 799, 228688, Jan. 2021.
DOI: 10.1016/j.tecto.2020.228688 -
T. Haider et al., “Identification of radon anomalies induced by earthquake
activity using intelligent systems,” J. Geochem. Explor., vol.
222, 106709, Mar. 2021.
DOI: 10.1016/j.gexplo.2020.106709 -
S. Sukanya, J. Noble, S. Joseph, “Application of radon (222Rn) as an
environmental tracer in hydrogeological and geological investigations: An
overview,” Chemosphere, vol. 303, pt. 3, 135141, Sep. 2022.
DOI: 10.1016/j.chemosphere.2022.135141
PMid: 35660388 -
F. Khan, S. A. Khattak, Z. Wazir, M. Waqas, “Spatial distribution of radon
concentrations in Balakot-Bagh (B–B) Fault Line and adjoining areas, Lesser
Himalayas, North Pakistan,” Environ. Earth Sci., vol. 80, 291,
Mar. 2021.
DOI: 10.1007/s12665-021-09569-8 -
M. A. Khan, N. U. Khattak, M. Hanif, “Radon emission along faults: a case
study from district Karak, Sub-Himalayas, Pakistan,”
J. Radioanal. Nucl. Chem
., vol. 331, no. 5, pp. 1995 – 2003, May 2022.
DOI: 10.1007/s10967-022-08283-4 -
P. S. Miklyaev et al., “Radon transport in permeable geological
environments,” Sci. Total Environ., vol. 852, 158382, Dec. 2022.
DOI: 10.1016/j.scitotenv.2022.158382
PMid: 36049692 -
J. Planinić, V. Radolić, B. Vuković, “Radon as an earthquake precursor,”
Nucl. Instrum. Methods Phys. Res. Sect. A, vol. 530, no. 3, pp.
568 – 574, Sep. 2004.
DOI: 10.1016/j.nima.2004.04.209 -
I. P. Dobrovolsky, S. I. Zubkov, V. I. Miachkin, “Estimation of the size of
earthquake preparation zones,” Pure Appl. Geophys., vol. 117, no.
5,
pp. 1025 – 1044, Sep. 1979.
DOI: 10.1007/BF00876083 -
I. P. Dobrovolsky, N. I. Gershenzon, M. B. Gokhberg, “Theory of
electrokinetic effects occurring at the final stage in the preparation of a
tectonic earthquake,” Phys. Earth Planet. Inter., vol. 57, no.
1-2, pp. 144 – 156, Oct. 1989.
DOI: 10.1016/0031-9201(89)90224-0 -
B. R. Arora et al., “Assessment of the response of the
meteorological/hydrological parameters on the soil gas radon emission at
Hsinchu, northern Taiwan: A prerequisite to identify earthquake
precursors,” J. Asian Earth Sci., vol. 149, pp. 49 – 63, Nov. 2017.
DOI: 10.1016/j.jseaes.2017.06.033 -
V. Walia et al., “Temporal variation of soil gas compositions for
earthquake surveillance in Taiwan,” Radiat. Meas., vol. 50, pp. 154
– 159, Mar. 2013.
DOI: 10.1016/j.radmeas.2012.11.007 -
H. Woith, “Radon earthquake precursor: A short review,”
Eur. Phys. J. Spec. Top
., vol. 224, no. 4, pp. 611 – 627, May 2015.
DOI: 10.1140/epjst/e2015-02395-9 -
Y. Mao, L. Zhang, H. Wang, Q. Guo, “The temporal variation of radon
concentration at different depths of soil: A case study in Beijing,”
J. Environ. Radioact
., vol. 264, 107200, Aug. 2023.
DOI: 10.1016/j.jenvrad.2023.107200
PMid: 37210779 -
Z. Chen et al., “Radon emission from soil gases in the active fault zones
in the Capital of China and its environmental effects,” Sci. Rep.,
vol. 8, no. 1, 16772, Nov. 2018.
DOI: 10.1038/s41598-018-35262-1
PMid: 30425320
PMCid: PMC6233208 -
H. Friedmann, “Radon in earthquake prediction research,”
Radiat. Prot. Dosimetry
, vol. 149, no. 2, pp. 177 – 184, Apr. 2012.
DOI: 10.1093/rpd/ncr229
PMid: 21669940 -
X. Han et al., “Rn and CO2 geochemistry of soil gas across the active fault
zones in the capital area of China,” Nat. Hazards Earth Syst.
Sci., vol. 14, no. 10, pp. 2803 – 2815, Oct. 2014.
DOI: 10.5194/nhess-14-2803-2014 -
G. Haquin, H. Zafrir, D. Ilzycer, N. Weisbrod, “Effect of atmospheric
temperature on underground radon: a laboratory experiment,”
J. Environ. Radioact
., vol. 253-254, 106992, Nov. 2022.
DOI: 10.1016/j.jenvrad.2022.106992
PMid: 36058181 -
P. S. Miklyaev et al., “Radon transport in permeable geological
environments,” Sci. Total Environ., vol. 852, 158382, Dec. 2022.
DOI: 10.1016/j.scitotenv.2022.158382
PMid: 36049692 -
A. Muhammad, F. Külahcı, S. Birel, “Investigating radon and TEC anomalies
relative to earthquakes via AI models,” J. Atmos. Sol. Terr. Phys.,
vol. 245, 106037, Apr. 2023.
DOI: 10.1016/j.jastp.2023.106037 -
M. Zoran, R. Savastru, D. Savastru, “Radon levels assessment in relation
with seismic events in Vrancea region,” J. Radioanal. Nucl. Chem.,
vol. 293, no. 2, pp. 655 – 663, Aug. 2012.
DOI: 10.1007/s10967-012-1712-3 -
M. Zoran, R. Savastru, D. Savastru, D. Mateciuc, “Presignal Signature of
Radon (Rn222) for Seismic Events,” in
Seismic Hazard and Risk Assessment
, R. Vacareanu, C. Ionescu, Eds., 1st ed., Cham, Switzerland: Springer Int.
Publishing AG, 2018, pt. I, pp. 117 – 130.
DOI: 10.1007/978-3-319-74724-8_8 -
M. Zoran, R. Savastru, D. Savastru, D. Mateciuc, “Investigation of
earthquake precursors in Vrancea active geotectonic region through
geospatial and field data,” AIP Conf. Proc., vol. 2075, no. 1,
120027, Feb. 2019.
DOI: 10.1063/1.5091285
Radiation Detectors
IMAGE QUALITY IMPACT OF DIFFERENT PHOSPHOR ACTIVATOR MATERIALS IN Gd2O2S BASED EPID SYSTEMS
Marios K. Tzomakas, Vasiliki Peppa, Antigoni Alexiou, Georgios Karakatsanis, Anastasios Episkopakis, Christos Michail, Ioannis Valais, George Fountos, Ioannis S. Kandarakis, Nektarios Kalyvas
Pages: 60-64
Abstract | References | Full Text (PDF)
-
F. Cremers et al., “Performance of electronic portal imaging devices EPID
used in radiotherapy: Image quality and dose measurements,”
Med. Phys
., vol. 31, no. 5, pp. 985 – 996, May 2004.
DOI: 10.1118/1.1688212
PMid: 15191282 -
J. Seco, B. Clasie, M. Partridge, “Review on the characteristics of
radiation detectors for dosimetry and imaging,” Phys. Med. Biol.,
vol 59, no. 20, pp. R303 – R347, Oct. 2014.
DOI: 10.1088/0031-9155/59/20/R303
PMid: 25229250 -
S. J. Blake et al., “Characterization of optical transport effects on EPID
dosimetry using Geant4,” Med. Phys., vol. 40, no. 4, 041708, Apr.
2013.
DOI: 10.1118/1.4794479
PMid: 23556878 -
H. Gustafsson, P. Vial, Z. Kuncic, C. Baldock, P. B. Greer, “EPID
dosimetry: Effect of different layers of materials on absorbed dose
response,” Med. Phys., vol. 36, no. 12, pp. 5665 – 5674, Dec. 2009.
DOI: 10.1118/1.3245886
PMid: 20095279 -
N. Dogan
et al., “AAPM Task Group Report 307: Use of EPIDs for Patient-Specific IMRT
and VMAT QA,” Med. Phys., vol. 50, no. 8, pp. e865 – e903, Aug.
2023.
DOI: 10.1002/mp.16536
PMid: 37384416 -
Chia-Lung Chien, X. Zhao, B. Guo, R. Zhang, “Technical note: Preprocessing of portal
images to improve image quality of VMAT-CT,” Med. Phys., Sep.
2023.
DOI: 10.1002/mp.16741
PMid: 37727132 -
L. E. Antonuk, “Electronic portal imaging devices: a review and historical
perspective of contemporary technologies and research,”
Phys. Med. Biol
., vol. 47, no. 6, pp R31 – R65, Mar. 2002.
DOI: 10.1088/0031-9155/47/6/201
PMid: 11936185 -
S. Y. Son et al., “Evaluation of Image Quality for Various Electronic
Portal Imaging Devices in Radiation Therapy,”
J. Radiol. Sci. Technol
., vol. 38, no. 4,
pp. 451 – 461, Dec. 2015.
DOI: 10.17946/JRST.2015.38.4.16 -
I. J. Das et al., “A quality assurance phantom for electronic portal
imaging devices,” J. Appl. Clin. Med. Phys., vol. 12, no. 2, pp.
39 1- 403, Feb. 2011.
DOI: 10.1120/jacmp.v12i2.3350
PMid: 21587179
PMCid: PMC5718680 -
J. Baek, H. Kim, B. Kim, Y. Oh, H. Jang, “Assessment of portal image
resolution improvement using an external aluminum target and polystyrene
electron filter,” Radiat. Oncol., vol. 14, no. 1, 70, Apr. 2019.
DOI: 10.1186/s13014-019-1274-4
PMid: 31023340
PMCid: PMC6485051 -
M. K. Tzomakas et al., “A phantom based evaluation of the clinical imaging
performance of electronic portal imaging devices,” Helyion, vol.
9, no. 10, e21116, Oct. 2023.
DOI: 10.1016/j.heliyon.2023.e21116
PMid: 37916082
PMCid: PMC10616349 -
Z. Zarrini-Monfared, S. Karbasi, A. Zamani,
M. A. Mosleh-Shirazi, “Full modulation transfer functions of thick
parallel- and focused-element scintillator arrays obtained by a Monte Carlo
optical transport model,” Med. Phys., vol. 50, no. 6, pp. 3651 –
3660, Oct. 2023.
DOI: 10.1002/mp.16306
PMid: 36779548 -
S. David et al., “Evaluation of Gd2O2S:Pr granular
phosphor properties for X-ray mammography imaging,” J. Lumin.,
vol. 169, pt. B, pp. 706 – 710, Jan. 2016.
DOI: 10.1016/j.jlumin.2015.01.044 -
C. M. Michail et al., “Evaluation of the Red Emitting Gd2O2S:Eu
Powder Scintillator for Use in Indirect X-Ray Digital Mammography
Detectors,” IEEE Trans. Nucl. Sci., vol. 58, no. 5, pp. 2503 –
2511, Oct. 2011.
DOI: 10.1109/TNS.2011.2162002 -
C. M. Michail et al., “Experimental and Theoretical Evaluation of a High
Resolution CMOS Based Detector Under X-Ray Imaging Conditions
IEEE Trans. Nucl. Sci.
, vol. 58, no. 1, pp 314 – 322, Feb. 2011.
DOI: 10.1109/TNS.2010.2094206 -
C. M. Michail et al., “Light emission efficiency of Gd2O2S:Eu
(GOS:Eu) powder screens under X-ray mammography conditions,”
IEEE Trans. Nucl. Sci
., vol. 55, no. 6, pp. 3703 – 3709, Dec. 2008.
DOI: 10.1109/TNS.2008.2007562 -
C. M. Michail et al., “Light emission efficiency and imaging performance of
Gd2O2S:Eu powder scintillator under x-ray radiography
conditions,” Med. Phys., vol. 37, no. 7, pp. 3694 – 3703, Jul.
2010.
DOI: 10.1118/1.3451113
PMid: 20831077 -
N. Kalyvas et al., “Studying the luminescence efficiency of Lu2O3:Eu
nanophosphor material for digital X-ray imaging applications,”
Appl. Phys. A
, vol. 106, no. 1, pp. 131 – 136, Jan. 2012.
DOI: 10.1007/s00339-011-6640-5 -
I. E. Seferis et al., “On the response of a europium doped phosphor-coated
CMOS digital imaging detector,”
Nucl. Instrum. Methods Phys. Res. A
, vol. 729, pp. 307 – 315, Nov. 2013.
DOI: 10.1016/j.nima.2013.06.107 -
I. E. Seferis et al., “Light emission efficiency and imaging performance of
Lu2O3:Eu nanophosphor under X-ray radiography
conditions: Comparison with Gd2O2S:Eu,”
J. Lumin
., vol. 151, pp. 229 – 234, Jul. 2014.
DOI: 10.1016/j.jlumin.2014.02.017 -
S. David et al., “Evaluation of powder/granular Gd2O2S:Pr
scintillator screens in single photon counting mode under 140 keV
excitation,” JINST, vol 8, P01006, Jan. 2013.
DOI: 10.1088/1748-0221/8/01/P01006 -
C. Michail et al., “On the response of GdAlO3:Ce powder
scintillators,” J. Lumin., vol. 144, pp. 45 – 52, Dec. 2013.
DOI: 10.1016/j.jlumin.2013.06.041 -
I. S. Kandarakis, “Luminescence in medical image science,”
J. Lumin.
, vol. 169, pp. 553 – 558, Nov. 2014.
DOI: 10.1016/j.jlumin.2014.11.009 -
N. B. Nill,
Conversion between sine wave and square wave spatial frequency response
of an imaging system
, Rep. MTR 01B0000021, MITRE, Bedford (MA), USA, 2001.
Retrieved from: https://www.mitre.org/sites/default/files/pdf/nill_conversion.pdf
Retrieved on: May 8, 2023 -
N. Kalyvas, P. Liaparinos, “Analytical and Monte Carlo comparisons on the
optical transport mechanisms of powder phosphors,” Opt. Mater., vol. 88, pp. 396 – 405, Feb. 2019.
DOI: 10.1016/j.optmat.2018.12.006 -
J. Sempau, A. Badal, L. Brualla, “A PENELOPE-based system for the automated
Monte Carlo simulation of clinacs and voxelized geometries-application to
far-from-axis fields,” Med. Phys., vol. 38, no. 11, pp. 5887 –
5895, Nov. 2011.
DOI: 10.1118/1.3643029
PMid: 22047353 -
J. Sempau, E. Acosta, J. Baro, J. M. Fernández-Varea,
F. Salvat, “An algorithm for Monte Carlo simulation of coupled
electron-photon transport,” Nucl. Instrum. Methods Phys. Res. B,
vol. 132, no. 3, pp. 377 – 390, Nov. 1997.
DOI: 10.1016/S0168-583X(97)00414-X -
J. Baró, J. Sempau, J. M. Fernández-Varea, F. Salvat, “PENELOPE: An
algorithm for Monte Carlo simulation of the penetration and energy loss of
electrons and positrons in matter,”
Nucl. Instrum. Methods Phys. Res. B
, vol. 100, no. 1, pp. 31 – 46, May 1995.
DOI: 10.1016/0168-583X(95)00349-5 - F. Salvat, PENELOPE: A code system for Monte Carlo simulation of electron and photon transport , OECD Nuclear Energy Agency, Issy-les-Moulineaux, France, 2015.
-
A. De Martinis et al., “Luminescence and Structural Characterization of
Gd2O2S Scintillators Doped with Tb3+, Ce3+, Pr3+ and F for Imaging
Applications,” Crystals, vol. 12, no. 6, 854, Jun. 2022.
DOI: 10.3390/cryst12060854 -
P. Liaparinos et al., “Grain Size Distribution Analysis of Different
Activator Doped Gd2O2S Powder Phosphors for Use in Medical Image Sensors,”
Sensors, vol. 22, no. 22, 8702, Nov. 2022.
DOI: 10.3390/s22228702
PMid: 36433300
PMCid: PMC9695128 -
I. Kandarakis, D. Cavouras, “Experimental and theoretical assessment of the
performance of Gd2O2S:Tb and La2O2S:Tb
phosphors and Gd2O2S:Tb-La2O2S:Tb
mixtures for X-ray imaging,” Eur. Radiol., vol. 11, no. 6, pp. 1083
– 1091, May 2001.
DOI: 10.1007/s003300000715
PMid: 11419159 -
R. Nowotny, XMuDat: Photon Attenuation Data on PC Version 1.0.1,
Rep. IAEA-NDS-195, IAEA, Vienna, Austria, 1998.
Retrieved from: https://nds.iaea.org/publications/nds/iaea-nds-0195/
Retrieved on: May 8, 2023
Radiation Protection
A CONTRIBUTION TO THE CURRENT DEBATE ABOUT THE ADEQUACY OF THE LINEAR-NO-THRESHOLD (LNT) MODEL FOR THE RISK RESULTING FROM RADON EXPOSURE
J. Elío, M. Janik, P. Bossew
Pages: 65-74
Abstract | References | Full Text (PDF)
-
WHO Handbook on Indoor Radon: A Public Health Perspective, WHO,
Geneva, Switzerland, 2009.
Retrieved from: https://www.who.int/publications/i/item/9789241547673
Retrieved on: Jun. 24, 2023 -
Radiation Protection and Safety of Radiation Sources: International
Basic Safety Standards
, Safety Standards No. GSR Part 3, IAEA, Vienna, Austria, 2014.
Retrieved from: www.pub.iaea.org/MTCD/Publications/PDF/Pub1578_web-57265295.pdf
Retrieved on: Jun. 24, 2023 -
The Council of European Union. (Dec. 5, 2013).
Council Directive 2013/59/EURATOM on laying down basic safety standards
for protection against the dangers arising from exposure to ionising
radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom,
96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
Retrieved from: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2014:013:FULL&from=EN
Retrieved on: Jun. 24, 2023 -
G. Cinelli et al., European Atlas of Natural Radiation, 1st ed.,
Publication Office of the European Union, Luxembourg, Luxembourg, 2019.
Retrieved from: https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiation
Retrieved on: Jun. 29, 2023 -
The 2007 Recommendations of the International Commission on
Radiological Protection
, vol. 37, ICRP Publication no. 103, Ottawa, Canada, 2007.
Retrieved from: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20103
Retrieved on: Jun. 28, 2023 -
D. B. Richardson et al., “Lung Cancer and Radon: Pooled Analysis of Uranium
Miners Hired in 1960 or Later,” Environ. Health Perspect., vol.
130, no. 5, 057010, May 2022.
DOI: 10.1289/EHP10669
PMid: 35604341
PMCid: PMC9126132 -
P. Duan et al., “Nonlinear dose-response relationship between radon
exposure and the risk of lung cancer: evidence from a meta-analysis of
published observational studies,” Eur. J. Cancer Prev., vol. 24,
no. 4, pp. 267 – 277, Jul. 2015.
DOI: 10.1097/CEJ.0000000000000066
PMid: 25117725 -
B. Grosche, M. Kreuzer, M. Kreisheimer, M. Schnelzer, A. Tschense, “Lung
cancer risk among German male uranium miners: A cohort study, 1946-1998,”
Br. J. Cancer, vol. 95, no. 9, pp. 1280 – 1287, Nov. 2006.
DOI: 10.1038/sj.bjc.6603403
PMid: 17043686
PMCid: PMC2360564 -
K. Kelly-Reif et al., “Radon and lung cancer in the pooled uranium miners
analysis (PUMA): highly exposed early miners and all miners,”
Occup. Environ. Med.
, vol. 80, no. 7, pp. 385 – 391, Jul. 2023.
DOI: 10.1136/oemed-2022-108532
PMid: 37164624
PMCid: PMC10369304 -
H. J. Muller, The production of mutations, Nobel Prize
organisation, Stockholm, Sweden, 1946.
Retrieved from: https://www.nobelprize.org/prizes/medicine/1946/muller/lecture/
Retrieved on: Jun. 25, 2023 -
E. J. Calabrese, “Muller’s Nobel lecture on dose-response for ionizing
radiation: Ideology or science?,” Arch. Toxicol., vol. 85, no. 12,
pp. 1495 – 1498, Dec. 2011.
DOI: 10.1007/s00204-011-0728-8
PMid: 21717110 -
S. Darby et al., “Radon in homes and risk of lung cancer: Collaborative
analysis of individual data from 13 European case-control studies,”
Br. Med. J.
, vol. 330, no. 7485, pp. 223 – 226, Jan. 2005,
DOI: 10.1136/bmj.38308.477650.63
PMid: 15613366
PMCid: PMC546066 -
Sources, effects and risks of ionizing radiation, UNSCEAR 2012
Report to the General Assembly, with Scientific Annexes, UNSCEAR, New York
(NY), USA, 2015.
Retrieved from: https://www.unscear.org/unscear/en/publications/2012.html
Retrieved on: Jun. 25, 2023 -
K. Kino et al., “Considering Existing Factors That May Cause Radiation
Hormesis at <100 mSv and Obey the Linear No-Threshold Theory at ≥100
mSv,” Challenges, vol. 12, no. 2, 33, Dec. 2021.
DOI: 10.3390/challe12020033 -
R. Nilsson, J. Tong, “Opinion on reconsideration of lung cancer risk from
domestic radon exposure,” Radiat. Med. Prot., vol. 1, no. 1, pp.
48 – 54, Mar. 2020.
DOI: 10.1016/j.radmp.2020.01.001 -
A. M. Block, S. R. Silva, J. S. Welsh, “Low-dose total body irradiation: an
overlooked cancer immunotherapy technique,” J. Radiat. Oncol., vol.
6, no. 2, pp. 109 – 115, Jun. 2017.
DOI: 10.1007/s13566-017-0303-x -
Z. Chen, Z. Wu, T. A. Muluh, S. Fu, J. Wu, “Effect of low-dose total-body
radiotherapy on immune microenvironment,” Transl. Oncol., vol. 14,
no. 8, 101118, Aug. 2021.
DOI: 10.1016/j.tranon.2021.101118
PMid: 34020371
PMCid: PMC8142085 -
L. Dobrzyński, K. W. Fornalski, J. Reszczyńska, “Meta-analysis of
thirty-two case–control and two ecological radon studies of lung cancer,”
J. Radiat. Res., vol. 59, no. 2, pp. 149 – 163, Mar. 2018.
DOI: 10.1093/jrr/rrx061
PMid: 29186473
PMCid: PMC5950923 -
Radiation protection 125: Low dose ionizing radiation and cancer risk
, European Commission, Brussels, Belgium, 2001.
Retrieved from: https://energy.ec.europa.eu/system/files/2014-11/125_0.pdf
Retrieved on: Jun. 25, 2023 -
A. Marín et al., “Bystander effects and radiotherapy,”
Rep. Pract. Oncol. Radiother.
, vol. 20, no. 1, pp. 12 – 21, Jan.-Feb. 2015.
DOI: 10.1016/j.rpor.2014.08.004
PMid: 25535579
PMCid: PMC4268598 -
M. Tubiana, L. E. Feinendegen, C. Yang,
J. M. Kaminski, “The linear no-threshold relationship is inconsistent with
radiation biologic and experimental data,” Radiology, vol. 251, no.
1, pp. 13 – 22, Apr. 2009.
DOI: 10.1148/radiol.2511080671
PMid: 19332842
PMCid: PMC2663584 -
A. Gaziev, G. Shaikhaev, “Limited Repair of Critical DNA Damage in Cells
Exposed to Low Dose Radiation,” in
Current Topics in Ionizing Radiation Research
, M. Nenoi, Eds., Rijeka, Croatia: InTech, ch. 4, 2012, pp. 51 – 80.
DOI: 10.5772/33611 -
Optimisation: Rethinking the Art of Reasonable, Workshop Summary
Report NEA/CRPPH/R(2020)2, NEA, Paris, France, 2020.
Retrieved from: https://www.oecd-nea.org/jcms/pl_60901/optimisation-rethinking-the-art-of-reasonable-workshop-summary-report?details=true
Retrieved on: Jul. 10, 2023 -
A. Rosenberger et al., “On the non-linearity of radon-induced lung cancer,”
deposited at Research Square, Oct. 03, 2022.
DOI: 10.21203/rs.3.rs-1933741/v2 -
L. E. Feinendegen, “Evidence for beneficial low level radiation effects and
radiation hormesis,” Br. J. Radiol., vol. 78, no. 925, pp. 3 – 7,
Jan. 2005.
DOI: 10.1259/bjr/63353075
PMid: 15673519 -
R. E. Thompson, D. F. Nelson, J. H. Popkin, Z. Popkin, “Case-control study
of lung cancer risk from residential radon exposure in Worcester County,
Massachusetts,” Health Phys., vol. 94, no. 3, pp. 228 – 241, Mar.
2008.
DOI: 10.1097/01.HP.0000288561.53790.5f
PMid: 18301096 -
R. E. Thompson, “Epidemiological evidence for possible radiation hormesis
from radon exposure: A case-control study conducted in Worcester, MA,”
Dose-Response, vol. 9, no. 1, pp. 59 – 75, 2011.
DOI: 10.2203/dose-response.10-026.Thompson
PMid: 21431078
PMCid: PMC3057636 -
B. L. Cohen, “A test of the linear-no threshold theory of radiation
carcinogenesis,” Environ. Res., vol. 53, no. 2, pp. 193 – 220,
Dec. 1990.
DOI: 10.1016/S0013-9351(05)80119-7
PMid: 2253600 - B. L. Cohen, “Updates and extensions to tests of the linear-no threshold theory,” Technology, vol. 7. pp. 657 – 672, Jan. 2000.
-
B. L. Cohen, “Test of the Linear-No Threshold Theory: Rationale for
Procedures,” Dose-Response, vol. 3, no. 3, pp. 369 – 390, May
2006.
DOI: 10.2203/dose-response.003.03.007
PMid: 18648621
PMCid: PMC2475951 -
K. Becker, “Health Effects of High Radon Environments in Central Europe:
Another Test for the LNT Hypothesis?,”
Nonlinearity Biol. Toxicol. Med.
, vol. 1, no. 1, pp. 3 – 35, Jan. 2003.
DOI: 10.1080/15401420390844447
PMid: 19330110
PMCid: PMC2651614 -
E. J. Calabrese, “Hormesis: From marginalization to mainstream. A case for
hormesis as the default dose-response model in risk assessment,”
Toxicol. Appl. Pharmacol.
, vol. 197, no. 2, pp. 125 – 136, Jun. 2004.
DOI: 10.1016/j.taap.2004.02.007
PMid: 15163548 -
C. L. Sanders,
Radiation hormesis and the linear-no-threshold assumption
, 1st ed., Heidelberg, Germany: Springer-Verlag Berlin Heidelberg, 2010.
DOI: 10.1007/978-3-642-03720-7 -
M. K. Janiak, M. P. R. Waligórski, “Can Low-Level Ionizing Radiation Do Us
Any Harm?,” Dose-Response, vol. 21, no. 1, pp. 1 – 15, 2023.
DOI: 10.1177/15593258221148013 -
S. M. J. Mortazavi, M. Ghiassi-Nejad, M. Rezaiean, “Cancer risk due to
exposure to high levels of natural radon in the inhabitants of Ramsar,
Iran,” Int. Congr. Ser., vol. 1276, pp. 436 – 437, Feb. 2005.
DOI: 10.1016/j.ics.2004.12.012 -
G. R. W. Denton, S. Namazi, “Indoor Radon Levels and Lung Cancer Incidence
on Guam,” Procedia Environ. Sci., vol. 18, pp. 157 – 166, 2013.
DOI: 10.1016/j.proenv.2013.04.021 -
Radon therapies, German Federal Office for Radiation Protection,
Salzgitter, Germany.
Retrieved from: https://www.bfs.de/EN/topics/ion/environment/radon/effects/therapies.html
Retrieved on: Jul. 04, 2023 -
H. Tempfer, A. Schober, W. Hofmann, H. Lettner, F. Steger, “Biophysical
mechanisms and radiation doses in radon therapy,” in
The Natural Radiation Environment VII
, vol. 7, J. P. McLaughlin, S. E. Simopoulos, F. Steinhäusler, Eds., Amsterdam, Netherlands: Elsevier,
2005, ch. 4, sec. 78, pp. 640 – 648.
DOI: 10.1016/S1569-4860(04)07078-0 -
A. Falkenbach, J. Kovacs, A. Franke, K. Jörgens, K. Ammer, “Radon therapy
for the treatment of rheumatic diseases - Review and meta-analysis of
controlled clinical trials,” Rheumatol. Int., vol. 25, no. 3, pp.
205 – 210, Apr. 2005.
DOI: 10.1007/s00296-003-0419-8
PMid: 14673618 -
A. Maier et al., “Radon Exposure—Therapeutic Effect and Cancer Risk,”
Int. J. Mol. Sci.
, vol. 22, no. 1, 316, Dec. 2020.
DOI: 10.3390/ijms22010316
PMid: 33396815
PMCid: PMC7796069 -
K. Yamaoka, T. Kataoka, “Confirmation of efficacy, elucidation of
mechanism, and new search for indications of radon therapy,”
J. Clin. Biochem. Nutr.
, vol. 70, no. 2, pp. 87 – 92, Mar. 2022.
DOI: 10.3164/JCBN.21-85
PMid: 35400814
PMCid: PMC8921726 -
S. Kojima et al., “Radon Therapy Is Very Promising as a Primary or an
Adjuvant Treatment for Different Types of Cancers: 4 Case Reports,”
Dose-Response
, vol. 17, no. 2, pp. 1–9, Jun. 2019.
DOI: 10.1177/1559325819853163
PMid: 31210758
PMCid: PMC6552369 -
D. Passali, G. Gabelli, G. C. Passali, R. Mösges,
L. M. Bellussi, “Radon-enriched hot spring water therapy for upper and
lower respiratory tract inflammation,” Otolaryngol. Pol., vol. 71,
no. 4, pp. 8 – 13, Aug. 2017.
DOI: 10.5604/01.3001.0010.2242
PMid: 29116046 -
Z. Zdrojewicz, J. J. Strzelczyk, “Radon Treatment Controversy,”
Dose-Response
, vol. 4, no. 2,
pp. 106 – 118, Aug. 2006.
DOI: 10.2203/dose-response.05-025.zdrojewicz
PMid: 18648641
PMCid: PMC2477672 -
Linear no-threshold model, Wikipedia, the free encyclopedia, San
Francisco (CA), USA,
Retrieved from: https://en.wikipedia.org/wiki/Linear_no-threshold_model
Retrieved on: Jul. 04, 2023 -
J. Gaskin, D. Coyle, J. Whyte, D. Krewksi, “Global Estimate of Lung Cancer
Mortality Attributable to Residential Radon,”
Environ. Health Perspect.
, vol. 126, no. 5, 057009, May 2018.
DOI: 10.1289/EHP2503
PMid: 29856911
PMCid: PMC6072010 -
Occupational Intakes of Radionuclides: Part 3, vol. 46, ICRP
Publication no. 137, ICRP, Ottawa, Canada, 2017, pp. 1 – 486.
Retrieved from: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20137
Retrieved on: Jun. 29, 2023 -
J. Elío et al., “The first version of the Pan-European Indoor Radon Map,”
Nat. Hazards Earth Syst. Sci., vol. 19, no. 11, pp. 2451 – 2464,
Nov. 2019.
DOI: 10.5194/nhess-19-2451-2019 -
P. Bossew, “The Geographical Pattern of Local Statistical Dispersion of
Environmental Radon in Europe,” Math. Geosci., spec. issue, 2023.
DOI: 10.1007/s11004-023-10073-x -
P. Bossew et al., “Current topic discussions in radon research,” presented
at the Int. Conf. Radiation and Applications (RAP 2022),
Thessaloniki, Greece, Jun. 2022.
Retrieved from: https://drive.google.com/file/d/1jqIaOMgq_DrM_4zSKKUfShg8KDzWxlNo/view
Retrieved on: Jun. 29, 2023 -
E. Petermann, P. Bossew, B. Hoffmann, “Radon hazard vs. radon risk - On the
effectiveness of radon priority areas,” J. Environ. Radioact.,
vol. 244 – 245, 106833, Apr. 2022.
DOI: 10.1016/j.jenvrad.2022.106833
PMid: 35131623 -
E. Petermann, P. Bossew, “Mapping indoor radon hazard in Germany: The
geogenic component,” Sci. Total Environ., vol. 780, 146601, Aug.
2021.
DOI: 10.1016/j.scitotenv.2021.146601
PMid: 33774294 -
E. Petermann, H. Meyer, M. Nussbaum, P. Bossew, “Mapping the geogenic radon
potential for Germany by machine learning,” Sci. Total Environ.,
vol. 754, 142291, Feb. 2021.
DOI: 10.1016/j.scitotenv.2020.142291
PMid: 33254926 -
R. Gellermann, J. Breckow, “LNT und Strahlenschutz,”
STRAHLENSCHUTZ Prax.
, vol. 1, p. 80f, 2023.
(R. Gellermann, J. Breckow, “LNT and Radiation Protection,” RADIATION PROTECTION Practice , vol. 1, p. 80f, 2023.) -
P. Bossew, E. Petermann, “What is the objective of radon abatement policy?
Revisiting the concept of radon priority areas,” presented at the15th
Int. workshop on the geological aspects of radon risk mapping (GARRM),
Prague, Czech Republic, Sep.2021.
Retrieved from: http://www.radon.eu/workshop2021/pres/bossew_2021.pdf
Retrieved on: Jun. 23, 2023 -
E. Petermann, P. Bossew, N. Suhr, B. Hoffmann, “Estimating national indoor
radon exposure at a high spatial resolution – improvements by a machine
learning based probabilistic approach,” presented at theEGU 2023,
Vienna, Austria, Apr. 2023.
Retrieved from: https://doi.org/10.5194/egusphere-egu23-6423
Retrieved on: Jun. 23, 2023 -
A. Onishchenko, M. Zhukovsky, “The influence of uncertainties of radon
exposure on the results of case-control epidemiological study,”
Int. J. Radiat. Biol
., vol. 95, no. 3, pp. 354 – 359, Mar. 2019.
DOI: 10.1080/09553002.2019.1547846
PMid: 30496022 -
J. S. Puskin, “Smoking as a confounder in ecologic correlations of cancer
mortality rates with average county radon levels,” Health Phys.,
vol. 84, no. 4, pp. 526 – 532, Apr. 2003.
DOI: 10.1097/00004032-200304000-00012
PMid: 12705451
Radiotherapy
EVALUATION OF DOSIMETRIC PLAN QUALITY FOR GLIOBLASTOMA TREATED WITH 3D CONFORMAL RADIOTHERAPY
Irena Muçollari, Aurora Cangu, Anastela Mano, Gramoz Braçe, Artur Xhumari, Jetmira Kerxhaliu, Blerina Myzeqari
Pages: 75-78
Abstract | References | Full Text (PDF)
-
P. Symonds, J. Mills, A. Duxbury, Walter and Miller>’s
Textbook of Radiotherapy: Radiation Physics, Therapy and Oncology, 8th
ed., Amsterdam, Netherlands: Elsevier, 2019.
Retrieved from: https://library.lol/main/F5E7ACC64E7FEBE2195473F6BD7298FF
Retrieved on: Feb. 18, 2023 -
N. Kumar et al., “Can 3D-CRT meet the desired dose distribution to target
and OARs in glioblastoma? A tertiary cancer center experience,”
CNS Oncol., vol. 9, no. 3, CNS60, Sep. 2020.
DOI: 10.2217/cns-2020-0010
PMid: 32945180
PMCid: PMC7546124 -
N. Kumar et al., “Impact of volume of irradiation on survival and quality
of life in glioblastoma: a prospective, phase 2, randomized comparison of
RTOG and MDACC protocols,” Neurooncol. Pract., vol. 7, no. 1, pp.
86 – 93, Feb. 2020.
DOI: 10.1093/nop/npz024
PMid: 32257287
PMCid: PMC7104885 -
T. Sheu, T. M. Briere, A. M. Olanrewaju,
M. F. McAleer, “Intensity Modulated Radiation Therapy Versus Volumetric Arc
Radiation Therapy in the Treatment of Glioblastoma-Does Clinical Benefit
Follow Dosimetric Advantage?,” Adv. Radiat. Oncol., vol. 4, no. 1,
pp. 50 – 56, Jan. 2019.
DOI: 10.1016/j.adro.2018.09.010
PMid: 30706010
PMCid: PMC6349632 -
M. Niyazi et al., “ESTRO-EANO guideline on target delineation and
radiotherapy details for glioblastoma,” Radiother. Oncol., vol.
184, 109663, Jul. 2023.
DOI: 10.1016/j.radonc.2023.109663
PMid: 37059335 -
M. Niyazi et al., “ESTRO-ACROP guideline “target delineation of
glioblastomas”,” Radiother. Oncol., vol 118, no. 1, pp. 35 – 42,
Jan. 2016.
DOI: 10.1016/j.radonc.2015.12.003
PMid: 26777122 -
Prescribing, Recording, and Reporting Photon-Beam Therapy, ICRU
Report 50, ICRU, Bethesda (MD), USA, 1993.
Retrieved from: https://journals.sagepub.com/toc/crub/os-26/1
Retrieved on: Mar. 12, 2023 -
Recording and Reporting Photon Beam Therapy (supplement to ICRU Report
50)
, ICRU Report 62, ICRU, Bethesda (MD), USA, 1999.
Retrieved from: https://journals.sagepub.com/toc/crub/os-32/1
Retrieved on: Mar. 12, 2023 -
Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated
Radiation Therapy (IMRT)
, ICRU Report 83, ICRU, Bethesda (MD), USA, 2010.
Retrieved from: https://journals.sagepub.com/toc/crua/10/1
Retrieved on: Mar. 12, 2023 -
B. Emami, “Tolerance of Normal Tissue to Therapeutic Radiation,”
Rep. Radiother. Oncol., vol. 1, no. 1, pp. 123 – 127, 2013.
Retrieved from: https://brieflands.com/articles/rro-2782
Retrieved on: Feb. 18, 2023 -
A. van’t Riet, A. C. Mak, M. A. Moerland, L. H. Elders, W. van der Zee, “A
conformation number to quantify the degree of conformality in brachytherapy
and external beam irradiation: application to the prostate,”
Int. J. Radiat. Oncol. Biol. Phys., vol. 37, no. 3, pp. 731 – 736, Feb. 1997.
DOI: 10.1016/s0360-3016(96)00601-3
PMid: 9112473 -
T. Knoos, I. Kristensen, P. Nilsson, “Volumetric and dosimetric evaluation
of radiation treatment plans: radiation conformity index,”
Int. J. Radiat. Oncol. Biol. Phys., vol. 42, no. 5, pp. 1169 – 1176, Dec. 1998.
DOI: 10.1016/S0360-3016(98)00239-9
PMid: 9869245 -
L. B. Marks et al., “Use of normal tissue complication probability models
in the clinic,” Int. J. Radiat. Oncol. Biol. Phys., vol. 76, suppl.
3, pp. S10 – S19, Mar. 2010.
DOI: 10.1016/j.ijrobp.2009.07.1754
PMid: 20171502
PMCid: PMC4041542
Radiation Detectors
NOVEL DIAMOND DETECTOR DEVELOPMENT FOR HARSH NEUTRON FLUX ENVIRONMENTS
K. Kaperoni, M. Diakaki, C. Weiss, M. Bacak, E. Griesmayer, J. Melbinger, M. Kokkoris, M. Axiotis, S. Chasapoglou, R. Vlastou, and the n_TOF collaboration
Pages: 79-83
Abstract | References | Full Text (PDF)
-
V. Krasilnikov, L. Bertalot, R. Barnsley, M. Walsh, “Neutron detector needs
for ITER,” Fusion Sci. Technol., vol. 71, no. 2, pp. 196 – 200,
Feb. 2017.
DOI: 10.13182/FST16-108
PMid: 11901816 -
M. Angelone, C. Verona, “Properties of Diamond-Based Neutron Detectors
Operated in Harsh Environments,”
J. Nucl. Eng., vol. 2, no. 4, pp. 422 – 470, Dec. 2021.
DOI: 10.3390/jne2040032 -
Detectors, CIVIDEC Instrumentation, Vienna, Austria.
Retrieved from: https://cividec.at/
Retrieved on: May 22, 2023 -
C. Weiss, “A CVD Diamond Detector for (n,α) Cross-Section Measurements,”
Ph.D dissertation, Vienna University of Technology, Faculty of Physics,
Vienna, Austria, 2014.
Retrieved from: https://cds.cern.ch/record/1752629/files/CERN-THESIS-2014-101.pdf
Retrieved on: Jun. 06, 2023 -
S. Agostinelli et al., “Geant4—a simulation toolkit,”
Nucl. Instrum. Methods Phys. Res. A, vol. 506, no. 3,
pp. 250 – 303, Jul. 2003.
DOI: 10.1016/S0168-9002(03)01368-8 -
P. Kavrigin, “Neutron spectroscopy with sCVD diamond detectors,” Ph.D
thesis, Vienna University of Technology, Dept. of Technical Physics,
Vienna, Austria, 2018.
Retrieved from: https://repositum.tuwien.at/handle/20.500.12708/78506
Retrieved on: Jun. 06, 2023 -
A. Mengoni et al., The new n\_TOF NEAR Station,
CERN-INTC-2020-073; INTC-I-222, CERN Experiments Committees, Geneva,
Switzerland, 2020.
Retrieved from: https://cds.cern.ch/record/2737308
Retrieved on: Jun. 06, 2023
Aerosol Radioactivity
CHARACTERIZATION OF AIRBORNE RADIOACTIVITY IN URBAN KUWAIT: ACTIVITY CONCENTRATION OF SELECTED RADIONUCLIDES
Anfal Ismaeel, Abdulaziz Aba, Abdullah Al-Dabbous, Mariam Malak, Aishah Al-Boloushi, Hanadi Al-Shammari, Omar Al-Boloushi
Pages: 84-87
Abstract | References | Full Text (PDF)
-
C. Papastefanou, “Radioactive aerosols,” in
Radioactivity in the Environment, vol. 12, 1st ed., Amsterdam, Netherlands: Elsevier, 2008, ch. 2, pp. 11 –
58.
Retrieved from: https://library.lol/main/757BA853D79F113AD227B363D06B2DA3
Retrieved on: Apr. 15, 2023 -
Compendium of dose coefficients based on ICRP publication 60, vol.
41, ICRP Publication no. 119, ICRP, Ottawa, Canada, 2012, pp. 1 – 130.
Retrieved from: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20119
Retrieved on: Apr. 15, 2023 -
B. Jancsek-Turóczi, A. Hoffer, I. Nyírő-Kósa,
A. Gelencsér, “Sampling and characterization of resuspended and respirable
road dust,” J. Aerosol Sci., vol. 65, pp. 69 – 76, Nov. 2013.
DOI: 10.1016/j.jaerosci.2013.07.006 -
A. Aba, A. M. Al-Dousari, A. Ismaeel, “Depositional characteristics of
7Be and 210Pb in Kuwaiti dust,”
J. Radioanal. Nucl. Chem., vol. 307, no. 1, pp. 15 – 23, Jan.
2016.
DOI: 10.1007/s10967-015-4129-y -
J. C. Chow et al., “Descriptive analysis of PM2. 5and PM
10
at regionally representative locations during SJVAQS/AUSPEX,”
Atmos. Environ., vol. 30, no. 12,
pp. 2079 – 2112, Jun. 1996.
DOI: 10.1016/1352-2310(95)00402-5 -
A. Ismaeel et al., “Activity size distributions of radioactive airborne
particles in an arid environment: a case study of Kuwait,” Environ.
Sci. Pollut. Res., vol. 27, no. 26, pp. 33032 – 33041, Sep. 2020.
DOI: 10.1007/s11356-020-09367-y
PMid: 32529611 -
M. A. Alolayan, K. W. Brown, J. S. Evans,
W. S. Bouhamra, P. Koutrakis, “Source apportionment of fine particles in
Kuwait City,”Sci. Total Environ., vol. 448, pp. 14 – 25, Mar. 2013.
DOI: 10.1016/j.scitotenv.2012.11.090
PMid: 23270730 -
J. M. AL-Awadhi, A. A. Al-Shuaibi, “Dust fallout in Kuwait City: deposition
and characterization,” Sci. Total Environ., vol. 461-462, pp. 139
– 148, Sep. 2013.
DOI: 10.1016/j.scitotenv.2013.03.052
PMid: 23722090 -
A. AL-Hemoud et al., “Exposure levels of air pollution (PM2.5) and
associated health risk in Kuwait,” Environ. Res., vol.
179, pt. A, 108730, Dec. 2019.
DOI: 10.1016/j.envres.2019.108730
PMid: 31550597 -
M. Behbehani, F. P. Carvalho, S. Uddin, N. Habibi, “Enhanced polonium
concentrations in aerosols from the gulf oil producing region and the role
of microorganisms,” Int. J. Environ. Res. Public Health, vol.
18, no. 24, 13309, Dec. 2021.
DOI: 10.3390/ijerph182413309
PMid: 34948917
PMCid: PMC8705287 -
A. Ismaeel, A. Aba, A. Al-Boloushi, H. Al-Shammari,
O. Al-Boloushi, “Radiological risk assessment of particulate matters in
urban areas in Kuwait,” Arab. J. Geosci., vol. 14, 2176, Oct.
2021.
DOI: 10.1007/s12517-021-08483-4 -
A. Al-Boloushi, A. Ismaeel, A. Aba, H. Al-Shammari,
O. Alboloushi, “Atmospheric concentrations of 210Po and
210
Pb in Urban Area in Kuwait,” Arab. J. Geosci., vol. 14, 1995, Sep.
2021.
DOI: 10.1007/s12517-021-08371-x -
A. Aba et al., “Atmospheric residence times and excess of unsupported 210Po
in aerosol samples from the Kuwait bay-northern gulf,” Chemosphere, vol. 261, 127690,
Dec. 2020.
DOI: 10.1016/j.chemosphere.2020.127690
PMid: 32736243 -
H. Vanmarcke, “UNSCEAR 2000: Sources of ionizing radiation,”
Annales de L`association Belge de Radioprotection, vol. 27, no. 2, pp. 41 – 65, 2002.
Retrieved from: https://bvsabr.be/js/tinymce/plugins/moxiemanager/data/files/annals/Vol%2027-2.PDF
Retrieved on: Apr. 15, 2023
Radiation Measurements
ACTIVITY DETERMINATION OF A 137Cs RADIOACTIVE SOURCE OBTAINED FROM AN OIL-WELLING STUDY IN ALBANIA
Dritan Prifti, Kozeta Tushe, Brunilda Daci, Elida Bylyku
Pages: 88-91
Abstract | References | Full Text (PDF)
-
Kuvendil popullor i Republikes se Shqipërisë. (Nëntor 9, 1995).
Ligj nr. 8025 ndryshuar me ligjin 9973 dhe me ligjin 26/2013. Per
mbrojtjen nga rrezatimet jonizuese.
(People’s Assembly of the Republic of Albania. (Nov. 9, 1995). Law no. 8025 amended by law 9973 and by law 26/2013. On protection from ionizing radiation.)
Retrieved from: https://www.ishp.gov.al/rrezatimet-jonizuese/ligje-2/
Retrieved on: May 18, 2022 -
Këshilli i Ministrave i Republikës së Shqipërisë. (Shtator 7, 2016).
Rregullorja nr. 638 për miratimin e rregullores për trajtimin e sigurt
të mbetjeve radioaktive në Republikën e Shqipërisë.
(Council of Ministers of the Republic of Albania. (Sep. 7, 2016). Regulation no. 638 on the approval of the regulation on the safe handling of radioactive waste in the Republic of Albania.)
Retrieved from: https://www.ishp.gov.al/rrezatimet-jonizuese/rregullore-2/
Retrieved on: May 18, 2022 -
Development of Specifications for Radioactive Waste Packages,
IAEA-TECDOC-1515, IAEA, Vienna, Austria, 2006.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1515_web.pdf
Retrieved on: Nov. 11, 2023 -
Storage of Radioactive Waste, Safety Guide no. WS-G-6.1, IAEA,
Vienna, Austria, 2006.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1254_web.pdf
Retrieved on: Nov. 11, 2023 -
Categorization of Radioactive Sources, Safety Guide no. RS-G-1.9,
IAEA, Vienna, Austria, 2005.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1227_web.pdf
Retrieved on: Nov. 11, 2023 -
Këshilli i Ministrave i Republikës së Shqipërisë. (Mund 9, 2012).
Rregullorja nr. 313 për mbrojtjen e publikut nga shkarkimet mjedisore,
përcaktimin e kampionimit, rajonet dhe shpeshtësinë e matjeve.
(Council of Ministers of the Republic of Albania. (May 9, 2012). Regulation no. 313 on protection of the public from environmental emissions, the definition of sampling, regions and frequency of measurement.)
Retrieved from: https://www.ishp.gov.al/rrezatimet-jonizuese/rregullore-2/
Retrieved on: May 18, 2022 -
Strategy and Methodology for Radioactive Waste Characterization,
IAEA-TECDOC-1537, IAEA, Vienna, Austria, 2007.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1537_web.pdf
Retrieved on: Nov. 11, 2023 -
Handling, conditioning and storage of spent sealed radioactive sources, IAEA-TECDOC-1145, IAEA, Vienna,
Austria, 2000.
Retrieved from: https://www.iaea.org/publications/5967/handling-conditioning-and-storage-of-spent-sealed-radioactive-sources
Retrieved on: Nov. 11, 2023 -
Regulations for the Safe Transport of Radioactive Material,
Specific Safety Requirements no. SSR-6 (Rev. 1), IAEA, Vienna, Austria,
2018.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/PUB1798_web.pdf
Retrieved on: Nov. 11, 2023 -
Procedura dhe Programi për Mbrojtjen nga Rrezatimi, Procedura nr.
11, Instituti i Fizikës Bërthamore të Aplikuar, Tiranë, Shqipëri.
(Procedure and Programme for Radiation Protection, Procedure no. 11, IANP, Tirana, Albania.) -
F. Abu-Jarad, “The application of radiation sources in the oil and gas industry and
shortages in their services,” At. Peace: an Int. J. (AFP), vol. 2, no. 4, pp. 338 – 349, 2009.
DOI: 10.1504/AFP.2009.027867 -
Radiation Answers, Health Physics Society, Herndon (VA), USA.
Retrieved from: https://www.radiationanswers.org/radiation-sources-uses/industrial-uses/well-logging.html
Retrieved on: Jan. 22, 2024
Environmental Chemistry
CONCENTRATION OF SELECTED RADIONUCLIDES IN HIGH DUST DEPOSITION AREA: CONSIDERATION OF DEPLETED URANIUM
Abdulaziz Aba, Omar Al-Boloushi, Anfal Ismaeel
Pages: 91-96
Abstract | References | Full Text (PDF)
-
A. Al-Hemoud et al., “Health impact assessment associated with exposure to
PM10 and dust storms in Kuwait,” Atmosphere, vol. 9, no. 1, 6,
Jan. 2018.
DOI: 10.3390/atmos9010006 -
A. Aba, A. Ismaeel, A. Al-Boloushi, H. Al-Shammari, O. Al-Boloushi,
“Deposited Rates of Radionuclides,” in
Atlas of Fallen Dust in Kuwait, A. Al-Dousari, Eds., 1 st ed., Cham, Switzerland: Springer
Cham, 2021, ch. 6, pp. 140 – 176.
DOI: 10.1007/978-3-030-66977-5_6 -
A. Al-Hemoud et al., “Sand and dust storm trajectories from Iraq
Mesopotamian flood plain to Kuwait,” Sci. Total Environ., vol.
710, 136291, Mar. 2020.
DOI: 10.1016/j.scitotenv.2019.136291
PMid: 31911252 - What are the WHO Air quality guidelines? Improving health by reducing air pollution, WHO, Geneva, Switzerland, 2021.
-
A. Al-Dousari, N. Al-Dousari, “Deposited Dust,” in
Atlas of Fallen Dust in Kuwait, A. Al-Dousari, Eds., 1 st ed., Cham, Switzerland: Springer
Cham, 2021, ch. 2, pp. 47 – 56.
DOI: 10.1007/978-3-030-66977-5_2 -
H. Bem, F. Bou-Rabee, “Environmental and health consequences of depleted
uranium use in the 1991 Gulf War,” Environ. Int., vol. 30, no. 1,
pp. 123 – 134, Mar. 2004.
DOI: 10.1016/S0160-4120(03)00151-X
PMid: 14664872 -
E. G. Daxon et al.,
Health and Environmental Consequences of Depleted Uranium Use in the
U.S. Army: Technical Report, Rep. AEPI-0038, AEPI, Atlanta (GA), USA, 1995.
Retrieved from: https://www.academia.edu/25782366/Health_and_Environmental_Consequences_of_Depleted_Uranium_Use_in_the_U_S_Army_Technical_Report
Retrieved on: May 18, 2023 -
M. A. McDiarmid et al., “Health effects of depleted uranium on exposed Gulf
War veterans: a 10-year follow-up,”
J. Toxicol. Environ. Health Part A, vol. 67, no. 4, pp. 277 – 296, Feb. 2004.
DOI: 10.1080/15287390490273541
PMid: 14713562 -
A. Bleise, P. R. Danesi, W. Burkart, “Properties, use and health effects of
depleted uranium (DU): a general overview,” J. Environ. Radioact.,
vol. 64, no. 2-3,
pp. 93 – 112, 2003.
DOI: 10.1016/s0265-931x(02)00041-3
PMid: 12500797 -
Z. Hon, J. Österreicher, L. Navrátil, “Depleted uranium and its effects on
humans,” Sustainability, vol. 7, no. 4, pp. 4063 – 4077, Apr.
2015.
DOI: 10.3390/su7044063 -
R. R. Parrish et al., “Depleted uranium contamination by inhalation
exposure and its detection after ∼ 20 years: Implications for human health
assessment,” Sci. Total Environ., vol. 390, no. 1, pp. 58 – 68,
Feb. 2008.
DOI: 10.1016/j.scitotenv.2007.09.044
PMid: 17976690 -
L. W. Luckett, “Radiological conditions in areas of Kuwait with residues of
depleted uranium,” Health Phys., vol. 90, no. 2, pp. 180 – 181,
Feb. 2006.
DOI: 10.1097/00004032-200602000-00011 -
A. F. Elsayed, M. T. Hussein, S. A. El-Mongy, H. F. Ibrahim, A. Shazly,
“Different Approaches to Purify the 185.7 keV of 235U from Contribution of
Another Overlapping γ-Transition,” Phys. Part. Nucl. Lett., vol.
18, no. 2, pp 202 – 209, Mar. 2021.
DOI: 10.1134/S1547477121020060 -
A. Aba, A. Ismaeel, “Preparation of in-house calibration source for the use
in radioactivity analysis of the environmental samples: consideration of
homogeneity,” J. Radioanal. Nucl. Chem., vol. 295, no. 1, pp. 31 –
38, Jan. 2013.
DOI: 10.1007/s10967-012-1893-9 -
R. L. Lozano et al., “Mesoscale behavior of 7Be and 210Pb in superficial
air along the Gulf of Cadiz (south of Iberian Peninsula),”
Atmos. Environ., vol. 80,
pp. 75 – 84, Dec. 2013.
DOI: 10.1016/j.atmosenv.2013.07.050 -
Y. Y. Ebaid, S. A. El-Mongy, K. A. Allam, “235U–γ emission contribution to
the 186 keV energy transition of 226Ra in environmental samples activity
calculations,” Int. Cong. Ser., vol. 1276, pp. 409 – 411, Feb.
2005.
DOI: 10.1016/j.ics.2004.12.020
Nuclear Forensics
RESEARCH ACTIVITIES AT THE POLICE ACADEMY OF THE CZECH REPUBLIC IN PRAGUE ASSOCIATED WITH THE DETECTION AND ELIMINATION OF CBRN AND OTHER DANGEROUS MATERIAL THREATS
Jozef Sabol
Pages: 97-99
Abstract | References | Full Text (PDF)
-
Využití radiačních metod pro detekci a identifikaci CBRNE material, Projekt č. VI20192022171, Ministerstvo
vnitra ČR, Praha, Česká republika,
2019-2022.
(Application of radiation methods for the detection and identification of CBRNE materials, Project no. VI20192022171, Ministry of the Interior of the Czech Republic, Prague, Czech Republic, 2019-2022.)
Retrieved from: https://www.mvcr.cz/vyzkum/clanek/podporene-projekty.aspx?q=Y2hudW09NQ%3D%3D
Retrieved on: Jun. 22, 2023 -
Prvková charakterizace mikrostop a omamných a psychotropních látek
jadernými analytickými metodami
, Projekt č. VI20192022162, Ministerstvo vnitra ČR, Praha, Česká republika,
2019-2022.
(Elemental characterisation of microtraces and narcotic and psychotropic substances by nuclear analytical methods, Project no. VI20192022162, Ministry of the Interior of the Czech Republic, Prague, Czech Republic, 2019-2022.)
Retrieved from: https://www.mvcr.cz/vyzkum/clanek/podporene-projekty.aspx?q=Y2hudW09NQ%3D%3D
Retrieved on: Jun. 22, 2023 - Comprehensive hazard identification and monitoring system for urban areas (CHIMERA) , EU Horizon Project: Grant no. 101121342, European Commission, Luxembourg City, Luxembourg, 2023-2025.
- ITTI Sp. z o.o., Poznań, Poland, 1996.
-
N. Eby, Instrumental neutron activation analysis, University of
Massachusetts, Lowell (MA), USA, 2022.
Retrieved from: https://serc.carleton.edu/research_education/geochemsheets/techniques/INAA.html
Retrieved on: Jun. 28, 2023 -
J. Kučera, J. Kameník, P. Povinec, “Radiochemical separation of mostly
short-lived neutron activation products,”
J. Radioanal. Nucl. Chem., vol. 311, pp. 1299 – 1307, Feb. 2017.
DOI: 10.1007/s10967-016-4930-2 -
J. Kučera et al., “Recent achievements in NAA, PAA, XRF, IBA and AMS
applications for cultural heritage investigations at Nuclear Physics
Institute, Řež,” Physics, vol. 4, no.2, pp. 491 – 503,
Jun. 2022.
DOI: 10.3390/physics4020033 -
J. Kučera a spol., “Prověřování léčiv na základě jejich elementárního
složení stanoveného neutronovou aktivační analýzou – Studie
proveditelnosti,” ve Sborníku Mezinárodní Konf.Poktroky v
kriminalistice, Praha, Česká republika, 2017.
(J. Kučera et al., “Provenancing of drugs based on their elemental composition determined by neutron activation analysis – A feasibility study,” in Proc. Int. Conf. Adv. Criminol., Prague, Czech Republic, 2017.)
Environmental Chemistry
PREVIOUS STUDIES BEFORE AND AFTER IMPOUNDMENT ON RIGHT BANK OF ITAIPU DAM RESERVOIR
Juan F. Facetti Masulli, Cesar Taboada
Pages: 100-105
Abstract | References | Full Text (PDF)
- A. Melfi, E. Piccirillo, A. Nardy, “Geological and magmatic aspects of the Paraná basin - An Introduction,” in The Mesozoic flood volcanism of the Parana Basin petrogenetic and geophysical aspects, E. M. Piccirillo, A. J. Melfi, Eds., Sao Paulo, Brazil: Instituto Astronómico e Geofísico University of San Paulo, 1988, ch. 1, sec. I.1, pp. 1 – 14.
- J. F. Facetti-Masulli, P. Kump, Z. V. de Diaz, “Selected trace and minor elements in sediments
of Itaipu dam reservoir,” Czechoslov. J.Phys., vol. 53, suppl. 1, pp.
A209–A215, Jan. 2003.
DOI: 10.1007/s10582-003-0027-6 - J. F. Facetti-Masulli, Embalse de Itaipú, Aspectos Limnológicos, Technical Repport to
Itaipu Binacional, Asunción, Paraguay, 1982.
(J. F. Facetti-Masulli, Itaipu Reservoir, Limnological Aspects, Technical Report to Itaipu Binacional, Asunción, Paraguay, 1982.) - Datos suministrados provenientes del Dpto. de Medio Ambiente, Itaipu Binacional, Asunción,
Paraguay 1982.
(Data provided from the Department of Environment, Itaipu Binacional, Asunción, Paraguay 1982.) - COMAN, Estudios de Calidad de Agua, Informe anual para Itaipu Binacional,vol.
1 y anexos, Asunción, Paraguay, 1977.
(COMAN, Water Quality Studies, Annual Report for Itaipu Binacional, vol. 1 and annexes, Asunción, Paraguay, 1977.) - COMAN, Estudios de Calidad de Agua, Informe anual para Itaipu Binacional, vol. 1 y
anexos, Asunción, Paraguay, 1978.
(COMAN, Water Quality Studies, Annual Report for Itaipu Binacional, vol. 1 and annexes, Asunción, Paraguay, 1978.) - J. F. Facetti-Masulli et al., Estudios de Calidad de Agua, Hydroconsult SRL
Informe para Itaipu Binacional, vol. 1 y anexos, Asunción, Paraguay, 1979-80.
(J. F. Facetti-Masulli et al., Water Quality Studies, Hydroconsult SRL Report for Itaipu Binacional, vol. 1 and annexes, Asunción, Paraguay, 1979-80.) - COMAN, Estudio de Eutrofización, Informe anual para Itaipú Binacional, vol. 1-2-3 y
Anexos, Asunción, Paraguay, 1977.
(COMAN, Eutrophication Study, Annual Report for Itaipú Binacional, vol. 1-2-3 and Annexes, Asunción, Paraguay, 1977.) - COMAN, Estudios de Eutrofización, Informe anual para Itaipú Binacional, vol. 1-2 y
Anexos, Asunción, Paraguay, 1978.
(COMAN, Eutrophication Studies, Annual Report for Itaipú Binacional, vol. 1-2 and Annexes, Asunción, Paraguay, 1978.) - J. F. Facetti-Masulli et al., Estudios de Eutrofización, Hydroconsult SRL Informe Bi
anual para Itaipu Binacional, vol. 1-2-3 y Anexos, Asunción, Paraguay, 1979-80.
(J. F. Facetti-Masulli et al., Eutrophication Studies, Hydroconsult SRL Annual Bi Report for Itaipu Binacional, vol. 1-2-3 and Annexes, Asunción, Paraguay, 1979-80.) - J. F. Facetti-Masulli et al.,
Estudios Hídrocos y Limnológicos en los Emablses de Itaipú, vol. 1-2-3, Acaray y
Yguazú, Paraguay, 1982-85.
(J. F. Facetti-Masulli et al., Hydrological and Limnological Studies in the Reservoir of Itaipú, vol. 1-2-3, Acaray and Yguazú, Paraguay, 1982-85.) - R. C. Pereira, Limpieza de la Biomasa, Regeneración Vegetal Consumo de OD Informe para
Itaipú Binacional, Asunción, Paraguay, 1978.
(R. C. Pereira, Biomass Cleaning, Plant Regeneration DO Consumption Report for Itaipú Binacional, Asunción, Paraguay, 1978.) - R. C. Pereira, Estudio de Consumo de 0.D., Informe para Itaipu Binacional, Parte II,
Asunción, Paraguay, 1979.
(R. C. Pereira, 0.D. Consumption Study, Report for Itaipu Binacional, Part II, Asunción, Paraguay, 1979.) - J. F. Facetti-Masulli, P. Kump, Z. V. de Diaz, V. R. de González, “Incompatible elements in
bottom sediments of the Itaipu Dam Reservoir by EDXRF,” J. Radioanal. Nucl. Chem., vol.
316, no. 2, pp. 861 – 868, May 2018.
DOI: 10.1007/s10967-018-5801-9 - J. F. Facetti-Masulli, “Embalse de Itaipu. Estudios Limnológicosen la margenderechaParte I,” en
Actas de 2do Seminario da Itaipú Binacional sobre Meio Ambiente, Foz do Iguazú, Brazil,
1987 .
(J. F. Facetti-Masulli, “Itaipu Reservoir. Limnological Studies at the margin Part I,” in Proc. 2nd Binational Itaipu Seminar on the Environment, Foz do Iguazú, Brazil, 1987.) - J. A. Fitzpatrick, J. F. Facetti-Masulli, “Secchi Disc and Lago de la Republica, Eastern
Paraguay,” Int. J. Earth Sci. Eng., vol.5, pp. 482 – 486, 2015.
DOI: 10.17265/2159-581X/2015.08.003 - G. E. Hutchison, A Treatise on Limnology, New York (NY), USA: J. Wiley and Sons, 1957.
- G. E. Hutchison, H. Löffler, “The thermal classification of lakes,”
PNAS, vol. 42, no. 2, pp. 84 – 86, Feb. 1956.
DOI:10.1073/pnas.42.2.84
PMid:16589823
PMCid: PMC528218 - F. Henderson, A Limnological Description of Kainji Lake 1969-1971, Rep. FI:DP/NIR
66/524/10, Rome, Italy, FAO, 1973.
Retrieved from: https://www.fao.org/3/d8476e/d8476e.pdf
Retrieved on: Sep. 17, 2023 - L. C. Beadle, The Inland Waters of Tropical Africa: An Introduction to Tropical Limnology, 1st ed., London, UK: Longman Publishing Group, 1974.
- E. K. Balon, A. G. Coche,
Lake Kariba: A Man-Made Tropical Ecosystem in Central Africa, 1st ed., Dordrecht,
Netherlands: Springer, 1974.
DOI: 10.1007/978-94-010-2334-4 - B. Entz, “Limnological conditions in Volta Lake,” Nat. Resour., vol. 4, pp. 9 – 16, 1969.
- J. F. Talling, “Origin of stratification in an African riftlake,”
Limnol. Oceanogr., vol. 8, no. 1, pp. 68 – 78, Apr. 1963.
DOI: 10.4319/lo.1963.8.1.0068 - J. F. Talling, “The incidence of vertical mixing, and some biological and chemical
consequences, in tropical African lakes,”
Verh. - Int. Ver. Theor. Angew. Limnol., vol. 17, no. 2, pp. 998 – 1012, 1969.
DOI: 10.1080/03680770.1968.11895946 - J. F. Talling, “Some Observations on the Stratification of Lake Victoria,” Limnol. Oceanogr.,
vol. 2, no. 3, pp. 213 – 221, Jul. 1957.
DOI: 10.1002/lno.1957.2.3.0213 - P. H. Freeman, Environmental aspects of a large tropical reservoir (Volta Lake), USAID,
Washington D.C., USA, 1974.
Retrieved from: https://pdf.usaid.gov/pdf_docs/PNRAB300.pdf
Retrieved on: Sep. 17, 2023 - G. W. Begg, “Limnological Observations on Lake Kariba During 1967 with Emphasis on Some Special
Features,” Limnol. Oceanogr., vol. 15, no. 5, pp. 776 – 788, Sep. 1970.
DOI: 10.4319/lo.1970.15.5.0776 - B. E. Marshall, “Lake Kariba,” in Status of African Reservoir Fisheries, J. M. Kapetsky, T. Petr, Eds., Rome, Italy: FAO, 1984.
- M. P. Paiva, Algunas consideraciones sobre la represa de Brokopondo, Informe a Electrobras.
- W. M. Lewis, “The thermal regime of Lake Lanao (Philippines) and its theoretical implications
for tropical lakes,” Limnol. Oceanogr., vol. 18, no. 2, pp. 200 – 217, Mar. 1973.
DOI: 10.4319/lo.1973.18.2.0200 - V. W. Ekman, “On the influence of the earth’s rotation on ocean-currents,” Ark. Mat. Astr.
Fys., bd. 2, no. 11, 1905.
Retrieved from: https://jscholarship.library.jhu.edu/items/6026d396-a902-488f-a737-f822ac36f674
Retrieved on: Sep. 17, 2023 - M. C. Rand, A. E. Greenberg, M. J. Taras, Standard methods for the examination of water and wastewater, 14th ed., Washington D.C., USA: American Public Health Association, 1976.
- J. F. Facetti-Masulli, M. U. Bordas, “El Modelo de Lewis y el comportamiento del Lago de
Itaipú,”
Rev. Soc. Cientif. Paraguay-Tercera Época, vol. 15, no. 2, pag. 137 – 152, 2010.
(J. F. Facetti-Masulli, M. U. Bordas, “The Lewis model and the thermal patterns of the Itaipu Lake,” Rev. Soc. Cientif. Paraguay- Third period, vol. 15, no. 2, pp. 137 – 152, 2010.) - J. A. Fitzpatrick, “Physical Limnological Measurements in the Alto Parana Region of Eastern Paraguay,” Ph.D. dissertation, Susan Anthony University, 1980.
Radiation Measurements
LOW GAIN AVALANCHE DETECTORS FOR PROTON-CT
Gregor Kramberger
Pages: 106-110
Abstract | References | Full Text (PDF)
-
H. Suit et al., “Proton vs carbon ion beams in the definitive radiation
treatment of cancer patients,” Radiother. Oncol., vol. 95, no. 1,
pp. 3 – 22, Apr. 2010.
DOI: 10.1016/j.radonc.2010.01.015
PMid: 20185186 - P. Giubilato, “Monolithic Sensors for Proton Therapy,” presented at the 10th Int. Workshop on Semiconductor Pixel Detectors for Particles and Imaging (Pixel2022), Santa Fe (NM), USA, Dec. 2022.
-
A. M. Cormack, “Representation of a function by its line integrals with
some radiological applications,” J. Appl. Phys., vol. 34, no. 9,
pp. 2722 – 2727, Sep. 1963.
DOI: 10.1063/1.1729798 -
A. M. Koehler, “Proton radiography,” Science, vol. 160, no. 3825,
pp. 303 – 304, Apr. 1968.
DOI: 10.1126/science.160.3825.303
PMid: 17788234 -
K. M. Hanson et al., “The application of protons to computed tomography,”
IEEE Trans. Nucl. Sci., vol. 25, no. 1, pp. 657 – 660, Feb. 1978.
DOI: 10.1109/TNS.1978.4329389 -
H. F. Sadrozinski et al., “Development of a head scanner for proton CT,”
Nucl. Instr. Methods Phys. Res. A, vol. 699, pp. 205 – 210, Jan.
2013.
DOI: 10.1016/j.nima.2012.04.029
PMid: 23264711
PMCid: PMC3524593 -
G. Poludniowski, N. M. Allinson, P. M. Evans, “Proton Radiography and
Tomography with Application to Proton Therapy,” Br. J. Radiol.,
vol. 88, no. 1053, 20150134, Sep. 2015.
DOI: 10.1259/bjr.20150134
PMid: 26043157
PMCid: PMC4743570 -
R. W. Schulte et al., “Conceptual design of a proton computed tomography
system for applications in proton radiation therapy,”
IEEE Trans. Nucl. Sci., vol. 51, no. 3, pp. 866 – 872, Jun. 2004.
DOI: 10.1109/TNS.2004.829392 -
G. Pellegrini et al., “Technology developments and first measurements of
Low Gain Avalanche Detectors (LGAD) for high energy physics applications,”
Nucl. Instr. Methods Phys. Res. A, vol. 765, pp. 12 – 16, Nov.
2014.
DOI: 10.1016/j.nima.2014.06.008 -
H. F-W. Sadrozinski, A. Seiden, N. Cartiglia, “4D tracking with ultra-fast
silicon detectors”, ROPP, vol. 81, no. 2, 026101, Feb. 2018.
DOI: 10.1088/1361-6633/aa94d3 -
ATLAS Collaboration,Technical Design Report: A High-Granularity Timing
Detector for the ATLAS Phase-II Upgrade, Rep. ATLAS TDR-031, CERN,
Geneva, Switzerland, 2020.
Retrieved from: https://cds.cern.ch/record/2719855
Retrieved on: Sep. 20, 2023 -
CMS, Collaboration,A MIP Timing Detector for the CMS Phase-2 Upgrade,
Rep. CMS-TDR-020, CERN, Geneva, Switzerland, 2019.
Retrieved from: https://cds.cern.ch/record/2667167
Retrieved on: Sep. 20, 2023 -
G. Kramberger, “Silicon detectors for precision track timing,” presented at
the
10th Int. Workshop on Semiconductor Pixel Detectors for Particles and
Imaging (Pixel2022), Santa Fe (NM), USA, Dec. 2022.
DOI: 10.22323/1.420.0010 -
G. Kramberger et al., “Annealing effects on operation of thin Low Gain
Avalanche Detectors,” JINST, vol. 15, no. 8, P08017, Aug. 2020.
DOI: 10.1088/1748-0221/15/08/P08017 - J. Debevc, “Simulation of Landau fluctuations on timing performance of LGADs,” presented at the 42nd RD50 Workshop on Radiation Hard Semiconductor Devices for Very High Luminosity Colliders, Tivat, Montenegro, Jun. 2023.
-
S. Agostinelli et al., “Geant4—a simulation toolkit,”
Nucl. Instr. Methods Phys. Res. A, vol. 506, no. 3, pp. 250 – 303, Jul. 2003.
DOI: 10.1016/S0168-9002(03)01368-8 -
G. Kramberger et al., “Gain dependence on free carrier concentration in
LGADs,” Nucl. Instr. Methods Phys. Res. A, vol. 1046, 167669, Jan.
2023.
DOI: 10.1016/j.nima.2022.167669 -
G. Paternoster et al., “Trench-Isolated Low Gain Avalanche Diodes
(TI-LGADs),” IEEE Electron Device Lett., vol. 41, no. 6, pp. 884 –
887, Jun. 2020.
DOI: 10.1109/LED.2020.2991351 -
E. Curras et al., “Inverse Low Gain Avalanche Detectors (iLGADs) for
precise tracking and timing applications,”
Nucl. Instr. Methods Phys. Res. A, vol. 958, 162545, Apr. 2020.
DOI: 10.1016/j.nima.2019.162545 -
M. Mandurrino et al., “Demonstration of 200-, 100-, and 50- μ m Pitch
Resistive AC-Coupled Silicon Detectors (RSD) With 100% Fill-Factor for 4D
Particle Tracking,” IEEE Electron Device Lett., vol. 40, no. 11,
pp. 1780 – 1783, Nov. 2019.
DOI: 10.1109/LED.2019.2943242 -
L. Piccolo et al., “The first ASIC prototype of a 28 nm time-space
front-end electronics for real-time tracking,” presented at theTopical
Workshop on Electronics for Particle Physics (TWEPP2019), Santiago de
Compostela, Spain, Sep. 2019.
DOI: 10.22323/1.370.0022
Radiation Protection
EVALUATION OF THE PRIMARY QUALITY CONTROL PARAMETERS ON DIAGNOSTIC RADIOGRAPHIC EQUIPMENT IN GOVERNMENTAL AND PRIVATE HEALTHCARE INSTITUTIONS IN ALBANIA
Luljeta Disha, Manjola Shyti
Pages: 111-115
Abstract | References | Full Text (PDF)
-
Dosimetry in Diagnostic Radiology: An International Code of Practice, Technical Report Series No. 457,
IAEA, Vienna, Austria, 2007, pp. 1 – 14.
Retrieved from: http://www.iaea.org/publications/
Retrieved on: Jun. 12, 2021 - Medical Electrical Equipment — Part 1-3: General Requirements for Basic Safety and Essential Performance — Collateral Standard: Radiation Protection in Diagnostic X-ray Equipment, IEC 60601-1-3:2008, Jan. 22, 2008.
-
Handbook of Basic Quality Control Tests for Diagnostic Radiology,
IAEA Human Health Series No. 47, IAEA, Viena, Austria, 2023, pp. 2 – 16.
Retrieved from: http://www.iaea.org/Publications/
Retrieved on: Mar. 10, 2023 -
Instrumentation Requirements of Diagnostic Radiological Physicists
(General Listing), Rep. No. 60, AAPM, Alexandria (VA), USA, 1998, pp. 1 – 35.
Retrieved from: https://doi.org/10.37206/59
Retrieved on: Oct. 25, 2020 -
The Council of the European Union. (Dec. 5, 2013).
Council Directive 2013/59/EURATOM on laying down basic safety standards
for protection against the dangers arising from exposure to ionizing
radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom,
96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
Retrieved from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013L0059
Retrieved on: Jan. 20, 2022 -
Ministria e Shëndetësisë. (Qershor 18, 2014).
Nr 404. Prot për miratimin e rregullores Për rregullat bazë të
instalimeve radiologjike në mjekësi.
(Council of Minister for the approval of the regulation (Jun. 18, 2014). No. 404. On basic rules of radiological installations in medicine.)
Retrieved from: http://www.ishp.gov.al/rrezatimetjonizuese/
Retrieved on: Jun. 18, 2020 -
Quality Control in Diagnostic Radiology, Rep. No. 74, AAPM,
Alexandria (VA), USA, 2002, pp. 2 – 19.
DOI: 10.37206/73 -
P.-J. P. Lin, A. R. Goode, “Accuracy of HVL measurements utilizing solid
state detectors for radiography and fluoroscopy X-ray systems,”
J. Appl. Clin. Med. Phys., vol. 22, no. 9, pp. 339 – 344, Sep. 2021.
DOI: 10.1002/acm2.13389
PMid: 34375033
PMCid: PMC8425946 -
Diagnostic Radiology Physics: A Handbook for Teachers and Students, IAEA, Vienna, Austria, 2014, pp. 93 –
139.
Retrieved from: http://www.iaea.org/Publications/
Retrieved on: Sep. 30, 2020 - Recommended Standards for the Routine Performance Testing of Diagnostic X-ray Imaging Systems in Medicine, IPEM Rep. No. 91, IPEM, York, UK, 2005, pp. 5 – 7.
-
Optimization of the Radiological Protection of Patients Undergoing
Radiography, Fluoroscopy and Computed Tomography, IAEA-TECDOC-1423, IAEA, Vienna, Austria, 2004, pp. 4 –
44.
Retrieved from: http://www-ns.iaea.org/standards/
Retrieved on: Sep. 30, 2020 -
A. K. Jones et al., “Ongoing quality control in digital radiography: Report
of AAPM Imaging Physics Committee Task Group 151,” Med. Phys.,
vol. 42, no. 11, pp. 6658 – 6670, Nov. 2015.
DOI: 10.1118/1.4932623
PMid: 26520756 -
J. Malone et al., “Criteria and suspension levels in diagnostic radiology,”
Radiat. Prot. Dosim., vol, 153, no. 2, pp. 185 – 189, Feb. 2013.
DOI: 10.1093/rpd/ncs295
PMid: 23173220 -
Criteria for Acceptability of Medical Radiological Equipment Used in
Diagnostic Radiology, Nuclear Medicine and Radiotherapy, Radiation Protection
No. 162, European Commission, Luxembourg, Luxembourg, 2013, pp. 16 – 30.
Retrieved from: http://op.europa.eu/EUpublication/
Retrieved on: Oct. 25, 2021
Food Irradiation
IMPACT OF 1 MeV ACCELERATED ELECTRONS ON GROWTH AND SURVIVAL RATE OF ESCHERICHIA COLI BACTERIA AND ASPERGILLUS FUMIGATUS FUNGUS
U. Bliznyuk, P. Borshchegovskaya, A. Chernyaev, V. Ivantsova, V. Ipatova, Z. Nikitina, E. Nasibov, D. Yurov, I. Rodin
Pages: 116-120
Abstract | References | Full Text (PDF)
-
Estimating the burden of foodborne diseases, WHO, Geneva,
Switzerland.
Retrieved from: https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases
Retrieved on: Dec. 12, 2023 -
Food irradiation: Requirements for the development, validation and
routine control of the process of irradiation using ionizing radiation
for the treatment of food
, ISO 14470:2011, Dec. 2011.
Retrieved from: https://www.iso.org/standard/44074.html
Retrieved on: Dec. 12, 2023 -
U. A. Bliznyuk et al., “Effect of electron and X-ray irradiation on
microbiological and chemical parameters of chilled turkey,”
Sci. Rep.,
vol. 12, no. 1, 750, Jan. 2022.
DOI: 10.1038/s41598-021-04733-3
PMid: 35031660
PMCid: PMC8760279 -
U. A. Bliznyuk et al., “Determination of Chemical and Microbiological
Characteristics of Meat Products Treated by Radiation,”
Inorg. Mater.,
vol. 58, pp. 1422 - 1428, Dec. 2022.
DOI: 10.1134/S0020168522140047 -
A. P. Chernyaev et al., “Study of the Effectiveness of Treating Trout with
Electron Beam and X-Ray Radiation,” Bull. Russ. Acad. Sci.: Phys.,
vol.84, Moscow, Russia, Apr. 2020.
DOI: 10.3103/S106287382004005X -
A. Adu-Gyamfi, W. Torgby-Tetteh, V. Appiah, “Microbiological Quality of
Chicken Sold in Accra and Determination of D10-Value of E. coli,”
Food and Nutrition Sci., vol. 3, no. 5, pp. 693 – 698, May 2012.
DOI: 10.4236/fns.2012.35094 -
C. H. Sommers, O. J. Scullen, S. Sheen, “Inactivation of uropathogenic
Escherichia coli in ground chicken meat using high pressure processing and
gamma radiation, and in purge and chicken meat surfaces by ultraviolet
light,” Front. Microbiol., vol. 7, 413, Apr. 2016.
DOI: 10.3389/fmicb.2016.00413 -
A. Xu, O. J. Scullen, S. Sheen, J. R. Johnson,
C. H. Sommers, “Inactivation of extraintestinal pathogenic E. coli clinical
and food isolates suspended in ground chicken meat by gamma radiation,”Food
Microbiol., vol. 84, 103264, Dec. 2019.
DOI: 10.1016/j.fm.2019.103264
PMid: 31421757 - J. Lee et al., “Radiation sensitivity of Aspergillus flavus in semi-dried beef jerky,” Food Sci. Biotech., vol. 13, no. 5, pp. 613 – 615, 2004.
-
N. H. Aziz, L. A. A. Moussa, F. M. E. Far, “Reduction of fungi and
mycotoxins formationin seeds by gamma-irradiation,” J. Food Safety, vol. 24, no. 2, pp. 109 – 127, Jul.
2004.
DOI: 10.1111/j.1745-4565.2004.tb00379.x -
F. Hossain et al., “Radiosensitization of Aspergillus niger and Penicillium
chrysogenum using basil essential oil and ionizing radiation for food
decontamination,” Food Control, vol. 45, pp. 156 – 162, Nov. 2014.
DOI: 10.1016/j.foodcont.2014.04.022 -
S. Aryal, “Microbial spoilage of meat and meat products,”
Microbe Notes
, Apr. 18, 2021.
Retrieved from: https://microbenotes.com/microbial-spoilage-of-meat-and-meat-products/
Retrieved on: Nov. 28, 2023 -
О. В. Фадейкина, “Аттестация стандартного образца мутности бактерийных
взвесей,” Эталоны. Стандартные образцы, нo. 2, стр. 41 – 47, 2014.
(O. V. Fadeikina, “Certification of a standard sample of turbidity of bacterial suspensions,” Certif. Reference Mater., no. 2, pp. 41 – 47, 2014.)
Retrieved from: https://www.rmjournal.ru/jour/article/view/17
Retrieved on: Nov. 28, 2023 -
U. Bliznyuk, N. Chulikova, V. Ipatova, A. Malyuga, “Effect of ionizing
radiation with 1 MeV on phenology of potatoes inhabited by fungi
Rhizoctonia solani Kuhn,” in Book of Abstr. Int. Conf. Advances in
Agrobusiness and Biotechnology Research (ABR 2021), Krasnodar, Russia,
2021, 02001.
DOI: 10.1051/e3sconf/202128502001 -
C. M. Ma, S. B. Jiang, “Monte Carlo modelling of electron beams from
medical accelerators,” Phys. Med. Biol.,
vol. 44, no. 12, pp. 157 – 189, Dec. 1999.
DOI: 10.1088/0031-9155/44/12/201
PMid: 10616140 -
З. К. Никитина, И. К. Гордонова, Э. М. Насибов, “Изучение
коллагенолитических свойств коллекционных штаммов микромицетов при
длительном хранении,” Вопросы биол., мед. и фарм. химии, т. 24, нo.
3, стр. 33 – 39, 2021.
(Z. K. Nikitina, I. K. Gordonova, E. M. Nasibov, “Study of the collagenolytic properties of collection strains of micromycetes during long-term storage,” Quest. biol. med. farm. chemistry, vol. 24, no. 3, pp. 33 – 39, 2021.)
DOI: 10.29296/25877313-2021-03-05 -
“Микробиологическая чистота,” в XII Государственная фармакопея РФ,
ч. 1, Москва, Россия: НЦЭСМП, 2007, сек. 32, стр. 160 – 193.
(“Microbiological purity,” in XII State Pharmacopoeia of the Russian Federation , vol. 1, Moscow, Russia: Sci. Center for Expertise of Med. Products, 2007, sec. 32, pp. 160 – 193.)
Retrieved from: https://docs.rucml.ru/feml/pharma/v14/vol1/
Retrieved on: Nov. 28, 2023 -
R. R. O. Chirinos, D. M. Vizeu, M. T. Destro,
B. D. G. M. Franco, M. Landgraf, “Inactivation of Escherichia coli O157:H7
in hamburgers by gamma irradiation,” Braz. J. Microbiol., vol. 33,
no. 1, pp. 53 – 56, Jan. 2002.
DOI: 10.1590/S1517-83822002000100011 -
B. M. Youssef, S. R. Mahrous, N. H. Aziz, “Effect of gamma irradiation on
aflatoxin B1 production by Aspergillus flavus in ground beef stored at 5C,”
J. Food Safety, vol. 19, no. 4, pp. 231 – 239, Dec. 1999.
DOI: 10.1111/j.1745-4565.1999.tb00248.x -
L. Fan et al., “Study on antibacterial mechanism of electron beam radiation
on Aspergillus flavus,” Food Biosci., vol. 51, 102197, Feb. 2023.
DOI: 10.1016/j.fbio.2022.102197 -
R. D. Jeong, E. J. Shin, E. H. Chu, H. J. Park, “Effects of Ionizing
Radiation on Postharvest Fungal Pathogens,” Plant Pathol. J., vol.
31, no. 2, pp. 176 – 180, Jun. 2015.
DOI: 10.5423/PPJ.NT.03.2015.0040
PMid: 26060436
PMCid: PMC4453998
Radiation Measurements
EVALUATION OF PROFICIENCY TEST RESULTS OF GAMMA RAY SPECTROMETRY IN DETERMINATION OF ANTHROPOGENIC AND NATURAL RADIONUCLIDES
Manjola Shyti, Erjon Spahiu
Pages: 121-124
Abstract | References | Full Text (PDF)
- General requirements for the competence of reference material producers , ISO Guide 34:2000, Feb. 2000.
-
Measurement of Radionuclides in Food and the Environment: A Guidebook
, Tech. Rep. Ser. no. 295, IAEA, Vienna, Austria, 1989.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/trs295_web.pdf
Retrieved on: Apr. 2, 2023 -
A. V. Harms, S. M. Jerome, “On the integrated decay and ingrowth equations
used in the measurement of radioactive decay families: the general
solution,” Appl. Radiat. Isot., vol. 61, no. 2 – 3, pp. 367 – 372,
Aug.-Sep. 2004.
DOI: 10.1016/j.apradiso.2004.03.058
PMid: 15177373 -
M. Shyti, “Calibration and performance of HPGe detector for environmental
radioactivity measurements using LabSOCS,” AIP Conf. Proc., vol.
2075, no. 1, 130012, Feb. 2019.
DOI: 10.1063/1.5091297 -
A. Mauring, S. Patterson, B. Seslak, S. Tarjan,
A. Trinkl,
IAEA-TEL-2020-03 WorldWide Open Proficiency Test Exercise, Pie-charts,
S-Shapes and Reported Results with Scores
, Rep. IAEA-TEL-2020-03, IAEA, Vienna, Austria, 2021.
Retrieved from: https://nucleus.iaea.org/sites/ReferenceMaterials/Shared%20Documents/ProficiencyTests/IAEA-TEL-2020-03/s_shape_report_IAEA-TEL_2020_03.pdf
Retrieved on: Apr. 2, 2023 -
H. Bateman, “The solution of a system of differential equations occurring
in the theory of radioactive decay,” in
Proceedings of the Cambridge Philosophical Society, Mathematical and
physical sciences
, vol. 15, Cambridge, UK: Cambridge University Press, 1910, pp. 423 – 427.
Retrieved from: https://ia801307.us.archive.org/1/items/proceedingsofcam15190810camb/proceedingsofcam15190810camb.pdf
Retrieved on: Apr. 2, 2023
Radiation Measurements
Measurements of 232Th/238U ratio using different techniques: A comparative study
W. Arafa, H. M. Mahmoud, E. Yousf, A. Ashry, A. Elsersy, I. Elaassy, H. El Samman
Pages: 125-130
Abstract | References | Full Text (PDF)
-
A. Olanya, D. Okello, B. Oruru, A. Kisolo,
“The Primordial Radionuclides Activity Concentrations and Associated Minerals in Rocks from Selected Quarries in
Northern Uganda,” IJSBAR,
vol. 66, no. 1, pp. 45 – 65, Dec. 2022.
Retrieved from: https://core.ac.uk/download/552586824.pdf
Retrieved on: Sep. 22, 2023 -
L. Cao et al., “Discussion on the applicability of Th/U ratio for
evaluating the paleoredox conditions of lacustrine basins,”
Int. J. Coal Geol., vol. 248, no.1, 103868,
Dec. 2021.
DOI: 10.1016/j.coal.2021.103868 -
C. L. Kirkland, R. H. Smithies, R. J. M. Taylor, N. Evans,
B. McDonald, “Zircon Th/U ratios in magmatic environs,” Lithos,
vol. 212 – 215, pp. 397 – 414, Jan. 2015.
DOI: 10.1016/j.lithos.2014.11.021 -
C. Yakymchuk, C. L. Kirkland, C. Clark, “Th/U ratios in metamorphic
zircon,” J. Metamorph. Geol., vol. 36, no. 6, pp. 715 – 737, Aug.
2018.
DOI: 10.1111/jmg.12307 -
L. P. Rikhvanov,
“Using Radioactive Elements and the Th/U Ratio in Study of the Geochemical
Typification of Granitoids and Their Intrusive Character,”Russ.
Geol. Geophys., vol. 60, no. 9, pp. 1018 – 1025, Sep. 2019.
DOI: 10.15372/RGG2019067 -
A. G. Doroshkevich, D. A. Chebotarev, V. V. Sharygin,
I. R. Prokopyev, A. M. Nikolenko, “Petrology of alkaline silicate rocks
and carbonatites of the Chuktukon massif, Chadobets upland Russia:
Sources, evolution and relation to the Triassic Siberian LIP,” Lithos,
vol. 332 – 333,
pp. 245 – 260, May 2019.
DOI: 10.1016/j.lithos.2019.03.006 -
B. M. Al-Zahrani, H. S. Alqannas, S. H. Hamidalddin, “Study and
Simulated the Natural Radioactivity (NORM) U-238, Th-232 and K-40 of
Igneous and Sedimentary Rocks of Al-Atawilah (Al-Baha) in Saudi
Arabia,” WJNST, vol. 10, no. 4, pp. 171 – 181, Oct. 2020.
DOI: 10.4236/wjnst.2020.104015 -
M. M. El Galy, A. M. El Mezayn, A. F. Said,
A. A. El Mowafy, M. S. Mohamed, “Distribution and environmental impacts
of some radionuclides in sedimentary rocks at Wadi Naseib area,
southwest Sinai, Egypt,”
J. Environ. Radioact., vol. 99, no. 7, pp. 1075 – 1082, Jul. 2008.
DOI: 10.1016/j.jenvrad.2007.12.012 -
J. D. DePaolo, V. E. Lee, J. N. Christensen, K. Maher, “Uranium
comminution ages: Sediment transport and deposition time scales,” C. R.
Geosci., vol. 344,
no. 11 – 12, pp. 678 – 687, Nov. 2012.
DOI: 10.1016/j.crte.2012.10.014 -
T. A. Salama, U. Seddik, T. M. Dsoky, A. А. Morsy,
R. El-Asser, “Determination of thorium and uranium contents in soil
samples using SSNTD’s passive method,” PRAMANA, vol. 67, no. 2, pp. 269
– 276, Aug. 2006.
DOI: 10.1007/s12043-006-0071-4 -
L. Oufni, M. A. Misdaq, “Radon emanation in a limestone cave using
CR-39 and LR-115 solid state nuclear track detectors,” J. Radioanal.
Nucl. Chem., vol. 250, no. 2,
pp. 309 – 313, Nov. 2001.
DOI: 10.1023/A:1017951713943 - GammaVision Analysis version 8, ORTEC, Oak Ridge (TN), USA, 2015.
- Standard reference source number 122162B, Eckert & Ziegler Analysis, product code:8503-EG-SD, Jan. 2022.
-
M. O. Miller, “Modeling a HPGe detector’s absolute efficiency as a
function of gamma energy and soil density in uncontaminated soil,” SDRP
J. Earth Sci. Environ. Stud., vol. 3, no. 4, Dec. 2018.
DOI: 10.25177/JESES.3.4.2. 2018 -
N. Q. Huy, T. V. Luyen, “A method to determine 238U activity
in environmental soil samples by using 63.3-keV-photopeak-gamma HPGe
spectrometer,” Appl. Radiat. Isot., vol. 61, no. 6, pp. 1419
– 1424, Dec. 2004.
DOI: 10.1016/j.apradiso.2004.04.016 -
J. Al-Tuweity, H. Kamleh, M. S. Al-Masri, A. W. Doubal,
El M. Chakir, “Self-absorption correction factors: Applying a simplified
method to analysis of Lead-210 in different environment samples by
direct counting of low-energy using HPGe Detector,” E3S Web Conf., vol.
240, 03002, 2021.
DOI: 10.1051/e3sconf/202124003002 -
A. K. Mheemeed, A. Kh. Hussein, R. B. Alkhayat, “Characterization of
alpha-particle tracks in cellulose nitrate LR-115 detectors at various
incident energies and angles,” Appl. Radiat. Isotopes, vol. 79, pp. 48
– 55, Sep. 2013.
DOI: 10.1016/j.apradiso.2013.04.020 -
M. D. Salim, A. A. Ridha, N. F. Kadhim, A. El- Taher, “Effects of
Changing the Exposure Time of CR-39 Detector to Alpha Particles on
Etching Conditions,” J. Rad. Nucl. Appl., vol. 5, no. 2, pp. 119 – 125,
May 2020.
DOI: 10.18576/jrna/050206 -
D. Stanić, M. P. Sovilj, I. Miklavčić, V. Radolić, “Determination of track
counting loss threshold of spark counter due to high track densities on
strippable LR115 II nuclear track detectors,” Radiat. Meas., vol. 106,
pp. 591 – 594, Nov. 2017.
DOI: 10.1016/j.radmeas.2017.03.035 - A. F. Hafez “A new method for determining uranium and thorium,” Nucl. Instr. Methods Phys. Res., vol. 69, pp. 373 – 381, 1992.
-
S. A. Eman, S. H. Nageeb, A. R. El-Sersy, “U and Th Determination in Natural Samples Using CR-39 and LR-115 Track
Detector,” WJNST, vol. 2, no. 1, pp. 36 – 40,
Jan. 2012.
DOI: 10.4236/wjnst.2012.21006 -
M. Charles, “UNSCEAR Report 2000: Sources and Effects of Ionizing
Radiation,” J. Radiol. Prot., vol. 21, no. 1,
pp. 83 – 86, Mar. 2001.
DOI: 10.1088/0952-4746/21/1/609 -
N. K. Ahmed, A. G. M. El-Arabi, “Natural radioactivity in farm soil and phosphate
fertilizer and its environmental implications in Qena governorate, upper
Egypt,” J. Environ. Radioact., vol. 84, no. 1, pp. 51 – 64, 2005.
DOI: 10.1016/j.jenvrad.2005.04.007 -
M. Tzortzis, H. Tsertos, “Determination of thorium, uranium and potassium elemental concentrations in surface soils
in Cyprus,” J.
Environ. Radioact., vol. 77, no. 3, pp. 325 – 338, 2004.
DOI: 10.1016/j.jenvrad.2004.03.014
Radiotherapy
EVALUATING VMAT DELIVERY ACCURACY USING END-TO-END TEST FOR DIFFERENT TYPES OF VMAT PLANS
Angela Dameska, Milena Teodosievska Dilindarski, Dushko Lukarski
Pages: 131-135
Abstract | References | Full Text (PDF)
-
K. Otto, “Volumetric modulated arc therapy: IMRT in a single gantry arc,”
Med. Phys., vol. 35, no. 1, pp. 310 – 317, Jan. 2008.
DOI: 10.1118/1.2818738
PMid: 18293586 -
E. Vanetti et al., “Volumetric modulated arc radiotherapy for carcinomas of
the oro-pharynx, hypo-pharynx and larynx: a treatment planning comparison
with fixed field IMRT,” Radiother. Oncol., vol. 92, no. 1,
pp. 111 – 117, Jul. 2009.
DOI: 10.1016/j.radonc.2008.12.008
PMid: 19157609 -
J. Gomez-Millan Barrachina et al., “Potential advantages of volumetric arc
therapy in head and neck cancer,” Head & Neck, vol. 37, no.
6, pp. 909 – 914, Jun. 2015.
DOI: 10.1002/hed.23685
PMid: 24623665 -
U. Akbas et al., “Nasopharyngeal carcinoma radiotherapy with hybrid
technique,” Med. Dosim., vol. 44, no. 3, pp. 251 – 257, Sep. 2019.
DOI: 10.1016/j.meddos.2018.09.003
PMid: 30366620 -
N. Zhao et al., “A hybrid IMRT/VMAT technique for the treatment of
nasopharyngeal cancer,” Biomed Res. Int., vol. 2015, 940102, 2015.
DOI: 10.1155/2015/940102
PMid: 25688371
PMCid: PMC4320861 -
X. Jin et al., “CBCT-based volumetric and dosimetric variation evaluation
of volumetric modulated arc radiotherapy in the treatment of nasopharyngeal
cancer patients,” Radiat. Oncol., vol. 8, no. 1, 279, Dec. 2013.
DOI: 10.1186/1748-717X-8-279
PMid: 24289312
PMCid: PMC4222038 -
J. M. Park, H. G. Wu, H. J. Kim, C. H. Choi, J. I. Kim, “Comparison of
treatment plans between IMRT with MR-linac and VMAT for lung SABR,”
Radiat. Oncol., vol. 14, no. 1, 105, Jun. 2019.
DOI: 10.1186/s13014-019-1314-0
PMid: 31196120
PMCid: PMC6567463 -
E. E. Klein et al., “Task Group 142 report: Quality assurance of medical
accelerators,” Med. Phys., vol. 36, no. 9, pp. 4197 – 4212, Sep.
2009.
DOI: 10.1118/1.3190392
PMid: 19810494 -
J. Hanley et al., “AAPM Task Group 198 Report: An implementation guide for
TG 142 quality assurance of medical accelerators,” Med. Phys.,
vol. 48, no. 10, pp. e830 – e885, Oct. 2021.
DOI: 10.1002/mp.14992
PMid: 34036590 -
M. Miften et al., “Tolerance limits and methodologies for IMRT
measurement-based verification QA: Recommendations of AAPM Task Group No.
218,” Med. Phys., vol. 45, no. 4, pp. e53 – e83, Apr. 2018.
DOI: 10.1002/mp.12810
PMid: 29443390 -
T. C. Zhu et al., “Report of AAPM Task Group 219 on independent
calculation-based dose/MU verification for IMRT,” Med. Phys., vol.
48, no. 10, pp. e808 – e829, Oct. 2021.
DOI: 10.1002/mp.15069
PMid: 34213772 -
P. Kazantsev et al., “IAEA methodology for on-site end-to-end IMRT/VMAT
audits an international pilot study,” Acta Oncol., vol. 59, no. 2,
pp. 141 – 148, Feb. 2020.
DOI: 10.1080/0284186X.2019.1685128
PMid: 31746249 -
P. Wesolowska et al., “Testing the methodology for a dosimetric end-to-end
audit of IMRT/VMAT: results of IAEA multicentre and national studies,”
Acta Oncol., vol. 58, no. 12, pp. 1731 – 1739, Dec. 2019.
DOI: 10.1080/0284186X.2019.1648859
PMid: 31423867 -
T. Santos et al., “IMRT national audit in Portugal,” Phys. Med.,
vol. 65, pp. 128 – 136, Sep. 2019.
DOI: 10.1016/j.ejmp.2019.08.013
PMid: 31450123 -
L. Tuntipumiamorn et al., “Multi-institutional evaluation using the
end-to-end test for implementation of dynamic techniques of radiation
therapy in Thailand,” Rep. Pract. Oncol. Radiother., vol.
24, no. 1, pp. 124 – 132, Jan-Feb. 2019.
DOI: 10.1016/j.rpor.2018.11.005
PMid: 30532660
PMCid: PMC6265520 -
H. Schiefer et al., “The Swiss IMRT dosimetry intercomparison using a
thorax phantom,” Med. Phys.,nvol. 37, no. 8, pp. 4424 –
4431, Aug. 2010.
DOI: 10.1118/1.3460795
PMid: 20879601 -
D. S. Radojcic et al., “Experimental validation of Monte Carlo based
treatment planning system in bone density equivalent media,”
Radiol. Oncol., vol. 54, no. 4, pp. 495 – 504, Sep. 2020.
DOI: 10.2478/raon-2020-0051
PMid: 32936784
PMCid: PMC7585341 -
E. Gershkevitsh et al., “Dosimetric inter-institutional comparison in
European radiotherapy centres: Results of IAEA supported treatment planning
system audit,” Acta Oncol., vol. 53, no. 5, pp. 628 – 636, May 2014.
DOI: 10.3109/0284186X.2013.840742
PMid: 24164104
Radiation Measurements
CHALLENGES OF FRONT-LINE OFFICERS (FLO’s) IN THE USE OF HANDHELD RADIATION DETECTION EQUIPMENT AND RADIOISOTOPE IDENTIFICATION
Kozeta Tushe, Dritan Prifti, Charles Massey, Issariya Chairam
Pages: 136-141
Abstract | References | Full Text (PDF)
-
Detection of Radioactive Material at Borders, IAEA-TECDOC-1312,
IAEA, Vienna, Austria, 2002.
Retrieved from: https://www.pub.iaea.org/MTCD/Publications/PDF/te_1312_web.pdf
Retrieved on: Nov. 30, 2023 -
American National Standard Performance Criteria for Alarming
Personal Radiation Detectors for Homeland Security, ANSI N42.32-2003,
Dec. 23, 2003.
Retrieved from: https://www.rotem-radiation.co.il/wpcontent/uploads/N42-32-prd.pdf
Retrieved on: Nov. 30, 2023 -
Monitoring for Radioactive Material in International Mail Transported
by Public Postal Operators, IAEA Nuclear Security Series No. 3, IAEA, Vienna, Austria, 2006.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1242_web.pdf
Retrieved on: Nov. 30, 2023 -
Combating Illicit Trafficking in Nuclear and other Radioactive Material, Nuclear Security Series No. 6,
IAEA, Vienna, Austria, 2007.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/pub1309_web.pdf
Retrieved on: Dec. 15, 2023 -
Nuclear Security Systems and Measures for the Detection
of Nuclear and Other Radioactive Material Out of Regulatory Control,
IAEA Nuclear Security Series No. 21, IAEA, Vienna, Austria, 2013.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1613_web.pdf
Retrieved on: Dec. 15, 2023 -
Kuvendil popullor i Republikes se Shqipërisë. (Korrik 31, 2014).
Ligj nr. 102/2014 ndryshuar me ligjin nr. 32. Kodi Doganor i Republikës së Shqipërisë.
(People’s Assembly of the Republics of Albania. (Jul. 31, 2014). Law no. 102/2014 amended by law no. 32. The Customs Code of the Republic of Albania.)
Retrieved from: https://financa.gov.al/wpcontent/uploads/2017//Kodi_Doganor_fin.pdf
Retrieved on: Dec. 15, 2023 -
K. Tushe et al., “Human Factors Engineering - An Overlooked Aspect in
Specifications for Radiation Detection Equipment’s”, in
Book of Abstr. Int. Conf. Social Sciences and Humanities in Ionizing
Radiation Research (RICOMET 2019), Barcelona, Spain, 2019,
p. 69.
Retrieved from: https://events.sckcen.be/event_website_pages/view/606db87e-9bec-4c10-9f57-01f20a34081a/606d9853-6a8c-4138-914e-01e50a34081a/1a4ae6e8e7
Retrieved on: Dec. 15, 2023 -
K. Tushe, D. Prifti, C. Massey, E. Bylyku, B. Daci, “Preliminary Results
Related to Human Factors Engineering Specifications for Advancing Radiation
Detection Equipment’s”, IJEES, vol. 11, no. 1, pp. 41 – 48, Jan.
2021.
Retrieved from: https://doi.org/10.31407/ijees11.106
Retrieved on: Nov. 30, 2023
Radiation Measurements
SPECTROSCOPIC ANALYSIS AND CHARGED PARTICLE IDENTIFICATIONS OF THERMAL AND FAST NEUTRON DOSIMETRY USING NUCLEAR TRACK DETECTORS (NTDS)
E. H. Ghanim, S. M. Othman, A. Hussein, H. El-Samman, A. El-Sersy
Pages: 142-149
Abstract | References | Full Text (PDF)
-
A. Al-Sayed et al., “Alpha particle spectrometry based on the mean grey
level and visibility of track etch-pit in
CR-39 Nuclear Track Detector,” Phys. Scr., vol. 97, no. 5, 055305,
Apr. 2022.
DOI: 10.1088/1402-4896/ac64d0 -
H. I. El-Naggar, E. H. Ghanim, M. El Ghazaly, T. T. Salama, “On the
registration of low energy alpha particle with modified GafChromic EBT2
radiochromic film,” Radiat. Phys. Chem., vol. 191, 109852, Feb.
2022.
DOI: 10.1016/j.radphyschem.2021.109852 -
E. H. Ghanim, M. El Ghazaly, H. I. El-Naggar, “Alpha particle detection by
Makrofol DE1-1 and CR-39 NTDs: A comparative study,”
Radiat. Phys. Chem.
, vol. 174, 108902, Sep. 2020.
DOI: 10.1016/j.radphyschem.2020.108902 -
I. A. El-Mesady, Y. S. Rammah, A. M. Abdallah,
E. H. Ghanim, “Gamma irradiation effect towards photoluminescence and
optical properties of Makrofol DE 6-2,” Radiat.
Phys. Chem., vol. 168, 108578, Mar. 2020.
DOI: 10.1016/j.radphyschem.2019.108578 -
S. L. Guo, B. L. Chen, S. A. Durrani, “Solid-State Nuclear Track
Detectors,” in Handbook of Radioactivity Analysis, vol. 1, M. F.
L`Annunziata, Eds., 4th ed., Cambridge (MA), USA: Academic Press, 2020,
ch. 3, pp. 307 – 407.
DOI: 10.1016/B978-0-12-814397-1.00003-0 -
T. S. Soliman, Sh. I. Elkalashy, M. F. Zaki,
D. H. Shabaan, “Structural and optical analysis of gamma-induced
modification in polycarbonate nuclear track detector,” Phys. Scr.,
vol. 96, no. 12, 125814,
Sep. 2021.
DOI: 10.1088/1402-4896/ac227d -
V. Kumar, R. G. Sonkawade, A. S. Dhaliwal, “Gamma irradiation induced
chemical and structural modifications in PM-355 polymeric nuclear track
detector film,” Nucl. Instrum. Methods Phys. Res. B,
vol. 290, pp. 59 – 63, Nov. 2012.
DOI: 10.1016/j.nimb.2012.08.029 -
Y. S. Rammah, A. M. Abdalla, “Study of the optical properties and the
carbonaceous clusters in DAM-ADC solid state nuclear track detectors,”
Radiat. Phys. Chem., vol. 141, pp. 125 – 130, Dec. 2017.
DOI: 10.1016/j.radphyschem.2017.06.016 -
M. F. Zaki, “Gamma-induced modification on optical band gap of CR-39
SSNTD,” J. Phys. D Appl. Phys.,
vol. 41, no. 17, 175404, Aug. 2008.
DOI: 10.1088/0022-3727/41/17/175404 -
Y. S. Rammah, S. E. Ibrahim, E. M. Awad, “Electrical and optical properties
of Makrofol DE 1-1 polymeric films induced by gamma irradiation,”
Bull. Natl. Res. Cent., vol. 43, 32, Feb. 2019.
DOI: 10.1186/s42269-019-0071-4 -
D. Dobrev, J. Vetter, N. Angert, “Electrochemical preparation of metal
microstructures on large areas of etched ion track membranes,”
Nucl. Instrum. Methods Phys. Res. B, vol. 149, no. 1 – 2, pp. 207 – 212, Jan. 2019.
DOI: 10.1016/S0168-583X(98)00618-1 -
S. K. Chakarvarti, J. Vetter, “Template Synthesis-A membrane Based
Technology for Generation of Nano-/Micro Materials,” Radiat.
Meas., vol. 29, no. 2,
pp. 149 – 159, Apr. 1998.
DOI: 10.1016/S1350-4487(98)00009-2 -
G. Szeiler et al., “Preliminary results from an indoor radon thoron survey
in Hungary,” Radiat. Prot. Dosim., vol. 152, no. 1 – 3, pp. 243 –
246, Nov. 2012.
DOI: 10.1093/rpd/ncs231 - S. A. Durrani, R. llic, Radon Measurements by Etched track Detectors, Hackensack (NJ), USA: World Scientific, 1997.
-
A. Hussein, “Determination of Uranium and Thorium Concentration in Some
Egyptian Rock Samples,” J. Radioanal. Nucl. Chem., vol. 188, no.
4, pp. 255 – 265, Nov. 1994.
DOI: 10.1007/bf02164886 -
N. E. Khaled, E. H. Ghanim, Kh. Shinashin,
A. R. El-Sersy, “Effect of X-ray energies on induced photo-neutron doses,”
Radiat. Eff. Def. Solids, vol. 169, no. 3, pp. 239 – 248, Mar.
2014.
DOI: 10.1080/10420150.2013.849250 -
G. W. Phillips et al., “Neutron spectrometry using CR-39 track etch
detectors,” Radiat. Prot. Dosim., vol. 120, no. 1 – 4, pp. 457 –
460, Jan. 2006.
DOI: 10.1093/rpd/nci675 -
F. Castillo et al., “Fast neutron dosimetry using CR-39 track detectors
with polyethylene as radiator,” Radiat. Meas., vol. 50, pp. 71 –
73, Mar. 2013.
DOI: 10.1016/j.radmeas.2012.09.007 -
A. R. El-Sersy, S. A. Eman, “Fast-Neutron Spectroscopy Studies using
Induced-Proton Tracks in PADC Detectors,” Eur. Phys. J. A, vol.
44, no. 3, pp. 397 – 401, Jun. 2010.
DOI: 10.1140/epja/i2010-10975-1 - A. R. EI-Sersy, N. E. Khaled, S. A. Eman, “Thermal neutron dose determination with source geometry included,” Egypt. J. Biophys., B 12, pp. 131 – 142, 2006.
-
R. L. Fleischer, P. B. Price, R. M. Walker,
Nuclear Tracks in Solids: Principles and application, Berkeley (CA), USA: University of California press,
1975.
DOI: 10.1525/9780520320239 - S. A. Durrani, R. K. Bull, Solid State Nuclear Track Detection. Principles, Methods and Applications, 1st ed., Oxford, UK: Pergamon Press, 1987.
- G. F. Knoll, Radiation Detection and Measurement, New York (NY), USA: J. Wiley and Sons, 1979.
- K. R. Kase, W. R. Nelson, Concepts of Radiation Dosimetry, New York (NY), USA: Pergamon Press, 1978.
-
J. F. Ziegler, J. Bierack, “SRIM-The Stopping and Range of Ions in Matter,”
in Treatise on Heavy-Ion Science,
vol. 6, D. A. Bromley, Eds., 1st ed., New York (NY),
USA: Pergamon Press, 1985, ch. 3, pp. 93 – 129.
DOI: 10.1007/978-1-4615-8103-1_3 - J. F. Ziegler, SRIM-The Stopping and Range of Ions in Matter, IBM Res., New York (NY), USA, 1996.
-
J. F. Ziegler, “SRIM-2003,” Nucl. Instrum. Methods Phys. Res. B,
vol. 219 – 220, pp. 1027 – 1036, Jun. 2004.
DOI: 10.1016/j.nimb.2004.01.208 -
T. Yamauchi, T. Taniguchi, K. Oда, “Study of Response of CR-39 Detector to
Light Ions,” Radiat. Meas., vol. 31, no. 1 – 6, pp. 261 – 264,
Jun. 1999.
DOI: 10.1016/S1350-4487(99)00127-4