Vol. 5, 2020

Table of contents

Material Science

LOWERING SYNTHESIS TEMPERATURE OF hBN BY IMPROVEMENT OF PRECURSOR

Erhan Budak, Ramazan Lok, Ercan Yilmaz

Pages: 1-3

DOI: 10.37392/RapProc.2020.01

In this study, hexagonal boron nitride (hBN) was synthesized with the modified O’Connor method in the presence of different additives. Structural properties of the synthesized materials were determined by X-Ray Diffraction, (XRD), Fourier Transform Infrared Spectroscopy, (FTIR), and Scanning Electron Microscopy (SEM). It was found that improving the precursor using different additives played a positive role by lowering the formation temperature. The average grain sizes (21–24 nm) and graphitization index (2.44–3.45) of hBN samples were calculated from the XRD pattern.
  1. R. T. Paine, C. K. Narula, "Synthetic routes to boron nitride," Chem. Rev., vol. 90, no. 1, pp. 73 - 91, Jan. 1990.
    DOI: 10.1021/cr00099a004
  2. E. Budak, "Low temperature synthesis of hexagonal boron nitride by solid state reaction in the presence of lithium salts," Ceram. Int., vol. 44, no. 11, pp. 13161 - 13164, Aug. 2018.
    DOI: 10.1016/j.ceramint.2018.04.139
  3. B. Matovic et al., "New synthetic route for nanocrystalline boron nitride powder," Mater. Lett., vol. 65, no. 2, pp. 307 - 309, Jan. 2011.
    DOI: 10.1016/j.matlet.2010.10.005
  4. A. Sumiyoshi, H. Hyodo, K. Kimura, "Li-intercalation into hexagonal boron nitride," J. Phys. Chem. Solids, vol. 71, no. 4, pp. 569 - 571, Apr. 2010.
    DOI: 10.1016/j.jpcs.2009.12.038
  5. R. Haubner, M. Wilhelm, R. Weissenbacher, B. Lux, "Boron Nitrides - Properties, Synthesis and Applications" in High Performance Non-Oxide Ceramics II, vol. 102, M. Jansen, 1st ed., Berlin/ Heidelberg, Germany: Springer, 2002, pp. 1 - 45.
    DOI: 10.1007/3-540-45623-6_1
  6. T. E. O`Connor, "Synthesis of boron nitride," J. Am. Chem. Soc., vol. 84, no. 9, pp. 1753 - 1754, May 1962.
    DOI: 10.1021/ja00868a065
  7. E. Budak, Ç. Bozkurt, "The effect of transition metals on the structure of h-BN intercalation compounds," J. Solid State Chem., vol. 177, no. 4 - 5, pp. 1768 - 1700, Apr. - May 2004.
    DOI: 10.1016/j.jssc.2003.12.038
  8. E. Budak, Ç. Bozkurt, "Synthesis of hexagonal boron nitride with the presence of representative metals," Phys. B: Condens. Matter, vol. 405, no. 22, pp. 4702 - 4705, Nov. 2010.
    DOI: 10.1016/j.physb.2010.08.067
  9. M. Hubáček, T. Sato, M. Ueki, "Copper-boron nitride interaction in hot-pressed ceramics," J. Mater. Res., vol. 12, no. 1, pp. 113 - 118, Jan. 1997.
    DOI: 10.1557/JMR.1997.0018
  10. M. Hubáček, T. Sato, T. Ishii, "A coexistence of boron nitride and boric oxide," J. Solid State Chem., vol. 109, no. 2, pp. 384 - 390, Apr. 1994.
    DOI: 10.1006/jssc.1994.1117
  11. L. Chen et al., "Low-temperature synthesis and benzene-thermal growth of nanocrystalline boron nitride," J. Cryst. Growth, vol. 273, no. 3 - 4, pp. 646 - 650, Jan. 2005.
    DOI: 10.1016/j.jcrysgro.2004.09.062
  12. J. Thomas, N. E. Weston, T. E. O`Connor, "Turbostratic1 boron nitride, thermal transformation to ordered-layer-lattice boron nitride," J. Am. Chem. Soc., vol. 84, no. 24, pp. 4619 - 4622, Dec. 1962.
    DOI: 10.1021/ja00883a001
  13. M. G. Balint, M. I. Petrescu, "An attempt to identify the presence of polytype stacking faults in hBN powders by means of X-ray diffraction," Diam. Relat. Mater., vol. 18, no. 9, pp. 1157 - 1162, Sep. 2009.
    DOI: 10.1016/j.diamond.2009.02.035
  14. M. Zheng, Y. Gu, Z. Xu, Y. Liu, "Synthesis and characterization of boron nitride nanoropes," Mater. Lett., vol. 61, no. 8 - 9, pp. 1943 - 1945, Apr. 2007.
    DOI: 10.1016/j.matlet.2006.07.108
  15. G. W. Zhou, Z. Zhang, Z. G. Bai, D. P. Yu, "Catalyst effects on formation of boron nitride nano-tubules synthesized by laser ablation," Solid State Commun., vol. 109, no. 8, pp. 555 - 559, Feb. 1999.
    DOI: 10.1016/S0038-1098(98)00541-9
  16. L. Shi et al., "Formation of nanocrystalline BN with a simple chemical route," Mater. Lett., vol. 58, no. 26, pp. 3301 - 3303, Oct. 2004.
    DOI: 10.1016/j.matlet.2004.06.022
  17. M. Hubáček, T. Sato, "Preparation and properties of a compound in the b-c-n system," J. Solid State Chem., vol. 114, no. 1, pp. 258 - 264, Jan. 1995.
    DOI: 10.1006/jssc.1995.1037
  18. H. E. Çamurlu, A. Gençer, B. Becer, "Comparative catalytic study on the carbothermic formation of hexagonal boron nitride with Li, Na, K and Ca carbonates," J. Mater. Sci., vol. 49, no. 1, pp. 371 - 379, Jan. 2014.
    DOI: 10.1007/s10853-013-7714-x

STRUCTURAL PROPERTIES AND RADIATION RESPONSE OF NEODYMIUM OXIDE

Ramazan Lok, Erhan Budak, Ercan Yilmaz

Pages: 4-6

DOI: 10.37392/RapProc.2020.02

Neodymium oxide (Nd2O3) was deposited by the sol–gel method on a P-type 〈100〉 silicon wafer. The chemical characterization of neodymium oxide was performed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive spectra (EDS), and atomic force microscopy (AFM), and surface morphology was examined by the scanning electron microscopy (SEM). In order to examine the neodymium oxide radiation response, samples were irradiated using a Co-60 gamma-ray source from 1 to 100 Gy at a dose rate of 0.015 Gy/s. A dramatic variation was observed in the capacitance and conductance with increasing radiation dose. Irradiation creates a large number of e-h pairs and defects in the structure. For this reason, significant changes can occur in the electrical characteristics of the device. Consequently, neodymium oxide may have significant usage for microelectronic technology for radiation sensors.
  1. A. Tataroglu, S. Altındal, "Characterization of interface states at Au/SnO2/n-Si (MOS) structures," Vacuum, vol. 82, no. 11, pp. 1203 - 1207, Jun. 2008.
    DOI: 10.1016/j.vacuum.2007.12.014
  2. S. Kaya, I. Yildiz, R. Lok, E. Yilmaz, "Co-60 gamma irradiation influences on physical, chemical and electrical characteristics of HfO2/Si thin films," Radiat. Phys. Chem., vol. 150, pp. 64 - 70, Sep. 2018.
    DOI: 10.1016/j.radphyschem.2018.04.023
  3. R. Lok, E. Budak, E. Yilmaz, "Radiation response of zirconium silicate P-MOS capacitor," Microelectron. Reliab., vol. 109, article no. 113663, Jun. 2020.
    DOI: 10.1016/j.microrel.2020.113663
  4. A. Kahraman, E. Yilmaz, A. Aktag, S. Kaya, "Evaluation of Radiation Sensor Aspects of Er2O3 MOS Capacitors under Zero Gate Bias," IEEE Trans. Nucl. Sci., vol. 63, no. 2, pp. 1284 - 1293, Apr. 2016.
    DOI: 10.1109/TNS.2016.2524625
  5. A. Kahraman, E. Yılmaz, "Ara yüzey seviyelerinin ve seri direncin Sc2O3 MOS kapasitörünün elektriksel karakteristiği üzerine etkisi," Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi , cilt 22, sayı 3, sayfalar 915 - 921, Haziran 2018. (A. Kahraman, E. Yilmaz, "Effects of interface states and series resistance on the electrical characteristic of Sc2O3 MOS capacitor," Sak. Univ. J. Sci., vol. 22, no. 3, pp. 915 - 921, Jun. 2018.
    DOI: 10.16984/saufenbilder.327593
  6. A. Kahraman, "Understanding of post deposition annealing and substrate temperature effects on structural and electrical properties of Gd2O3 MOS capacitor," J. Mater. Sci. Mater. Electron., vol. 29, no. 1, pp. 7993 - 8001, May 2018.
    DOI: 10.1007/s10854-018-8804-y
  7. M. Hirose, M. Hiroshima, T. Yasaka, M. Takakura, S. Miyazaki, "Ultra-thin gate oxide growth on hydrogen-terminated silicon surfaces," Microelectron. Eng., vol. 22, no. 1 - 4, pp. 3 - 9, Aug. 1993.
    DOI: 10.1016/0167-9317(93)90121-K
  8. G. D. Dhamale, V. L. Mathe, S. V. Bhoraskar, S. N. Sahasrabudhe, S. Ghorui, "Synthesis and characterization of Nd 2O3 nanoparticles in a radiofrequency thermal plasma reactor," Nanotechnology, vol. 27, no. 8, Feb. 2016.
    DOI: 10.1088/0957-4484/27/8/085603
    PMid: 26808863
  9. R. Lok, S. Kaya, H. Karacali, E. Yilmaz, "The Co-60 gamma-ray irradiation effects on the Al/HfSiO4/p-Si/Al MOS capacitors," Radiat. Phys. Chem., vol. 141, pp. 155 - 159, Dec. 2017.
    DOI: 10.1016/j.radphyschem.2017.06.019
  10. R. Lok, E. Budak, E. Yilmaz, "Radiation response of zirconium silicate P-MOS capacitor," Microelectron. Reliab., vol. 109, article no. 113663, Jun. 2020.
    DOI: 10.1016/j.microrel.2020.113663
  11. E. Yilmaz, B. Kaleli, R. Turan, "A systematic study on MOS type radiation sensors," Nucl. Instrum. Methods Phys. Res. Sect. B, vol. 264, no. 2, pp. 287 - 292, Nov. 2007.
    DOI: 10.1016/j.nimb.2007.08.081

EFFECTS OF ANNEALING TEMPERATURE ON THE CRYSTALLOGRAPHIC, MORPHOLOGICAL AND ELECTRICAL CHARACTERISTICS OF E-BEAM DEPOSITED Al/Eu2O3/n-Si (MOS) CAPACITORS

Ozan Yilmaz, Ercan Yilmaz

Pages: 7-10

DOI: 10.37392/RapProc.2020.03

Rare earth oxides (REOs) play an important role in the semiconductor technology. Europium oxide (Eu2O3) is one of REOs and it has been used in many applications such as optoelectronics, telecommunications, microelectronics and optical devices. However, in this study, Eu2O3 MOS capacitors have been fabricated by using the Electron Beam Evaporation (E-Beam) technique and the effects of different annealing temperatures on them have been investigated. Before and after annealing, the crystallographic and morphological properties of the Eu2O3 films have been analyzed by X-ray Diffraction and Atomic Force Microscopy. The electrical properties of the devices have been investigated using measuring C-V, G/ω-V characteristics. This preliminary study shows that Europium oxide can be suitable for application as a thin film.
  1. S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd ed., Hoboken (NJ), USA: J. Wiley and Sons, 2007.
    DOI: 10.1002/9780470068328.fmatter
  2. H. Ono, T. Katsumata, “Interfacial reactions between thin rare-earth-metal oxide films and Si substrates,” Appl. Phys. Lett., vol. 78, no. 13, pp. 1832 – 1834, 2001.
    DOI: 10.1063/1.1357445
  3. S. Kaya, E. Yilmaz, “Modifications of structural, chemical, and electrical characteristics of Er2O3/Si interface under Co-60 gamma irradiation,” Nucl. Instrum. Methods Phys. Res. B, vol. 418, pp. 74 – 79, Mar. 2018.
    DOI: 10.1016/j.nimb.2018.01.010
  4. A. Kahraman, H. Karacali, E. Yilmaz, “Impact and origin of the oxide-interface traps in Al/Yb2O3/n-Si/Al on the electrical characteristics,” J. Alloys Compd., vol. 825, article no. 154171, Jun. 2020.
    DOI: 10.1016/j.jallcom.2020.154171
  5. A. Kahraman, “Understanding of post deposition annealing and substrate temperature effects on structural and electrical properties of Gd2O3 MOS capacitor,” J. Mater. Sci. Mater. Electron., vol. 29, no. 1, pp. 7993 – 8001, May 2018.
    DOI: 10.1007/s10854-018-8804-y
  6. A. Kahraman, S. C. Deevi, E. Yilmaz, “Influence of frequency and gamma irradiation on the electrical characteristics of Er2O3, Gd2O3, Yb2O3, and HfO2 MOS-based devices,” J. Mater. Sci., vol. 55, no. 81, pp. 7999 – 8040, Jul. 2020.
    DOI: 10.1007/s10853-020-04531-8
  7. U. Gurer, O. Yilmaz, H. Karacali, S. Kaya, E. Yilmaz, “Co-60 gamma radiation influences on the electrochemical, physical and electrical characteristics rare-earth dysprosium oxide (Dy2O3),” Radiat. Phys. Chem. , vol. 171, article no. 108684, Jun. 2020.
    DOI: 10.1016/j.radphyschem.2020.108684
  8. S. Abubakar, S. Kaya, H. Karacali, E. Yilmaz, “The gamma irradiation responses of yttrium oxide capacitors and first assessment usage in radiation sensors,” Sens. Actuator A Phys., vol. 258, pp. 44 – 48, May 2017.
    DOI: 10.1016/j.sna.2017.02.022
  9. S. Kumar, R. Prakash, V. Singh, “Synthesis, Characterization, and Applications of Europium Oxide: A Review,” Rev. Adv. Sci. Eng., vol. 4, no. 4, pp. 247 – 257, Dec. 2016.
    DOI: 10.1166/rase.2015.1102
  10. L. Petit, A. Svane, Z. Szotek, W. M. Temmerman, “First-principles study of rare-earth oxides,” Phys. Rev. B, vol. 72, no. 20, pp. 1 – 9, Nov. 2005.
    DOI: 10.1103/PhysRevB.72.205118
  11. M. P. Singh, S. A. Shivashankar, “Structural and optical properties of polycrystalline thin films of rare earth oxides grown on fused quartz by low pressure MOCVD,” J. Cryst. Growth, vol. 276, no. 1 – 2, pp. 148 – 157, Mar. 2005.
    DOI: 10.1016/j.jcrysgro.2004.11.325
  12. S. A. Lourenço et al., “Eu3+ photoluminescence enhancement due to thermal energy transfer in Eu2O3-doped SiO2–B2O3–PbO2 glasses system,” J. Lumin., vol. 131, no. 5, pp. 850 – 855, May 2011.
    DOI: 10.1016/j.jlumin.2010.11.028
  13. J. G. Kang, Y. Jung, B. K. Min, Y. Sohn, “Full characterization of Eu(OH)3 and Eu2O3 nanorods,” Appl. Surf. Sci., vol. 314, pp. 158 – 165, Sep. 2014.
    DOI: 10.1016/j.apsusc.2014.06.165
  14. M. Majumder, R. B. Choudhary, A. K. Thakur, U. Kumar, “Augmented gravimetric and volumetric capacitive performance of rare earth metal oxide (Eu2O3) incorporated polypyrrole for supercapacitor applications,” J. Electroanal. Chem., vol. 804, pp. 42 – 52, Nov. 2017.
    DOI: 10.1016/j.jelechem.2017.09.048
  15. S. Mukherjee, C. H. Chen, C. C. Chou, H. D. Yang, “Anomalous dielectric behavior in nanoparticle Eu2O3: SiO2 glass composite system,” EPL, vol. 92, no. 5, article no. 57010, Dec. 2010.
    DOI: 10.1209/0295-5075/92/57010
  16. Z. Mo, Y. Zhao, R. Guo, P. Liu, T. Xie, “Preparation and characterization of graphene/europium oxide composites,” Mater. Manuf. Process., vol. 27, no. 5, pp. 494 – 498, 2012.
    DOI: 10.1080/10426914.2011.593241
  17. B. D. Cullity, Elements of X-ray diffraction, 2nd ed., Boston (MA), USA: Addison-Wesley, 1978.
    Retrieved from: http://library.lol/main/5F3BD811A44EEDFB22943BC771EF49F8
    Retrieved on: Jan. 24, 2019
  18. A. A. Dakhel, “Poole-Frenkel electrical conduction in europium oxide films deposited on Si(100),” Cryst. Res. Technol., vol. 38, no. 11, pp. 968 – 973, Nov. 2003.
    DOI: 10.1002/crat.200310122
  19. M. P. Singh, K. Shalini, S. A. Shivashankar, G. C. Deepak, N. Bhat, “Structural and electrical properties of low pressure metalorganic chemical vapor deposition grown Eu2O3 films on Si(100),” Appl. Phys. Lett., vol. 89, no. 20, article no. 201901, Nov. 2006.
    DOI: 10.1063/1.2388128
  20. S. Kumar, R. Prakash, R. J. Choudhary, D. M. Phase, “Structural, morphological and electronic properties of pulsed laser grown Eu2O3 thin films,” in Proc. 2nd Int. Conf. Condensed Matter And Applied Physics (ICC 2017) , Bikaner, India, 2018, pp. 3 – 8.
    DOI: 10.1063/1.5032948
  21. H. Nakane, A. Noya, S. Kuriki, G. Matsumoto, “Dielectric properties of europium oxide films,” Thin Solid Films, vol. 59, no. 3, pp. 291 – 293, May 1979.
    DOI: 10.1016/0040-6090(79)90438-3
  22. M. K. Jayaraj, C. P. G. Vallabhan, “Dielectric and optical properties of europium oxide films,” Thin Solid Films, vol. 177, no. 1 – 2, pp. 59 – 67, Oct. 1989.
    DOI: 10.1016/0040-6090(89)90556-7
  23. P. Zhang et al., “Preparation and Magnetic Properties of Polycrystalline Eu2O3 Microwires,” J. Electrochem. Soc., vol. 159, no. 4, pp. D204–D207, Jan. 2012.
    DOI: 10.1149/2.047204jes

INVESTIGATION OF ELECTRICAL CHARACTERISTICS AND SURFACE MORPHOLOGY OF VANADIUM OXIDE-VO2 MOS DEVICES

Umutcan Gürer and Ercan Yilmaz

Pages: 11-14

DOI: 10.37392/RapProc.2020.04

In this study, the electrical characteristics and surface morphology of Vanadium Oxide-VO2 MOS Devices have been investigated. VO2 thin films were deposited onto n-type (100) silicon wafers by using the RF magnetron sputtering system. Thin films were annealed at different temperatures in the Argon environment. The FTIR and XRD measurements were performed to check the surface morphology, crystal structure and bond structures of VO2 thin films, respectively. Except from the sample that was annealed at 700°C, the VO2 thin films showed amorphous structure. In the ATR-FTIR analysis, V-O-V bending mode at 617 cm-1 and V=O stretching vibrations at 990 cm-1 were seen on vanadium oxide thin films. While analyzing the electrical characteristics, it has been noticed that annealing had effects on the C-V and G/w-V curves. The obtained results demonstrate that VO2 may have the potential to be used in MOS-based applications.
  1. O. Pakma, C. Özaydın, Ş. Özden, I. A. Kariper, Ö. Güllü, “Synthesis and characterization of vanadium oxide thin films on different substrates,” J. Mater. Sci.: Mater. Electron., vol. 28, no. 15, pp. 10909 – 10913, Aug. 2017.
    DOI: 10.1007/s10854-017-6870-1
  2. R. Lok, S. Kaya, H. Karacali, E. Yilmaz, “A detailed study on the frequency-dependent electrical characteristics of Al/HfSiO4/p-Si MOS capacitors,” J. Mater. Sci.: Mater. Electron., vol. 27, no. 12, pp. 13154 – 13160, Dec. 2016.
    DOI: 10.1007/s10854-016-5461-x
  3. A. Kahraman, “Understanding of post deposition annealing and substrate temperature effects on structural and electrical properties of Gd2O3 MOS capacitor,” J. Mater. Sci.: Mater. Electron., vol. 29, no. 10, pp. 7993 – 8001, May 2018.
    DOI: 10.1007/s10854-018-8804-y
  4. A. Kahraman, U. Gurer, R. Lok, S. Kaya, E. Yilmaz, “Impact of interfacial layer using ultra-thin SiO2 on electrical and structural characteristics of Gd2O3 MOS capacitor,” J. Mater. Sci.: Mater. Electron., vol. 29, no. 20, pp. 17473 – 17482, Oct. 2018.
    DOI: 10.1007/s10854-018-9847-9
  5. A. Kahraman, H. Karacali, E. Yilmaz, “Impact and origin of the oxide-interface traps in Al/Yb2O3/n-Si/Al on the electrical characteristics,” J. Alloys Compd., vol. 825, article no. 154171, Jun. 2020.
    DOI: 10.1016/j.jallcom.2020.154171
  6. S. Abubakar, S. Kaya, H. Karacali, E. Yilmaz, “The gamma irradiation responses of yttrium oxide capacitors and first assessment usage in radiation sensors,” Sens. Actuator A Phys., vol. 258, pp. 44 – 48, May 2017.
    DOI: 10.1016/j.sna.2017.02.022
  7. R. Lok, E. Budak, E. Yilmaz, “Radiation response of zirconium silicate P-MOS capacitor,” Microelectron. Reliab., vol. 109, article no. 113663, Jun. 2020.
    DOI: 10.1016/j.microrel.2020.113663
  8. J. Liang, J. Li, L. Hou, X. Liu, “Tunable Metal-Insulator Properties of Vanadium Oxide Thin Films Fabricated by Rapid Thermal Annealing,” ECS J. Solid State Sci. Technol., vol. 5, no. 5, pp. P293 – P298, Mar. 2016.
    DOI: 10.1149/2.0281605jss
  9. H. Yin et al., “Self-assembled vanadium oxide nanoflakes for p-type ammonia sensors at room temperature,” Nanomaterials, vol. 9, no. 3, article no. 317, Mar. 2019.
    DOI: 10.3390/nano9030317
    PMid: 30818822
    PMCid: PMC6473898
  10. A. Rakshit, D. Biswas, S. Chakraborty, “Deposition and characterization of vanadium oxide based thin films for MOS device applications,” in Proc. DAE Solid State Physics Symposium (DAE SSPS 2017), Mumbai, India, 2018.
    DOI: 10.1063/1.5029064
  11. D. Yılmaz, B. Güzeldir, T. Akkuş, T. Öznülüer, “X- and gamma-ray irradiation effects on vanadium pentoxide thin films,” Spectrosc. Lett., vol. 51, no. 6, pp. 297 – 301, 2018.
    DOI: 10.1080/00387010.2018.1475397
  12. I. G. Madiba et al., “Effects of gamma irradiations on reactive pulsed laser deposited vanadium dioxide thin films,” Appl. Surf. Sci., vol. 411, pp. 271 – 278, Jul. 2017.
    DOI: 10.1016/j.apsusc.2017.03.131
  13. S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd ed., Hoboken (NJ), USA: J. Wiley and Sons, 2006.
    DOI: 10.1002/9780470068328.fmatter
  14. M. Zhu et al., “New route for modification of thermochromic properties of vanadium dioxide films via high-energy X-ray irradiation,” Ceram. Int., vol. 45, no. 2, pp. 1661 – 1669, Feb. 2019.
    DOI: 10.1016/j.ceramint.2018.10.043
  15. Y. Waseda, E. Matsubara, K. Shinoda, X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems , 1st ed., Berlin Heidelberg, Germany: Springer-Verlag, 2011.
    Retrieved from: http://library.lol/main/FED836C9F6CF8C06C6CCECDEC62CE07F
    Retrieved on: Sep. 13, 2019
  16. I. Derkaoui et al., “Structural and optical properties of hydrothermally synthesized vanadium oxides nanobelts,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 186, article no. 012007, 2017.
    DOI: 10.1088/1757-899X/186/1/012007
  17. S. Pavasupree, Y. Suzuki, A. Kitiyanan, S. Pivsa-Art, S. Yoshikawa, “Synthesis and characterization of vanadium oxides nanorods,” J. Solid State Chem., vol. 178, no. 6, pp. 2152 – 2158, Jun. 2005.
    DOI: 10.1016/j.jssc.2005.03.034
  18. A. Kahraman, E. Yilmaz, S. Kaya, A. Aktag, “Effects of post deposition annealing, interface states and series resistance on electrical characteristics of HfO2 MOS capacitors,” J. Mater. Sci.: Mater. Electron., vol. 26, no. 11, pp. 8277 – 8284, Nov. 2015.
    DOI: 10.1007/s10854-015-3492-3
  19. S. Abubakar, E. Yilmaz, “Optical and electrical properties of E-Beam deposited TiO2/Si thin films,” J. Mater. Sci.: Mater. Electron., vol. 29, no. 12, pp. 9879 – 9885, Jun. 2018.
    DOI: 10.1007/s10854-018-9029-9

FREQUENCY-DEPENDENT ELECTRICAL CHARACTERISTICS OF Al/Er2O3/SiO2/n-Si/ Al MOS CAPACITOR DEPOSITED BY E-BEAM

Alex Mutale and Ercan Yilmaz

Pages: 15-20

DOI: 10.37392/RapProc.2020.05

The aim of this paper is to investigate the frequency-dependent electrical characteristics of the Al/Er2O3/SiO2 /n-Si/ Al MOS capacitor deposited by the e-beam PVD technique. The Er2O3/SiO2 films were annealed in the nitrogen ambient for 30 min at 550 oC. The crystal structure and surface morphology of thin films have been investigated by XRD and AFM. The capacitance-voltage(C-V) and conductance-voltage (G/w-V) measurements have been performed in the frequency range of 50kHz-1MHz at room temperature. Furthermore, the frequency effects on the series resistance and interface state density through C-V and G/w-V curves were studied and analyzed. It has been observed that the series resistance gives a peak for each frequency, decreasing and disappearing with increasing frequencies. Also, it has been shown that the density of interface states increases with increasing frequency. The measured and calculated results reveal that the frequency has a significant impact on both Rs and Dit of the fabricated MOS characteristics. These effects are supposed to occur because of the interfacial layer (SiO2) that is contained in between n-Si and Er2O3.
  1. A. R. Wazzan, “MOS (Metal Oxide Semiconductor) Physics and Technology,” Nucl. Technol., vol. 74, no. 2, pp. 235 – 237, Aug. 1986.
    DOI: 10.13182/NT86-A33811
  2. F. A. S. Soliman, A. S. S. Al-Kabbani, K. A. A. Sharshar, M. S. I. Rageh, “Characteristics and radiation effects of MOS capacitors with Al2O3 layers in p-type silicon,” Appl. Radiat. Isot., vol. 46, no. 5, pp. 355 – 361, May 1995.
    DOI: 10.1016/0969-8043(94)00141-L
  3. S. Kaya, E. Yilmaz, “Modifications of structural, chemical, and electrical characteristics of Er2O3/Si interface under Co-60 gamma irradiation,” Nucl. Instrum. Methods Phys. Res. Sect. B, vol. 418, pp. 74 – 79, Mar. 2018.
    DOI: 10.1016/j.nimb.2018.01.010
  4. A. Aktağ, A. Mutale, E. Yılmaz, “Determination of frequency and voltage dependence of electrical properties of Al/(Er2O3/SiO2/n-Si)/Al MOS capacitor,” J. Mater. Sci. Mater. Electron., vol. 31, no. 11, pp. 9044 – 9051, Jun. 2020.
    DOI: 10.1007/s10854-020-03438-z
  5. S. S. Cetin, H. I. Efkere, T. Sertel, A. Tataroglu, S. Ozcelik, “Electrical Properties of MOS Capacitor with TiO2/SiO2 Dielectric Layer,” Silicon, vol. 12, no. 12, pp. 2879 – 2883, Dec. 2020.
    DOI: 10.1007/s12633-020-00383-8
  6. Y. Badali, A. Nikravan, Ş. Altındal, İ. Uslu, “Effects of a Thin Ru-Doped PVP Interface Layer on Electrical Behavior of Ag/n-Si Structures,” J. Electron. Mater., vol. 47, no. 7, pp. 3510 – 3520, Jul. 2018.
    DOI: 10.1007/s11664-018-6195-8
  7. N. T. Kimbugwe, E. Yilmaz, “Impact of SiO2 interfacial layer on the electrical characteristics of Al/Al2O3/SiO2/n-Si metal–oxide–semiconductor capacitors,” J. Mater. Sci. Mater. Electron., vol. 31, no. 20, pp. 12372 – 12381, Aug. 2020.
    DOI: 10.1007/s10854-020-03783-z
  8. R. Messier, “Thin Film Deposition Processes,” Bull. Materials Research Society, vol. 13, no. 11, Pittsburgh (PA), USA, Nov. 1988.
    DOI: 10.1557/S0883769400063879
  9. M. M. Bülbül, S. Zeyrek, Ş. Altindal, H. Yüzer, “On the profile of temperature dependent series resistance in Al/Si3N4/p-Si (MIS) Schottky diodes,” Microelectron. Eng., vol. 83, no. 3, pp. 577 – 581, Mar. 2006.
    DOI: 10.1016/j.mee.2005.12.013
  10. S. Kaya, E. Yilmaz, “A detailed study on frequency dependent electrical characteristics of MOS capacitors with dysprosium oxide gate dielectrics,” Semicond. Sci. Technol., vol. 35, no. 2, Feb. 2020.
    DOI: 10.1088/1361-6641/ab5923
  11. A. G. Khairnar, A. M. Mahajan, “Effect of post-deposition annealing temperature on RF-sputtered HfO2 thin film for advanced CMOS technology,” Solid State Sci., vol. 15, pp. 24 – 28, Jan. 2013.
    DOI: 10.1016/j.solidstatesciences.2012.09.010
  12. R. Lok, S. Kaya, H. Karacali, E. Yilmaz, “A detailed study on the frequency-dependent electrical characteristics of Al/HfSiO4/p-Si MOS capacitors,” J. Mater. Sci. Mater. Electron., vol. 27, no. 12, pp. 13154 – 13160, Dec. 2016.
    DOI: 10.1007/s10854-016-5461-x
  13. S. Zeyrek, E. Acaroǧlu, Ş. Altindal, S. Birdoǧan, M. M. Bülbül, “The effect of series resistance and interface states on the frequency dependent C–V and G/w–V characteristics of Al/perylene/p-Si MPS type Schottky barrier diodes,” Curr. Appl. Phys., vol. 13, no. 7, pp. 1225 – 1230, Sep. 2013.
    DOI: 10.1016/j.cap.2013.03.014
  14. A. Kahraman, E. Yilmaz, S. Kaya, A. Aktag, “Effects of post deposition annealing, interface states and series resistance on electrical characteristics of HfO2 MOS capacitors,” J. Mater. Sci. Mater. Electron., vol. 26, no. 11, pp. 8277 – 8284, Nov. 2015.
    DOI: 10.1007/s10854-015-3492-3
  15. A. O. Cetinkaya, S. Kaya, A. Aktag, E. Budak, E. Yilmaz, “Structural and electrical characterizations of BiFeO3 capacitors deposited by sol–gel dip coating technique,” Thin Solid Films, vol. 590, pp. 7 – 12, Sep. 2015.
    DOI: 10.1016/j.tsf.2015.07.053
  16. A. Tataroǧlu, G. G. Güven, S. Yilmaz, A. Büyükbas, “Analysis of barrier height and carrier concentration of MOS capacitor using C-f and G/ω-f measurements,” Bull. Gazi University, vol. 27, no. 3, Ankara, Turkey, 2014.
    Retrieved from: https://dergipark.org.tr/en/download/article-file/83667
    Retrieved on: Jan. 10, 2020
  17. S. A. Yerişkin, “The investigation of effects of (Fe2O4-PVP) organic-layer, surface states, and series resistance on the electrical characteristics and the sources of them,” J. Mater. Sci. Mater. Electron., vol. 30, no. 18, pp. 17032 – 17039, Sep. 2019.
    DOI: 10.1007/s10854-019-02045-x
  18. O. Çiçek, H. Durmuş, Ş. Altındal, “Identifying of series resistance and interface states on rhenium/n-GaAs structures using C–V–T and G/ω–V–T characteristics in frequency ranged 50 kHz to 5 MHz,” J. Mater. Sci. Mater. Electron., vol. 31, no. 1, pp. 704 – 713, Jan. 2020.
    DOI: 10.1007/s10854-019-02578-1

STRUCTURAL AND ELECTRICAL CHARACTERISTICS OF THE Al/Al2O3/SiO2/n-Si METAL-OXIDE-SEMICONDUCTOR CAPACITOR

Nakibinge Tawfiq Kimbugwe, Huseyin Karacali, Ercan Yilmaz

Pages: 21-25

DOI: 10.37392/RapProc.2020.06

In this study, the structural and electrical characteristics of the Al/Al2O3/SiO2/n-Si Metal-Oxide-Semiconductor (MOS) structure were investigated. Al2O3 films were deposited on the n-type Si wafer by RF magnetron sputtering after the growth of SiO2 by dry oxidation. The fabricated Al2O3/SiO2/n-Si structures were annealed at 250oC, 450oC, and 750oC in a N2 ambient. XRD and AFM measurements were conducted in order to examine the crystallinity and the surface topography of the Al2O3/SiO2/n-Si structure. Aluminum (Al) front and back contacts were then deposited by RF magnetron sputtering. C-V and G/w-V measurements were performed at low and high frequencies with the aim of analyzing the electrical characteristics. The discrepancy in the C-V curves for different frequencies stemmed from the defects and dangling bonds at the interfaces and in the oxide layers
  1. A. Kahraman, U. Gurer, R. Lok, S. Kaya, E. Yilmaz, “Impact of interfacial layer using ultra-thin SiO2 on electrical and structural characteristics of Gd2O3 MOS capacitor,” J. Mater. Sci. Mater. Electron., vol. 29, no. 20, pp. 17473 – 17482, Oct. 2018.
    DOI: 10.1007/s10854-018-9847-9
  2. G. Lutz, “Semiconductors as Detectors,” in Semiconductor Radiation Detectors , 1st ed., Berlin/Heidelberg, Germany: Springer-Verlag, 2007, ch. 2, sec. 4, pp. 79 – 93.
    DOI: 10.1007/978-3-540-71679-2
  3. C. G. Turk, S. O. Tan, S. Altındal, B. Inem, “Frequency and voltage dependence of barrier height, surface states, and series resistance in Al/Al2O3/p-Si structures in wide range frequency and voltage,” Physica B Condens. Matter, vol. 582, article no. 411979, Apr. 2020.
    DOI: 10.1016/j.physb.2019.411979
  4. S. Kaya, E. Budak, E. Yilmaz, “Effects of annealing temperature on electrical characteristics of sputtered Al/Al2O3/p-Si (MOS) capacitors,” Turk. J. Phys., vol. 42, no. 4, pp. 470 – 477, Aug. 2018.
    DOI: 10.3906/fiz-1805-1
  5. S. Kaya, E. Yilmaz, “Influences of Co-60 gamma-ray irradiation on electrical characteristics of Al2O3 MOS capacitors,” J. Radioanal. Nucl. Chem., vol. 302, pp. 425 – 431, Oct. 2014.
    DOI: 10.1007/s10967-014-3295-7
  6. A. Kahraman, S. C. Deevi, E. Yilmaz, “Influence of frequency and gamma irradiation on the electrical characteristics of Er2O3, Gd2O3, Yb2O3, and HfO2 MOS-based devices,” J. Mater. Sci., vol. 55, no. 81, pp. 7999 – 8040, Jul. 2020.
    DOI: 10.1007/s10853-020-04531-8
  7. D. Wu et al., “Structural and electrical characterization of Al2O3/HfO2/Al2O3 on strained SiGe,” Solid State Electron., vol. 49, no. 2, pp. 193 – 197, Feb. 2005.
    DOI: 10.1016/j.sse.2004.08.012
  8. N. T. Kimbugwe, E. Yilmaz, “Impact of SiO2 interfacial layer on the electrical characteristics of Al/Al2O3/SiO2/n-Si metal–oxide–semiconductor capacitors,” J. Mater. Sci. Mater. Electron., vol. 31, no. 20, pp. 12372 - 12381, Aug. 2020.
    DOI: 10.1007/s10854-020-03783-z
  9. S. M. Sze, M. K. Lee, Semiconductor Devices: Physics and Technology, 3rd ed., Hoboken (NJ), USA: J. Wiley and Sons, 2012.
    Retrieved from: http://libgen.rs/book/index.php?md5=AF0D3EA002AB461DFDFC92BCFAD35BC4
    Retrieved on: Apr. 11, 2020
  10. A. Aktag, A. Mutale, E. Yılmaz, “Determination of frequency and voltage dependence of electrical properties of Al/(Er2O3/SiO2/n-Si)/Al MOS capacitor,” J. Mater. Sci. Mater. Electron., vol. 31, no. 12, pp. 9044 – 9051, Jun. 2020.
    DOI: 10.1007/s10854-020-03438-z
  11. A. Kahraman, H. Karacali, E. Yilmaz, “Impact and origin of the oxide-interface traps in Al/Yb2O3/n-Si/Al on the electrical characteristics,” J. Alloys Compd., vol. 825, article no. 154171, Jun. 2020.
    DOI: 10.1016/j.jallcom.2020.154171
  12. S. Kaya, E. Yilmaz, “A comprehensive study on the frequency-dependent electrical characteristics of Sm2O3 MOS capacitors,” IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 980 – 987, Mar. 2015.
    DOI: 10.1109/TED.2015.2389953
  13. E. Yilmaz, I. Dogan, R. Turan, “Use of Al2O3 layer as a dielectric in MOS based radiation sensors fabricated on a Si substrate,” Nucl. Instrum. Methods Phys. Res. B, vol. 266, no. 22, pp. 4896 – 4898, Nov. 2008.
    DOI: 10.1016/j.nimb.2008.07.028

COMPARISON OF NÜR-PIN PHOTODIODE AND BPW34 PIN PHOTODIODE

Emre Doganci, Aliekber Aktag, Ercan Yilmaz

Pages: 26-28

DOI: 10.37392/RapProc.2020.07

The Silicon PIN photodiode (NÜR-PIN) with active area (3.5. x 3.5. mm2) was designed and fabricated on (100) N-type floating zone silicon substrates by using conventional photolithography process at Nuclear Radiation Detectors Applications and Research Center (NÜRDAM). To get NÜR-PIN and BPW34 specifications, capacitance-voltage (C-V) and current – voltage (I-V) measurements were accomplished at room temperature by using Keithley 4200-SCS and results were compared.  The leakage current and capacitance at -10V are 20 nA and 17.7 pF for NÜR-PIN, 32 nA and 27 pF for BPW34. Even if NÜR-PIN has good results at low reverse voltage, it is unstable at high reverse voltage compared to BPW34 photodiodes.
  1. A. Ruzin, S. Marunko, “Current mechanisms in silicon PIN structures processed with various technologies,” Nucl. Instrum. Methods Phys. Res. Sect. A, vol. 492, no. 3, pp. 411 – 422, Oct. 2002.
    DOI: 10.1016/S0168-9002(02)01369-4
  2. E. Damulira, M. N. S. Yusoff, A. F. Omar, N. H. M. Taib, “A review: Photonic devices used for dosimetry in medical radiation,” Sens., vol. 19, no. 10, p. 2226, May 2019.
    DOI: 10.3390/s19102226
    PMid: 31091779
    PMCid: PMC6567371
  3. C. N. P. Oliveira, H. J. Khoury, E. J. P. Santos, “PiN photodiode performance comparison for dosimetry in radiology applications,” Phys. Med., vol. 32, no. 12, pp. 1495 – 1501, Dec. 2016.
    DOI: 10.1016/j.ejmp.2016.10.018
    PMid: 27865669
  4. M. Andjelkovic, G. Ristic, “Feasibility study of a current mode gamma radiation dosimeter based on a commercial pin photodiode and a custom made auto-ranging electrometer,” Nucl. Technol. Radiat. Prot., vol. 28, no. 1, pp. 73 – 83, Mar. 2013.
    DOI: 10.2298/NTRP1301073A
  5. M. Nazififard, K. Y. Suh, A. Mahmoudieh, “Experimental analysis of a novel and low-cost pin photodiode dosimetry system for diagnostic radiology,” Rev. Sci. Instrum., vol. 87, no. 7, p. 073502-1, Jul. 2016.
    DOI: 10.1063/1.4955170
    PMid: 27475554
  6. N. V. Loukianova et al., “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Devices, vol. 50, no. 1, pp. 77 – 83, Jan. 2003.
    DOI: 10.1109/Ted.2002.807249
  7. M. Suzuki et al., “Electrical characterization of diamond PiN diodes for high voltage applications,” Phys. Status Solidi A, vol. 210, no. 10, pp. 2035 – 2039, Jul. 2013.
    DOI: 10.1002/pssa.201300051
  8. M. Ahmed, Physic and Engineering of Radiation Detection, London, United Kingdom: Academic Press Inc, Publishing, 2007
    Retrieved from: http://library.lol/main/E1008B3E0A345CF840A8AE64CCCB89BD
    Retrieved on: Dec. 15, 2019

Radiation Detectors

OPTICAL AND ELECTRICAL CHARACTERISTICS OF FABRICATED THREE-LAYER Al/Er2O3/Eu2O3/SiO2/n-Si/Al MOS CAPACITORS FOR RADIATION SENSORS

Saleh Abubakar, Ercan Yilmaz

Pages: 29-32

DOI: 10.37392/RapProc.2020.08

In the development of radiation sensors based on MOSFET devices, the process of enhancing gate dielectric radiation response should be considered, as the gate dielectric is a sensitive area. In this study, optical and electrical characteristics of fabricated three-layered Al/Er2O3/Eu2O3/SiO2/n-Si/Al MOS capacitors for radiation sensors were comprehensively investigated. MOS capacitors with 15 nm thin SiO2, 25 nm thin Eu2O3, and 110 nm thick Er2O3 stacked gate oxide layers were grown on the n-Silicon substrate by thermal oxidation and electron beam evaporation systems, respectively. The aluminum gate and back contacts of the capacitors were formed by RF magnetron sputtering. The optical and electrical properties of the thin films and capacitors were analyzed by studying the reflection, transmittance, refractive index and absorption coefficient, Capacitance–Voltage, Conductance–Voltage, and Current density–Voltage measurements. It is observed from these studies that interfacial layers, which appeared to cause interfacial dipoles, are used to reduce the interface trap charge density and oxide trap charge density in order to improve the charge storage capacity of the device.
  1. A. Dubey, A. Singh, R. Narang, M. Saxena, M. Gupta, "Modeling and Simulation of Junctionless Double Gate Radiation Sensitive FET (RADFET) Dosimeter," IEEE Trans. Nanotechnol., vol. 17, no. 1, pp. 49 – 55, Jan. 2018.
    DOI: 10.1109/TNANO.2017.2719286
  2. A. Pon, K. S. V. P. Tulasi, R. Ramesh, "Effect of interface trap charges on the performance of asymmetric dielectric modulated dual short gate tunnel FET," Int. J. Electron. Commun., vol. 102, pp. 1 – 8, Apr. 2019.
    DOI: 10.1016/j.aeue.2019.02.007
  3. Y. Li et al., "Interface and electrical properties of buried InGaAs channel MOSFET with an InP barrier layer and Al2O3/HfO2/Al2O3 gate dielectrics," Appl. Phys. Express, vol. 13, no. 1, article no. 011004, Jan. 2020.
    DOI: 10.7567/1882-0786/ab5acf
  4. Y. Zheng, W. Shi, M. Wang, H. Liu, C. Zhou, "N-RADFET will able to replace P-RADFET," Int. J. Appl. Res., vol. 2, no. 5, pp. 958 – 960, 2016.
    Retrieved from: https://www.allresearchjournal.com/archives/?year=2016&vol=2&issue=5&part=N&ArticleId=2028
    Retrieved on: Jan. 10, 2020
  5. M. S. Martínez-García, J. T. del Río, A. Jaksic, J. Banqueri, M. A. Carvajal, "Response to ionizing radiation of different biased and stacked pMOS structures," Sens. Actuator A Phys., vol. 252, pp. 67 – 75, Dec. 2016.
    DOI: 10.1016/j.sna.2016.11.007
  6. Development of radiation sensors based on stacked RADFET technology , European Commission, Brussels, Belgium, 2013.
    Retrieved from: https://cordis.europa.eu/project/id/302031/reporting/en?format=pdf
    Retrieved on: Dec. 22, 2019
  7. M. Scarafagio et al., "Ultra-Thin Eu and Er Doped Y 2 O 3 Films with Optimized Optical Properties for Quantum Technologies," J. Phys. Chem. C, vol. 123, no. 21, pp. 13354 – 13364, May 2019.
    DOI: 10.1021/acs.jpcc.9b02597
  8. Y. Zhu, Z. Fang, Y. Liu, "Structural and optical properties of Er2O3 films," J. Rare Earths, vol. 28, no. 5, pp. 752 – 755, Oct. 2010.
    DOI: 10.1016/S1002-0721(09)60194-0
  9. V. H. Mudavakkat, V. V. Atuchin, V. N. Kruchinin, A. Kayani, C. V. Ramana, "Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films," Opt. Mater., vol. 34, no. 5, pp. 893 – 900, Mar. 2012.
    DOI: 10.1016/j.optmat.2011.11.027
  10. A. Cantas, G. Aygun, R. Turan, "Impact of incorporated oxygen quantity on optical, structural and dielectric properties of reactive magnetron sputter grown high-κ HfO2/Hf/Si thin film," Appl. Surf. Sci., vol. 318, pp. 199 – 205, Nov. 2014.
    DOI: 10.1016/j.apsusc.2014.03.077
  11. M. Mishra et al., "Microstructure and optical properties of Gd2O3 thin films prepared by pulsed laser deposition," Surf. Coat. Technol., vol. 262, pp. 56 – 63, Jan. 2015.
    DOI: 10.1016/j.surfcoat.2014.12.012
  12. S. Abubakar, E. Yilmaz, "Optical and electrical properties of E-Beam deposited TiO2/Si thin films," J. Mater. Sci. Mater. Electron., vol. 29, no. 12, pp. 9879 – 9885, Jun. 2018.
    DOI: 10.1007/s10854-018-9029-9
  13. A. Kahraman, S. C. Deevi, E. Yilmaz, "Influence of frequency and gamma irradiation on the electrical characteristics of Er2O3, Gd2O3, Yb2O3, and HfO2 MOS-based devices," J. Mater. Sci., vol. 55, no. 81, pp. 7999 – 8040, Jul. 2020.
    DOI: 10.1007/s10853-020-04531-8
  14. S. Kaya, R. Lok, A. Aktag, J. Seidel, E. Yilmaz, "Frequency dependent electrical characteristics of BiFeO3 MOS capacitors," J. Alloys Compd., vol. 583, pp. 476 – 480, Jan. 2014.
    DOI: 10.1016/j.jallcom.2013.08.204
  15. A. Tataroǧlu, G. G. Güven, S. Yilmaz, A. Büyükbas, “Analysis of barrier height and carrier concentration of MOS capacitor using C-f and G/ω-f measurements,” Bull. Gazi University, vol. 27, no. 3, Ankara, Turkey, 2014.
    Retrieved from: https://dergipark.org.tr/en/download/article-file/83667
    Retrieved on: Jan. 10, 2020
  16. S. Kaya, E. Yilmaz, "A comprehensive study on the frequency-dependent electrical characteristics of Sm2O3 MOS capacitors," IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 980 – 987, Mar. 2015.
    DOI: 10.1109/TED.2015.2389953
  17. H. Xiao, S. Huang, "Frequency and voltage dependency of interface states and series resistance in Al/SiO2/p-Si MOS structure," Mater. Sci. Semicond. Process., vol. 13, no. 5 – 6, pp. 395 – 399, Dec. 2010.
    DOI: 10.1016/j.mssp.2011.05.009
  18. R. Oka et al., "High interfacial quality metal-oxide-semiconductor capacitor on (111) oriented 3C-SiC with Al2O3 interlayer and its internal charge analysis," Jpn. J. Appl. Phys., vol. 59, no. SG, article no. SGGD17, Apr. 2020.
    DOI: 10.35848/1347-4065/ab6862
  19. R. Ahlawat, P. Aghamkar, "Influence of annealing temperature on Y2O3:SiO2 nanocomposite prepared by sol-gel process," Acta Phys. Pol. A, vol. 126, no. 3, pp. 736 – 739, Sep. 2014.
    DOI: 10.12693/APhysPolA.126.736

Radiation in Medicine

EFFECTIVENESS OF DIFFERENT BNCT-DRUG INJECTION METHODS

Vladimir Kanygin, Alphiya Tsygankova, Aleksandr Kichigin, Evgenii Zavjalov, Ivan Razumov, Tatiana Guselnikova, Anna Kasatovа, Roman Sibirtsev, Rinat Mukhamadiyarov

Pages: 33-37

DOI: 10.37392/RapProc.2020.09

The BNCT-drugs (BSH and BPA) toxicity for an 8-10-week-old severe combined immunodeficiency (SCID) male mice outbred with SPF-status was studied. The possibility of increasing BPA (L-p-boron phenylalanine) and BSH (sodium salt of borocaptate) therapeutic dose was shown. The relationship between a safe therapeutic dose and the administration method of BPA was found. The intraperitoneal injection allows one to increase the dose of BPA at least twice – 700 mg/kg b.w, BSH – at least 8 times, 800 mg/kg b.w with intraperitoneal injections. The BPA intraperitoneal and intratumoral injections demonstrate higher results in comparison with intravenous administration. The highest and statistically significant concentration of 10В in the tumor was found for intraperitoneal injection of BPA for intratumoral injection of BPA – 27±5 μg/g (heterotopic tumors, P=0.95). The highest tumor/blood ratio for BPA was 7.5 for intratumoral administration in the point of 1h (heterotopic tumors). The maximum concentration of 10В with the introduction of BSH was with intravenous administration and was 8±3 μg/g (orthotopic tumors). The highest tumor/blood ratio was 9.5 for intravenous injection in 1h point (heterotopic tumors).
  1. Neutron Capture Therapy: Principles and Applications , W. A. G. Sauerwein, A. Wittig, R. Moss, Y. Nakagawa, Eds., 1st ed., Berlin, Germany: Springer-Verlag, 2012, ch. 6, pp. 366 – 531.
    DOI: 10.1007/978-3-642-31334-9
  2. P. M. Busse et al., “The Harvard-MIT BNCT Program: Overview of the Clinical Trials and Translational Research,” in Frontiers in Neutron Capture Therapy, vol. 1, M. F. Hawthorne, K. Shelly, R. J. Wiersema, Eds., 1st ed., Boston (MA), USA: Springer, 2001, ch. 2, pp. 37 – 60.
    DOI: 10.1007/978-1-4615-1285-1
  3. K. Skold et al., “Boron Neutron Capture Therapy for glioblastoma multiforme: advantage of prolonged infusion of BPA-f,” Acta. Neurol. Scand., vol. 122, no. 1, pp. 58 – 62, Jul. 2010.
    DOI: 10.1111/j.1600-0404.2009.01267.x.
    PMid: 19951268
  4. R. Henriksson et al., “Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA),” Radiother. Oncol., vol. 88, no. 2, pp. 183 – 191, Aug. 2008.
    DOI: 10.1016/j.radonc.2006.04.015
    PMid: 18336940
  5. T. Yamamoto et al., “Current clinical results of the Tsukuba BNCT trial,” Appl. Radiat. Isot., vol. 61, no. 5, pp. 1089 – 1093, Nov. 2004.
    DOI: 10.1016/j.apradiso.2004.05.010
    PMid: 15308197
  6. R. Bergland, E. Elowitz, J. A. Coderre, D. Joel, M. Chadha, “A Phase 1 Trial of Intravenous Boronophenylalanine-Fructose Complex in Patients with Glioblastoma Multiforme,” in Cancer Neutron Capture Therapy, Y. Mishima, Eds., 1st ed., Boston (MA), USA: Springer, 1996, ch. 5, pp. 739 – 745.
    DOI: 10.1007/978-1-4757-9567-7_105
  7. M. A. Garabalino et al., “Boron neutron capture therapy (BNCT) for the treatment of liver metastases: biodistribution studies of boron compounds in an experimental model,” Radiat. Environ. Biophys., vol. 50, no. 1, pp. 199 – 207, Mar. 2011.
    DOI: 10.1007/s00411-010-0345-6
    PMid: 21132507
  8. M. Suzuki et al., “Intra-arterial administration of sodium borocaptate (BSH)/lipiodol emulsion delivers B-10 to liver tumors highly selectively for boron neutron capture therapy: experimental studies in the rat liver model,” Int. J. Radiat. Oncol. Biol. Phys., vol. 59, no. 1, pp. 260 – 266, May 2004.
    DOI: 10.1016/j.ijrobp.2003.12.018
    PMid: 15093923
  9. M. A. Garabalino et al., “Boron biodistribution for BNCT in the hamster cheek pouch oral cancer model: combined administration of BSH and BPA,” Appl. Radiat. Isot., vol. 88, pp. 64 – 68, Jun. 2014.
    DOI: 10.1016/j.apradiso.2013.11.118
    PMid: 24360859
  10. K. Yokoyama et al., “Pharmacokinetic study of BSH and BPA in simultaneous use for BNCT,” J. Neurooncol., vol. 78, no. 3, pp. 227 – 232, Jul. 2006.
    DOI: 10.1007/s11060-005-9099-4
    PMid: 16557351
  11. R. F. Barth et al., “Neutron capture therapy of epidermal growth factor (+) gliomas using boronated cetuximab (IMC-C225) as a delivery agent,” Appl. Radiat. Isot., vol. 61, no. 5, pp. 899 – 903, Nov. 2004.
    DOI: 10.1016/j.apradiso.2004.05.004
    PMid: 15308165
  12. R. F. Barth et al., “Molecular targeting of the epidermal growth factor receptor for neutron capture therapy of gliomas,” Cancer Res., vol. 62, no. 11, pp. 3159 – 3166, Jun. 2002.
    PMid: 12036929
  13. W. Yang, R. F. Barth, D. M. Adams, A. H. Soloway, “Intratumoral delivery of boronated epidermal growth factor for neutron capture therapy of brain tumors,” Cancer Res., vol. 57, no. 19, pp. 4333 – 4339, Oct. 1997.
    PMid: 9331095
  14. A. R. Tsygankova et al., “Determination of boron by inductively coupled plasma atomic emission spectroscopy. Biodistribution of 10B in tumor-bearing mice,” Russ. Chem. Bull., vol.69, no. 3, pp. 601 – 607, Mar. 2020.
    DOI: 10.1007/s11172-020-2805-8
  15. S. P. Hozo, B. Djulbegovic, I. Hozo, “Estimating the mean and variance from the median, range, and the size of a sample,” BMC Medical Res. Methodol., vol. 5, no. 13, pp. 13 – 23, Apr. 2005.
    DOI: 10.1186/1471-2288-5-13А
    PMid: 15840177
    PMCid: PMC1097734
  16. R. Henriksson et al., “Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA),” Radiother. Oncol., vol. 88, no. 2, pp. 183 – 191, Aug. 2008.
    DOI: 10.1016/j.radonc.2006.04.015
    PMid: 18336940

Cancer Research

FEATURES OF DNA REPAIR IN DERMAL FIBROBLASTS IN PATIENTS WITH BREAST CANCER AND PERSONS WITH MEDICAL HISTORY OF CANCER

Aleksandra Nozdracheva, Nadezhda Pleskach, Mirya Kuranova

Pages: 38-43

DOI: 10.37392/RapProc.2020.10

In the cell lines of dermal fibroblasts of 30 and 55 year-old patients with breast cancer (BC) and in three patients with medical history of cancer, the features of DNA repair were studied. The amount, intensity of fluorescence and area of foci of protein 53BP1 and histone γH2AX were investigated at different time parameters of the field of irradiation of cells at a dose of 2 Gy. A line from a 30-year-old patient with no history of cancer was used as a healthy donor. The results showed that the reparative curve of a healthy donor differed from the reparative curves of the remaining lines. The cells of a young patient with breast cancer had more serious violations of the DNA repair processes. Also, the results of the work showed that histone γH2AX is more specific for breast cancer.
  1. M. Majidinia, B. Yousefi, “DNA repair and damage pathways in breast cancer development and therapy,” DNA Repair, vol. 54, pp. 22 – 29, Jun. 2017.
    DOI: 10.1016/j.dnarep.2017.03.009
    PMid: 28437752
  2. J. H. Hoeijmakers, “DNA damage, aging, and cancer,” N. Engl. J. Med., vol. 361, no. 15, pp. 1475 – 1485, Oct. 2009.
    DOI: 10.1056/NEJMra0804615
    PMid: 19812404
  3. G. Ciriello et al., “Emerging landscape of oncogenic signatures across human cancers,” Nat. Genet., vol. 45, no. 10, pp. 1127 – 1133, Oct. 2013.
    DOI: 10.1038/ng.2762
    PMid: 24071851
    PMCid: PMC4320046
  4. H. C. Reinhardt, H. Jiang, M. T. Hemann, M. B. Yaffe, “Exploiting synthetic lethal interactions for targeted cancer therapy,” Cell Cycle, vol. 8, no. 19, pp. 3112 – 3119, Oct. 2009.
    DOI: 10.4161/cc.8.19.9626
    PMid: 19755856
    PMCid: PMC3057180
  5. O. Moran et al., “Revisiting breast cancer patients who previously tested negative for BRCA mutations using a 12-gene panel,” Breast Cancer Res. Treat., vol. 161, no. 1, pp. 135 – 142, Jan. 2017.
    DOI: 10.1007/s10549-016-4038-y
    PMid: 27798748
  6. S. Sriramulu et al., “A review on role of ATM gene in hereditary transfer of colorectal cancer,” Acta Biomed., vol. 89, no. 4, pp. 463 – 469, Jan. 2019.
    DOI: 10.23750/abm.v89i4.6095
    PMid: 30657113
    PMCid: PMC6502098
  7. A. Tavera-Tapia et al., “Almost 2% of Spanish breast cancer families are associated to germline pathogenic mutations in the ATM gene,” Breast Cancer Res. Treat., vol. 161, no. 3, pp. 597 – 604, Feb. 2017.
    DOI: 10.1007/s10549-016-4058-7
    PMid: 27913932
  8. S. M. Noordermeer et al., “The shieldin complex mediates 53BP1-dependent DNA repair,” Nature, vol. 560, no. 7716, pp. 117 – 121, Aug. 2018.
    DOI: 10.1038/s41586-018-0340-7
    PMid: 30022168
    PMCid: PMC6141009
  9. G. D. Gregoriis et al., “DNA repair genes PAXIP1 and TP53BP1 expression is associated with breast cancer prognosis,” Cancer Biol. Ther., vol. 18, no. 6, pp. 439 – 449, Jun. 2017.
    DOI: 10.1080/15384047.2017.1323590
    PMid: 28475402
    PMCid: PMC5536937
  10. Y. Li, G. Zhang, “Network-based characterization and prediction of human DNA repair genes and pathways,” Scientific Reports, vol. 7, pp. 1 – 8, Apr. 2017.
    DOI: 10.1038/srep45714
    PMid: 28368026
    PMCid: PMC5377940
  11. A. Nozdracheva, R. Ushakov, N. Pleskach, M. Kuranova, “Analysis of the capabilities of the programs Fiji, iPLab and DARFI in the study of DNA repair abilities in the cells of patients with a mosaic form of ataxia telangiectasia,” in Proc. Int. Conf. Radiation Applications (RAP 2019), Belgrade, Serbia, 2019, pp. 1 – 6.
    DOI: 10.37392/RapProc.2019.01
  12. M. Kuranova et al., R. “Features of DNA repair in dermal fibroblasts of patients with ataxia-telangiectasia with mosaic manifestation of the active form of ATM kinase,” Genes & Cells, tome XIV, №1, 2020, pp. 50 – 59.
    DOI: 10.23868/202003007

BASIC RESEARCH OF LUNG CANCER IN-VITRO: MEASUREMENT METHODS, NEW POSSIBILITIES AND PERSPECTIVE

Jovana Todosijević, Jovan Luković, Jasmina Obradović, Vladimir Jurišić

Review paper

Pages: 44-50

DOI: 10.37392/RapProc.2020.11

Epidemiological data indicate that in the last period there has been an increase in the number of malignancies and among them lung cancer is one of the most common forms. In vitro studies based on the usage of immortalized cell lines are an important source of scientific knowledge for understanding of the mechanism of cell growth, proliferation and cell death. In this paper, the most commonly used methods for in vitro research in NSCLC (non-small cell lung cancer) based on testing the effects of new compounds to determine the degree of apoptosis, necrosis, cell proliferation as well as their significance are discussed. So far, techniques of working with monolayer cultures have been mainly used. In the future, it is recommended to use a 3D system, knockout cell line and to conduct additional studies regarding the use of organoids or spheroids, as well as the application of new techniques to better understand the complex processes of carcinogenesis and the action of biologically active compounds.
  1. F. Bray et al., “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA Cancer J. Clin., vol. 68, no. 6, pp. 394 – 424, Nov. 2018.
    DOI: 10.3322/caac.21492
    PMid: 30207593
  2. J. R. Molina, P. Yang, S. D. Cassivi, S. E. Schild, A. A. Adjei, “Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship,” Mayo Clin. Proc., vol. 83, no. 5, pp. 584 – 594, May 2008.
    DOI: 10.4065/83.5.584
    PMid: 18452692
    PMCid: PMC2718421
  3. J. L. Mulshine et al., “From clinical specimens to human cancer preclinical models-a journey the NCI-cell line database-25 years later,” J. Cell. Biochem., vol. 121, no. 8 – 9, pp. 3986 – 3999, Dec. 2019.
    DOI: 10.1002/jcb.29564
    PMid: 31803961
    PMCid: PMC7496084
  4. R. Zdanowski, M. Krzyżowska, D. Ujazdowska, A. Lewicka, S. Lewicki, “Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways,” Cent. Eur. J. Immunol., vol. 40, no. 3, pp. 373 – 379, 2015.
    DOI: 10.5114/ceji.2015.54602
    PMid: 26648784
    PMCid: PMC4655390
  5. N. Somensi et al., “Extracellular HSP70 Activates ERK1/2, NF-kB and Pro-Inflammatory Gene Transcription Through Binding with RAGE in A549 Human Lung Cancer Cells,” Cell. Physiol. Biochem., vol. 42, no. 6, pp. 2507 – 2522, 2017.
    DOI: 10.1159/000480213
    PMid: 28848092
  6. E. Fokkema et al., “The role of apoptosis-related genes in non-small-cell lung cancer,” Clin. Lung Cancer, vol. 4, no. 3, pp. 174 – 182, Nov. 2002.
    DOI: 10.3816/CLC.2002.n.025
    PMid: 14706167
  7. S. Cuello-Nuñez et al., “A species-specific double isotope dilution strategy for the accurate quantification of platinum–GG adducts in lung cells exposed to carboplatin,” J. Anal. At. Spectrom., vol. 32, no. 7, pp. 1320 – 1330, Jun. 2017.
    DOI: 10.1039/C7JA00078B
  8. J. Li et al., “Berberine hydrochloride inhibits cell proliferation and promotes apoptosis of non-small cell lung cancer via the suppression of the MMP2 and Bcl-2/Bax signaling pathways,” Oncol. Lett., vol. 15, no. 5, pp. 7409 – 7414, May 2018.
    DOI: 10.3892/ol.2018.8249
    PMid: 29725453
    PMCid: PMC5920480
  9. B. Xie et al., “Epidermal growth factor receptor gene mutations in non-small-cell lung cancer cells are associated with increased radiosensitivity in vitro,” Cancer Manag. Res., vol. 10, pp. 3551 – 3560, Sep. 2018.
    DOI: 10.2147/CMAR.S165831
    PMid: 30271203
    PMCid: PMC6145635
  10. J. Obradović et al., “Frequencies of EGFR single nucleotide polymorphisms in non-small cell lung cancer patients and healthy individuals in the Republic of Serbia: a preliminary study,” Tumor Biology, vol. 37, no. 8, pp. 10479 – 10486, Aug. 2016.
    DOI: 10.1007/s13277-016-4930-4
    PMid: 26846215
  11. V. Jurišić, J. Obradović, S. Pavlović, N. Djordjević, “Epidermal Growth Factor Receptor Gene in Non-Small-Cell Lung Cancer: The Importance of Promoter Polymorphism Investigation,” Anal. Cell. Pathol. (Amst)., vol. 2018, article no. 6192187, Oct. 2018.
    DOI: 10.1155/2018/6192187
    PMid: 30406002
    PMCid: PMC6204164
  12. V. Jurišić et al., “EGFR Polymorphism and Survival of NSCLC Patients Treated with TKIs: A Systematic Review and Meta-Analysis,” J. Oncol., vol. 2020, spec. issue, article no. 1973241, Mar. 2020.
    DOI: 10.1155/2020/1973241
    PMid: 32256580
    PMCid: PMC7104312
  13. I. Chaib et al., “Co-activation of STAT3 and YES-Associated Protein 1 (YAP1) Pathway in EGFR-Mutant NSCLC,” J. Natl. Cancer Inst., vol. 109, no. 9, Sep. 2017.
    DOI: 10.1093/jnci/djx014
    PMid: 28376152
    PMCid: PMC5409000
  14. Z. Schrank et al., “Current Molecular-Targeted Therapies in NSCLC and Their Mechanism of Resistance,” Cancers, vol. 10, no. 7, article no. 224, Jul. 2018.
    DOI: 10.3390/cancers10070224
    PMid: 29973561
    PMCid: PMC6071023
  15. M. Yousef, I. A. Vlachogiannis, E. Tsiani, “Effects of Resveratrol against Lung Cancer: In Vitro and In Vivo Studies,” Nutrients, vol. 9, no. 11, article no. 1231, Nov. 2017.
    DOI: 10.3390/nu9111231
    PMid: 29125563
    PMCid: PMC5707703
  16. Z. Wang et al., “Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR,” Molecules, vol. 21, no. 10, article no. 1267, Sep. 2016.
    DOI: 10.3390/molecules21101267
    PMid: 27689974
    PMCid: PMC6274019
  17. Y. J. Xie et al., “Chelidonine selectively inhibits the growth of gefitinib-resistant non-small cell lung cancer cells through the EGFR-AMPK pathway,” Pharmacol. Res., vol. 159, article no. 104934, Sep. 2020.
    DOI: 10.1016/j.phrs.2020.104934
    PMid: 32464330
  18. X. Xu, Y. Zhang, D. Qu, T. Jiang, S. Li, “Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway,” J. Exp. Clin. Cancer Res., vol. 30, no. 1, article no. 33, Mar. 2011.
    DOI: 10.1186/1756-9966-30-33
    PMid: 21447176
    PMCid: PMC3073874
  19. L. Zhang et al., “Curcumin inhibits cell proliferation and migration in NSCLC through a synergistic effect on the TLR4/MyD88 and EGFR pathways,” Oncol. Rep., vol. 42, no. 5, pp. 1843 – 1855, Nov. 2019.
    DOI: 10.3892/or.2019.7278
    PMid: 31432177
    PMCid: PMC6775800
  20. O. Wattanathamsan, S. Treesuwan, B. Sritularak, V. Pongrakhananon, “Cypripedin, a phenanthrenequinone from Dendrobium densiflorum, sensitizes non-small cell lung cancer H460 cells to cisplatin-mediated apoptosis,” J. Nat. Med., vol. 72, no. 2, pp. 503 – 513, Mar. 2018.
    DOI: 10.1007/s11418-018-1176-z
    PMid: 29426985
  21. L. Liu et al., “PTEN inhibits non-small cell lung cancer cell growth by promoting G0/G1 arrest and cell apoptosis,” Oncol. Lett., vol. 17, no. 1, pp. 1333 – 1340, Jan. 2019.
    DOI: 10.3892/ol.2018.9719
    PMid: 30655903
    PMCid: PMC6313010
  22. M. Moro et al., “Metformin Enhances Cisplatin-Induced Apoptosis and Prevents Resistance to Cisplatin in Co-mutated KRAS/LKB1 NSCLC,” J. Thorac. Oncol., vol. 13, no. 11, pp. 1692 – 1704, Nov. 2018.
    DOI: 10.1016/j.jtho.2018.07.102
    PMid: 30149143
  23. M. Kumar et al., “Quinacrine inhibits GSTA1 activity and induces apoptosis through G1/S arrest and generation of ROS in human non-small cell lung cancer cell lines,” Oncotarget, vol. 11, no. 18, pp. 1603 – 1617, May 2020.
    DOI: 10.18632/oncotarget.27558
    PMid: 32405336
    PMCid: PMC7210017
  24. B. Li et al., “A novel drug repurposing approach for non-small cell lung cancer using deep learning,” PLoS One, vol. 15, no. 6, article no. e0233112, Jun. 2020.
    DOI: 10.1371/journal.pone.0233112
    PMid: 32525938
    PMCid: PMC7289363
  25. V. Parvathaneni, M. Goyal, N. S. Kulkarni, S. K. Shukla, V. Gupta, “Nanotechnology Based Repositioning of an Anti-Viral Drug for Non-Small Cell Lung Cancer (NSCLC),” Pharm. Res., vol. 37, no. 7, article no. 123, Jun. 2020.
    DOI: 10.1007/s11095-020-02848-2
    PMid: 32514688
  26. A. Kol et al., “ADCC responses and blocking of EGFR-mediated signaling and cell growth by combining the anti-EGFR antibodies imgatuzumab and cetuximab in NSCLC cells,” Oncotarget, vol. 8, no. 28, pp. 45432 – 45446, Jul. 2017.
    DOI: 10.18632/oncotarget.17139
    PMid: 28467975
    PMCid: PMC5542198
  27. F. Agustoni, et al., “EGFR-directed monoclonal antibodies in combination with chemotherapy for treatment of non-small-cell lung cancer: an updated review of clinical trials and new perspectives in biomarkers analysis,” Cancer Treat. Rev., vol. 72, pp. 15 – 27, Jan. 2019.
    DOI: 10.1016/j.ctrv.2018.08.002
    PMid: 30445271
  28. Z. Yang, K. Y. Tam, “Anti-cancer synergy of dichloroacetate and EGFR tyrosine kinase inhibitors in NSCLC cell lines,” Eur. J. Pharmacol., vol. 789, pp. 458 – 467, Oct. 2016.
    DOI: 10.1016/j.ejphar.2016.08.004
    PMid: 27514773
  29. J. Zhao, A. Guerrero, K. Kelnar, H. J. Peltier, A. G. Bader, “Synergy between next generation EGFR tyrosine kinase inhibitors and miR-34a in the inhibition of non-small cell lung cancer,” Lung Cancer, vol. 108, pp. 96 – 102, Jun. 2017.
    DOI: 10.1016/j.lungcan.2017.02.020
    PMid: 28625657
  30. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” J. Immunol. Methods, vol. 65, no. 1 – 2, pp. 55 – 63, Dec. 1983.
    DOI: 10.1016/0022-1759(83)90303-4
    PMid: 6606682
  31. A. van Tonder, A. M. Joubert, A. D. Cromarty, “Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays,” BMC Res. Notes, vol. 8, no. 1, article no. 47, Feb. 2015.
    DOI: 10.1186/s13104-015-1000-8
    PMid: 25884200
    PMCid: PMC4349615
  32. Y. L. Li et al., “Shikonin sensitizes wild‑type EGFR NSCLC cells to erlotinib and gefitinib therapy,” Mol. Med. Rep., vol. 18, no. 4, pp. 3882 – 3890, Oct. 2018.
    DOI: 10.3892/mmr.2018.9347
    PMid: 30106133
    PMCid: PMC6131653
  33. B. Toviwek, P. Suphakun, K. Choowongkomon, S. Hannongbua, M. P. Gleeson, “Synthesis and evaluation of the NSCLC anti-cancer activity and physical properties of 4-aryl-N-phenylpyrimidin-2-amines,” Bioorganic Med. Chem. Lett., vol. 27, no. 20, pp. 4749 – 4754, Oct. 2017.
    DOI: 10.1016/j.bmcl.2017.08.063
    PMid: 28927795
  34. R. Noro et al., “Gefitinib (IRESSA) sensitive lung cancer cell lines show phosphorylation of Akt without ligand stimulation,” BMC Cancer, vol. 6, no. 1, article no. 277, Dec. 2006.
    DOI: 10.1186/1471-2407-6-277
    PMid: 17150102
    PMCid: PMC1698934
  35. K. M. McKinnon, “Flow Cytometry: An Overview,” Curr. Protoc. Immunol., vol. 120, no. 1, pp. 5.1.1 – 5.1.11, Feb. 2018.
    DOI: 10.1002/cpim.40
    PMid: 29512141
    PMCid: PMC5939936
  36. V. Pillai, D. M. Dorfman, “Flow Cytometry of Nonhematopoietic Neoplasms,” Acta Cytol., vol. 60, no. 4, pp. 336 – 343, 2016.
    DOI: 10.1159/000448371
    PMid: 27578265
  37. M. Danova et al., “The role of automated cytometry in the new era of cancer immunotherapy,” Mol. Clin. Oncol., vol. 9, no. 4, pp. 355 – 361, Oct. 2018.
    DOI: 10.3892/mco.2018.1701
    PMid: 30233791
    PMCid: PMC6142305
  38. V. Jurišić, T. Srdić-Rajić, G. Konjević, G. Bogdanović, M. Čolić, “TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells,” J. Membr. Biol., vol. 239, no. 3, pp. 115 – 122, Feb. 2011.
    DOI: 10.1007/s00232-010-9309-7
    PMid: 21221555
  39. J. Wan, W. Wu, R. Zhang, S. Liu, Y. Huang, “Anti-EGFR antibody conjugated silica nanoparticles as probes for lung cancer detection,” Exp. Ther. Med., vol. 14, no. 4, pp. 3407 – 3412, Oct. 2017.
    DOI: 10.3892/etm.2017.4988
    PMid: 29042926
    PMCid: PMC5639344
  40. A. Vembadi, A. Menachery, M. A. Qasaimeh, “Cell Cytometry: Review and Perspective on Biotechnological Advances,” Front. Bioeng. Biotechnol., vol. 7, article no. 147, Jun. 2019.
    DOI: 10.3389/fbioe.2019.00147
    PMid: 31275933
    PMCid: PMC6591278
  41. T. Mahmood, P. C. Yang, “Western blot: technique, theory, and trouble shooting,” N. Am. J. Med. Sci., vol. 4, no. 9, pp. 429 – 434, Sep. 2012.
    DOI: 10.4103/1947-2714.100998
    PMid: 23050259
    PMCid: PMC3456489
  42. M. Forcella et al., “Non-small cell lung cancer (NSCLC), EGFR downstream pathway activation and TKI targeted therapies sensitivity: Effect of the plasma membrane-associated NEU3,” PLoS One, vol. 12, no. 10, article no. e0187289, Oct. 2017.
    DOI: 10.1371/journal.pone.0187289
    PMid: 29088281
    PMCid: PMC5663482
  43. J. Codony-Servat et al., “Cancer Stem Cell Biomarkers in EGFR-Mutation-Positive Non-Small-Cell Lung Cancer,” Clin. Lung Cancer, vol. 20, no. 3, pp. 167 – 177, May 2019.
    DOI: 10.1016/j.cllc.2019.02.005
    PMid: 30885551
  44. K. Konduri et al., “EGFR Fusions as Novel Therapeutic Targets in Lung Cancer,” Cancer Discov., vol. 6, no. 6, pp. 601 – 611, Jun. 2016.
    DOI: 10.1158/2159-8290.CD-16-0075
    PMid: 27102076
    PMCid: PMC4893907
  45. E. Sinkala et al., “Profiling protein expression in circulating tumour cells using microfluidic western blotting,” Nat. Commun., vol. 8, article no. 14622, Mar. 2017.
    DOI: 10.1038/ncomms14622
    PMid: 28332571
    PMCid: PMC5376644
  46. E. Banno et al., “Afatinib is especially effective against non-small cell lung cancer carrying an EGFR exon 19 deletion,” Anticancer Res., vol. 35, no. 4, pp. 2005 – 2008, Apr. 2015.
    PMid: 25862853
  47. R. Ghosh, J. E. Gilda, A. V. Gomes, “The necessity of and strategies for improving confidence in the accuracy of western blots,” Expert Rev. Proteomics, vol. 11, no. 5, pp. 549 – 560, Oct. 2014.
    DOI: 10.1586/14789450.2014.939635
    PMid: 25059473
    PMCid: PMC4791038
  48. M. Mishra, S. Tiwari, A. V. Gomes, “Protein purification and analysis: next generation Western blotting techniques,” Expert Rev. Proteomics, vol. 14, no. 11, pp. 1037 – 1053, Nov. 2017.
    DOI: 10.1080/14789450.2017.1388167
    PMid: 28974114
    PMCid: PMC6810642
  49. A. Leonetti et al., “Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer,” Br. J. Cancer, vol. 121, no. 9, pp. 725 – 737, Oct. 2019.
    DOI: 10.1038/s41416-019-0573-8
    PMid: 31564718
    PMCid: PMC6889286
  50. T. Koo et al., “Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression,” Nucleic Acids Res., vol. 45, no. 13, pp. 7897 - 7908, Jul. 2017.
    DOI: 10.1093/nar/gkx490
    PMid: 28575452
    PMCid: PMC5570104
  51. R. Alföldi et al., “Single Cell Mass Cytometry of Non-Small Cell Lung Cancer Cells Reveals Complexity of In vivo And Three-Dimensional Models over the Petri-dish,” Cells, vol. 8, no. 9, article no. 1093, Sep. 2019.
    DOI: 10.3390/cells8091093
    PMid: 31527554
    PMCid: PMC6770097
  52. W. Jia et al., “Effects of three-dimensional collagen scaffolds on the expression profiles and biological functions of glioma cells,” Int. J. Oncol., vol. 52, no. 6, pp. 1787 – 1800, Jun. 2018.
    DOI: 10.3892/ijo.2018.4330
    PMid: 29568859
    PMCid: PMC5919708
  53. Z. Zhu et al., “Bufalin induces lung cancer cell apoptosis via the inhibition of PI3K/Akt pathway,” Int. J. Mol. Sci., vol. 13, no. 2, pp. 2025 – 2035, 2012.
    DOI: 10.3390/ijms13022025
    PMid: 22408435
    PMCid: PMC3292004
  54. Y. Chen et al., “Sesamin suppresses NSCLC cell proliferation and induces apoptosis via Akt/p53 pathway,” Toxicol. Appl. Pharmacol., vol. 387, article no. 114848, Jan. 2020.
    DOI: 10.1016/j.taap.2019.114848
    PMid: 31809756
  55. D. Wang, B. Bao, “Gallic Acid Impedes Non-Small Cell Lung Cancer Progression via Suppression of EGFR-Dependent CARM1-PELP1 Complex,” Drug Des. Dev. Ther., vol. 14, pp. 1583 – 1592, Apr. 2020.
    DOI: 10.2147/DDDT.S228123
    PMid: 32425504
    PMCid: PMC7186892

Microwave, Laser, RF and UV radiations

EXPOSURE AND RISK ASSESSMENT CONNECTED TO THE HEALTH AND SAFETY OF WORKERS IN THE PRODUCTION OF ELECTRICITY

M. Israel, P. Ivanova, Ts. Shalamanova, M. Ivanova, V. Zaryabova

Pages: 51-54

DOI: 10.37392/RapProc.2020.12

The aim of the study is to perform exposure and risk assessment of electromagnetic fields (EMF) at workplaces connected with electricity production according to the requirements of Directive 2013/35/EU. The study covers the following sets of workplaces: (1) Workplaces in power distribution systems (indoor and outdoor distribution systems); (2) Workplaces with metalworking machines: lathes, mills, electric welding. Measurements are made using a frequency non-selective method, based on: “Non-binding guide to good practice for implementing Directive 2013/35/EU Electromagnetic Fields Vol. 1 - Practical guide”. Exposure and risk assessment have been performed by comparing the measured values with action values (ALs) and the exposure limit values (ELVs) according to the requirements of Directive 2013/35/EU, as well as with the reference values adopted by the Council Recommendation 1999/519/EC for persons at “specific risk”. The results of the exposure and risk assessment show the following: Electric field strength for the power frequency field (50 Hz) does not exceed the high ALs for non-thermal effects; low ALs are not exceeded except for single points in outdoor high voltage substations. In cases where the low ALs for non-thermal effects are exceeded, the reference levels according to Recommendation 1999/519/EC are also exceeded. There are no measured values of the field strength above the reference levels according to Council Recommendation 1999/519/EC at the remaining workplaces. The results show compliance with the ELVs with respect to the health and sensory effects. Magnetic flux density values of power frequency fields do not exceed the ALs for non-thermal effects. Measured values also show the compliance with the ELVs for health and sensory effects. The magnetic flux densities do not exceed the reference levels according to Council Recommendation 1999/519/EC. From the results obtained, it can be concluded that no risk can be expected for the workers’ health from the EMFs exposure except for those defined as persons at a specific risk. For them, appropriate recommendations for the employer have been proposed for health and safety practices at work.
  1. The Council of European Union. (Jul. 12, 1999). Council Recommendation 1999/519/EC on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz).
    Retrieved from: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31999H0519
    Retrieved on: Nov. 15, 2019
  2. The European Parliament and the Council of European Union. (Jun. 26, 2013). Directive 2013/35/EU on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) (20th individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC) and repealing Directive 2004/40/EC .
    Retrieved from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32013L0035
    Retrieved on: Jan. 12, 2020
  3. M. Israel, M. Ivanova, V. Zaryabova, T. Shalamanova, P. Ivanova, “Occupational exposure to electromagnetic field - transposition of the European policy,” in Proc. 6th Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2018) , Ohrid, Macedonia, 2018, pp. 197 – 201.
    DOI: 10.21175/radproc.2018.42
  4. Electromagnetic fields , vol. 1, Non-binding guide to good practice for implementing Directive 2013/35/EU, European Commission, Luxembourg, Luxembourg, 2016.
    Retrieved from: http://bookshop.europa.eu/en/non-binding-guide-to-good-practice-for-implementing-directive-2013-35-eu-electromagnetic-fields-pbKE0415140/
    Retrieved on: Jan. 20, 2020
  5. Electromagnetic fields , vol. 2, Non-binding guide to good practice for implementing Directive 2013/35/EU, European Commission, Luxembourg, Luxembourg, 2016.
    Retrieved from: http://bookshop.europa.eu/en/non-binding-guide-to-good-practice-for-implementing-directive-2013-35-eu-electromagnetic-fields-pbKE0415141/
    Retrieved on: Jan. 20, 2020
  6. Electromagnetic fields , Guide for SMEs, Non-binding guide to good practice for implementing Directive 2013/35/EU, European Commission, Luxembourg, Luxembourg, 2015.
    Retrieved from: http://bookshop.europa.eu/en/non-binding-guide-to-good-practice-for-implementing-directive-2013-35-eu-electromagnetic-fields-pbKE0415142
    Retrieved on: Jan. 20, 2020
  7. Министерство на труда и социалната политика и Министерство на здравеопазването на България. (Ноември 15, 2016). Бр. РД-07-5. Наредба за минималните изисквания за осигуряване на здравето и безопасността на работещите при рискове, свързани с експозиция на електромагнитни полета . (Ministry of labor and Social Policy and Ministry of Health of Bulgaria. (Nov. 15, 2016). No. RD-07-5. Ordinance for the minimal requirements for providing health and safety at work at risks by exposure to electromagnetic fields ).
    Retrieved from:
  8. https://dv.parliament.bg/DVWeb/fileUploadShowing.jsp?&idFileAtt=245316&allowCache=true&openDirectly=false
    Retrieved on: Jun. 10, 2019

MEASUREMENT, EXPOSURE AND RISK ASSESSMENT OF OPTICAL RADIATION IN WORKING ENVIRONMENT

M. Ivanova, M. Israel, M. Stoinovska

Pages: 55-58

DOI: 10.37392/RapProc.2020.13

The report presents results of the measurement, exposure and risk assessment of optical radiation sources in an industrial unit: electric welding, oxygene and plasma cutting machines. Measurements of the optical radiation parameters are performed over the entire optical range within the scope of Directive 2006/25/EC (transposed in Bulgarian legislation with Ordinance No 5 /2010). They are made at the level of the exposed eyes and skin of workers having activities or staying in the source area. The studied sources mainly emit in the ultraviolet (UV) and visible range of the optical spectrum, therefore the applicable exposure limit values (ELVs) correspond to the two ranges. Although the highest exposure to optical radiation is to the workers who directly handle the source, the exposure and risk assessment refers more to other workers indirectly involved in the activities with sources of optical radiation. The reason is that the first group of directly exposed workers is protected by personal protective equipment (PPE), so radiation does not reach them up to the maximal radiation levels. The exposure assessment results show an exceeding of the ELVs for the visible and UV range in the vicinity of the electric welding and plasma cutting machine and ELVs for the visible range for the oxygene. The risk assessment for workers has taken into account that the risk of exposure of the eye to visible light is high, but exposure to visible radiation is unlikely to occur due to the aversion to bright light and involuntary turning the head away from the source. This is not the case with exposure to UV radiation, which is invisible to the eye and there are no natural mechanisms for protection. So, high levels of exposure and risk to the cornea and the lens of the eye are possible. This means that the risk of exposure to visible optical radiation is high, but the probability of exposure is medium to low. In the ultraviolet range, the risk and the likelihood of exposure is high. There is a health risk to persons who are particularly sensitive to exposure to optical radiation as well. In addition, effects on the health and safety of workers are possible as a result of the interaction between optical radiation and photosensitising substances at the workplace or medications and/or food.
  1. The European Parliament and the Council of European Union. (Apr. 5, 2006). Directive 2006/25/EC on the minimum health and safety requirements regarding the exposure of workers to risks arising from physical agents (artificial optical radiation) (19th individual Directive within the meaning of article 16(1) of Directive 89/391/EEC).
    Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:114:0038:0059:en:PDF
    Retrieved on: Jan. 15, 2020
  2. Министерство на труда и социалната политика и Министерство на здравеопазването на България. (Июнь 11, 2010). Бр. 5. Наредба за минималните изисквания за осигуряване на здравето и безопасността на работещите при рискове, свързани с експозиция на изкуствени оптични лъчения . (Ministry of labor and Social Policy and Ministry of Health of Bulgaria . (Jun. 11, 2010). No. 5. Ordinance on the minimum health and safety requirements regarding the exposure of workers to risks arising from exposure to artificial optical radiation ).
    Retrieved from: https://www.lex.bg/laws/ldoc/2135686489
    Retrieved on: Jan. 10, 2020
  3. A Non-Binding Guide to the Artificial Optical Radiation Directive 2006/25/EC , European Commission, Brussels, Belgium.
    Retrieved from: https://www.gla.ac.uk/media/Media_164337_smxx.pdf
    Retrieved on: Jan. 20, 2020
  4. Photobiological safety of lamps and lamp systems , EN 62471, Sep. 12, 2008.
    Retrieved from: http://tbt.testrust.com/image/zt/123/100123_2.pdf
    Retrieved on: Aug. 15, 2019
  5. D. H. Sliney, M. L. Wolbarsht, Safety with Lasers and Other Optical Sources, New York (NY), USA: Plenum, 1980.
    Retrieved from: http://library.lol/main/9342391C000B199172E887B73095AF6F
    Retrieved on: Feb. 27, 2020

PUBLIC CONCERN OF ELECTROMAGNETIC EXPOSURE IN BULGARIA – A CASE STUDY

V. Zaryabova, T. Shalamanova, H. Petkova, M. Israel

Pages: 59-63

DOI: 10.37392/RapProc.2020.14

Risk management in the precautionary framework proposed by the World Health Organization (WHO) concerning public health is an interactive process and it encourages the development of new information and understanding, as well as a review of the measures in the context of existing uncertainty. By including a wide range of stakeholders in the process, the framework requires a clarification of their interests, as well as transparency about the way of decision-making. The protective framework related to the protection of human beings against electromagnetic fields (EMF) exposures is an upgrading approach that encompasses procedures for managing human health risks that are either known or insecure. The framework assists: (1) Development and evaluation of the opportunities to reduce electromagnetic exposure; (2) Choice of action/actions appropriate to the risk under consideration; (3) Assessment and supervision of the chosen action/actions. WHO proposes the “Precautionary Principle/Approach” to be applied for cases when uncertainty of research is great, and when there are serious problems with the implementation of new technologies for which there is insufficient information on their harmful effects. At the same time, WHO suggests communication strategies to be applied after analyses and evaluation of the exposure to reduce public concern (EMF Risk Perception… WHO 1998, Risk Perception…ICNIRP 1997, Establishing a Dialogue…WHO 2002). Here, we would like to present one typical case study of public concern in connection with EMF exposure from a base station for mobile communication situated in urban area, and the way how the problem has been solved. Different approaches for exposure assessment have been applied, as follows: (1) measuring methods: point measurements; monitoring measurements over a long period of time, monitoring for more than 24 hours; spectrum analyses; (2) analytical methods: exposure assessment through processing data of measurements; and/or evaluation of the safety zones around “sensitive” buildings by calculation/modeling. A communication strategy with the general population has been chosen and applied on the basis of the analyses of the results of evaluation of the exposure. This communication strategy is specific and proven effective, and it refers to all stakeholders, including administration, mobile operators, local authorities, regional control bodies of the Ministry of Health, and others. The main purpose of this paper is connected to the methodology of the processes presenting our model for effectively solving a problem of public concern connected with EMF exposure.
  1. EMF Risk Perception and Communication , Proceedings WHO/SDE/OEH 99.01, WHO, Geneva, Switzerland, 1999.
    Retrieved from: https://www.who.int/peh-emf/publications/reports/ottawa.pdf
    Retrieved on: Oct. 20, 2019
  2. Risk Perception, Risk Communication and its Application to EMF Exposure , Proceedings ICNIRP 5/98, ICNIRP, Oberschleissheim, Germany, 1998.
    Retrieved from: https://www.icnirp.org/en/publications/article/emf-risk-communication-1998.html
    Retrieved on: Nov. 11, 2019
  3. Establishing a Dialogue on Risks from Electromagnetic Fields , WHO, Geneva, Switzerland, 2002.
    Retrieved from: https://www.who.int/peh-emf/publications/risk_hand/en/
    Retrieved on: Dec. 15, 2019
  4. Министерство на здравеопазването и Министерство на околната среда на България. (Март 14, 1991). Наредба № 9. З а пределно допустими нива на електромагнитни полета в населени територии и определяне на хигиенно-защитни зони около излъчващи обекти . (Ministry of Health and Ministry of Environment of Bulgaria. (Mar. 14, 1991). Ordinance No. 9. Exposure limit values for Electromagnetic Radiation in Residential Areas and for Determining Safety Zones Around Electromagnetic Sources. )
    Retrieved from: https://lex.bg/bg/laws/ldoc/-551794688
    Retrieved on: Feb. 11, 2020

Biochemistry

ANTIMICROBIAL ACTIVITY AND REDOX PROPERTY OF Ni(II) COMPLEXES WITH ORTHO- AND META-DIPHENOL DERIVATIVES

K.A. Nabebina, N.V. Loginova, T.V. Kovalchuk-Rabchinskaya, G.A. Ksendzova, N.P. Osipovich

Pages: 64-67

DOI: 10.37392/RapProc.2020.15

The redox-activity of novel bioactive Ni(II) complexes with ortho- and meta-diphenols was investigated. Amorphous water insoluble complexes with general formula NiL2 were synthesized according to the authorial method. It was found that the complexes are highly lipophilic (lgPow= 2.5÷3.5), stable in water-organic media (stability constants logarithm lgβ=15-18) and have a non-electrolyte nature. Voltammetry analysis was used to determine the first oxidation peak (Epa1, V) as a thermodynamic criterion of compounds’ reducing ability. It was found that complexes with ortho-diphenol derivatives possess stronger reducing ability then the complexes with meta-diphenol. Antimicrobial activity of Ni(II) complexes against Mycobacterium smegmatis and Candida albicans were evaluated. Intricate dependence between reducing ability and bactericidal activity was found.
  1. B. J. Marais, “The global tuberculosis situation and the inexorable rise of drug-resistant disease,” Adv. Drug Deliv. Rev., vol. 102, pp. 3 – 9, Jul. 2016.
    DOI: 10.1016/j.addr.2016.01.021
    PMid: 26855302
  2. M. S. Jassal, W. R. Bishal, “Extensively drug-resistant tuberculosis,” Lancet Infect. Dis., vol. 9, no. 1, pp. 19 – 30, Jan. 2009.
    DOI: 10.1016/S1473-3099(08)70260-3
    PMid: 18990610
  3. G. McDonnell, A. D. Russell, “Antiseptics and disinfectants: activity, action, and resistance,” Clin. Microbiol. Rev., vol. 12, no. 1, pp. 147 – 179, Jan. 1999.
    DOI: 10.1128/CMR.12.1.147
    PMid: 9880479
    PMCid: PMC88911
  4. P. J. O’Brien, “Molecular mechanisms of quinone cytotoxicity,” Chem. Biol. Interact., vol. 80, no. 1, pp. 1 – 41, 1991.
    DOI: 10.1016/0009-2797(91)90029-7
    PMid: 1913977
  5. J. Cohen, “Approval of novel TB drug celebrated–with restraint,” Science, vol. 339, no. 6116, pp. 130, Jan. 2013.
    DOI: 10.1126/science.339.6116.130
    PMid: 23307714
  6. D. T. Hoagland, J. Liu, R. B. Lee, R. E. Lee, “New agents for the treatment of drug-resistant Mycobacterium tuberculosis,” Adv. Drug Deliv. Rev., vol. 102, pp. 55 – 72, Jul. 2016.
    DOI: 10.1016/j.addr.2016.04.026
    PMid: 27151308
    PMCid: PMC4903924
  7. K. Pethe et al., “Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis,” Nat. Med., vol. 19, no. 9, pp. 1157 – 1160, Sep. 2013.
    DOI: 10.1038/nm.3262
    PMid: 23913123
  8. N. V. Loginova et al., “Redox-active antimicrobial metal complexes with sterically hindered o-diphenol and o-aminophenol derivatives,” in Biometals: Molecular Structures, Binding Properties and Applications , G. Blanc, D. Moreau, Eds., 1st ed., New York (NY), USA: Nova Science Publisher’s, 2010, ch. 3, pp. 59 – 90.
  9. N. V. Loginova et al., “Pharmacologically active of benzene derivatives of synthesis, complexation with biometals and biological evaluation sterically hindered 1,2-dihydroxybenzene and o-aminophenol derivatives,” in Benzene and its derivatives: New Uses and Impacts on Environment and Human Health , G. Tranfo, Eds., 1st ed., New York (NY), USA: Nova Science Publisher’s, 2012, ch. 2, pp. 23 – 68.
  10. N. V. Loginova et al., “Redox-active silver(I) complexes with sterically hindered 1,2-dihydroxybenzene derivatives: reduction of cytochrome c and antimicrobial activity,” in Cytochromes b and c: Biochemical Properties, Biological Functions and Electrochemical Analysis , R. Thom, Eds., 1st ed., New York (NY), USA: Nova Science Publisher’s, 2014, ch. 5, pp. 121 – 171.
  11. N. V. Loginova et al., “Redox-active metal complexes with cycloaminomethyl derivatives of diphenols: antibacterial and SOD-like activity, reduction of cytochrome c,” in Antibacterials: Synthesis, Properties and Biological Activities, E. Collins, Eds., 1st ed., New York (NY), USA: Nova Science Publisher’s, 2017, ch. 6, pp. 143 – 180.
  12. A. B. G. Lansdown, “Silver in health care: antimicrobial effects and safety in use,” in Biofunctional Textiles and the Skin. Curr Probl Dermatol., vol. 33, U. C. Hipler, P. Elsner, Eds., 1st ed., Basel, Switzerland: Karger, 2006, pp. 17 – 34.
    DOI: 10.1159/000093928
  13. J. C. Fontecilla-Camps, “Biological Nickel,” in Bioinorganic Chemistry: Trace Element Evolution from Anaerobes to Aerobes , R. J. P. Williams, Eds., 1st ed., Berlin Heidelberg, Germany: Springer-Verlag, 1998, ch. 1, pp. 1 – 30.
    Retrieved from: http://library.lol/main/C23907F553832C6853F83F576EC92BA5
    Retrieved on: Jan. 11, 2020
  14. H. I. Harbatsevich et al., “Nickel(II) complexes with ‘non innocent’ ligands – cycloaminomethyl derivatives of 1,2-dihydroxybenzene: sod-like and antimicrobial activity,” Radiat. Appl., vol. 2, no. 2, pp. 129 – 133, Jan. 2017.
    DOI: 10.21175/RadJ.2017.02.027
  15. В. А. Климова, Основные микрометоды анализа органических соединений, 2-й изд., Москва, Россия: Химия, 1975, c. 224. (V. A. Klimova, The basis of micro methods of organic compounds analysis, 2nd ed., Moscow, Russia: Chemistry, 1975, p. 224.)
    Retrieved from: http://libgen.rs/book/index.php?md5=2DCEF5ED5CEE7BD9F0987A29254DA260
    Retrieved on: Nov. 29, 2019
  16. N. V. Loginova et al., “Redox-active metal(II) complexes of sterically hindered phenolic ligands: Antibacterial activity and reduction of cytochrome c,” Polyhedron, vol. 29, no. 6, pp. 1646 – 1652, Apr. 2010.
    DOI: 10.1016/j.poly.2010.02.007
  17. N. V. Loginova et al., “Redox-active metal(II) complexes of sterically hindered phenolic ligands: Antibacterial activity and reduction of cytochrome c. Part II. Metal(II) complexes of o-diphenol derivatives of thioglycolic acid,” Polyhedron, vol. 30, no. 15, pp. 2581 – 2591, Sep. 2011.
    DOI: 10.1016/j.poly.2011.07.008
  18. N. V. Loginova et al., “Redox-active metal(II) complexes of sterically hindered phenolic ligands: Antibacterial activity and reduction of cytochrome c. Part III. Copper(II) complexes of cycloaminomethyl derivatives of o-diphenols,” Polyhedron, vol. 57, pp. 39 – 46, Jul. 2013.
    DOI: 10.1016/j.poly.2013.04.015
  19. N. V. Loginova et al., “Redox-active metal complexes of sterically hindered phenolic ligands: Antibacterial activity and reduction of cytochrome c. Part IV. Silver(I) complexes with hydrazone and thiosemicarbazone derivatives of 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde,” Polyhedron, vol. 88, pp. 125 – 137, Mar. 2015.
    DOI: 10.1016/j.poly.2014.12.014
  20. A. Leo, C. Hancsh, D. Elkins, “Partition coefficients and their uses,” Chem. Rev., vol. 71, no. 6. pp. 525 – 616, Dec. 1971.
    DOI: 10.1021/cr60274a001
  21. N. V. Loginova et al., “Interaction of cytochrome c with redox-active dihydroxybenzene-containing antimicrobials: application to antioxidant characterization,” in Cytochrome C: Roles and Therapeutic Implications, N. Arias, Eds., New York (NY), USA: Nova Science Publisher’s, 2019, ch. 2, pp. 51 – 87.
  22. К. А. Набебина, Н. В. Логинова, Т. В. Ковальчук-Рабчинская, Г. А. Ксендзова, Н. П. Осипович, “Синтез и свойства редокс-активных комплексов Ni(II) с производными дигидроксибензола,” Свиридовские чтения : сборник статей, нo. 15, cтр. 184 – 193, 2019. (K. A. Nabebina, N. V. Loginova, T. V. Koval’chuk-Rabchinskaya, G. A. Ksendzova, N. P. Osipovich, “Synthes and properties of redox active Ni(II) complexes with dihydroxybenzene derivatives” Sviridov Readings: a collection of paper, no. 15, pp. 184 – 193, 2019.)
    Retrieved from: https://elib.bsu.by/handle/123456789/237518
    Retrieved on: Sep. 20, 2019
  23. D. Amsterdam, Antibiotics in Laboratory Medicine, 6th ed., Philadelphia (PA), USA: Lippincott Williams Wilkins, 2014.
    Retrieved from: http://library.lol/main/C93B8401A35AE671BFE016F06AE8C51F
    Retrieved on: Sep. 13, 2019
  24. W. J. Geary, “The use of conductivity measurements in organic solvents for the characterisation of coordination compounds,” Coord. Chem. Rev ., vol. 7, no. 1, pp. 81 – 122, Oct. 1971.
    DOI: 10.1016/S0010-8545(00)80009-0
  25. M. J. Waring, “Lipophilicity in drug discovery,” Expert Opin. Drug Discov., vol. 5, no. 3, pp. 235 – 248, Mar. 2010.
    DOI: 10.1517/17460441003605098
    PMid: 22823020
  26. F. Scholz, Electroanalytical Methods: Guide to Experiments and Applications, vol. 1, 2nd ed., Berlin, Germany: Springer-Verlag, 2010.
    Retrieved from: http://library.lol/main/9D15B8E76FB88030D73BBEE0C7649607
    Retrieved on: Feb. 10, 2020
  27. G. Lancini, F. Parenti, Antibiotics: An Integrated View, 1st ed., New York (NY), USA: Springer-Verlag, 1982.
    Retrieved from: http://library.lol/main/28AB26730E73E50010156D3FC04B3BB7
    Retrieved on: Dec. 25, 2019

Food Irradiation

DOSE ADJUSTMENT TO ENSURE UNIFORMITY OF CYLINDRICAL FOODSTUFF IRRADIATION

F. Studenikin, U. Bliznyuk, G. Krusanov, A. Chernyaev, V. Khankin, P. Borschegovskaya, V. Ipatova, A. Bliznyuk

Pages: 68-71

DOI: 10.37392/RapProc.2020.16

This study focuses on achieving a higher uniformity of 10 MeV electron treatment of cylindrical products by including aluminum modifiers of different thicknesses in the irradiation scheme. It was simulated the irradiation of cylindrical water phantom by beams of accelerated electrons with an energy of 10 MeV from two opposite sides using GEANT 4. During the simulation, aluminum plates-modifiers of different thicknesses of 1, 1.5 and 2 mm were added between the cylindrical phantom and the beam output in order to assess dose uniformity inside the phantom. It was found that the higher the thickness of aluminum plates, the more uniformity could be achieved. While 1 mm and 1.5 mm plates enable the efficiency ratio of 30 % and 45 %, respectively, a 2 mm modifier increases the uniformity of irradiation up to 60 %. In this way, computer modeling proves that inserting beam plates-modifiers between irradiated samples and beam output for irradiation from two opposite sides allows to considerably increase the uniformity of sample irradiation with complex geometry.
  1. A. P. Chernyaev, S. M. Varzar, A. V. Belousov, M. V. Zheltonozhskaya, E. N. Lykova, “Prospects of development of radiation technologies in Russia,”Phys. At. Nucl., vol. 82, no. 5, pp. 513 – 527, Sep. 2019.
    DOI: 10.1134/S1063778819040070
  2. А. С. Алимов, Практическое применение электронных ускорителей, но. 2011 – 13/877, НИИЯФ МГУ, Москва, Россия, 2011. (S. Alimov, The practical use of electronic accelerators, no. 2011 – 13/877, MSU SINP, Moscow, Russia, 2011.)
    Retrieved from: http://www.sinp.msu.ru/en/preprint/8278
    Retrieved on: Jan. 13, 2019
  3. Радиационные технологии. Наука. Народное хозяйство. Медицина , А. П. Черняев, Ред., Москва, Россия: Издательство Московского университета, 2019. ( Radiation technologies. The science. National economy. Medicine, A. P. Chernyaev, Eds., Moscow, Russia: Moscow University Press, 2019.)
    Retrieved from: http://hea.phys.msu.ru/static/data/Chernyaev_RadiactiveTech.pdf
    Retrieved on: May 10, 2019
  4. Statement summarising the Conclusions and Recommendations from the Opinions on the Safety of Irradiation of Food adopted by the BIOHAZ and CEF Panels , Statemen of EFSA, EFSA, Parma, Italy, 2011.
    Retrieved from: https://www.efsa.europa.eu/en/efsajournal/pub/2107
    Retrieved on: Mar. 29, 2011
  5. General Standard for Irradiated Foods , CXS 106-1983, FAO/WHO, Rome, Italy, 2003.
    Retrieved from: http://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/
    Retrieved on: Oct. 19, 2018
  6. U. A. Bliznyuk et al., “Innovative approaches to developing radiation technologies for processing biological objects,” Bull. Russ. Acad. Sci.: Phys., vol. 82, no. 6, Moscow, Russia, Jun. 2018.
    DOI: 10.3103/S1062873818060072
  7. Радиационные технологии в сельском хозяйстве и пищевой промышленности , Г. В. Козьмин, С. А. Гераськин, Н. И. Санжарова, Ред., Обнинск, Россия: ВНИИРАЭ, 2015. ( Radiation Technologies in Agriculture and Food Industry, G. V. Kozmin, S. A. Geraskin, N. I. Sanzharova, Eds., Obninsk, Russia: RIRAE, 2015.)
    Retrieved from: https://www.studmed.ru/kozmin-g-v-geraskin-s-a-sanzharova-n-i-red-radiacionnye-tehnologii-v-selskom-hozyaystve-i-pischevoy-promyshlennosti_c5d41bf704e.html
    Retrieved on: Oct. 10, 2019
  8. S. Y. Lee et al., “Combined Effect of Kimchi Powder and Onion Peel Extract on Quality Characteristics of Emulsion Sausages Prepared with Irradiated Pork,” Korean J. Food Sci. Anim. Resour., vol. 35, no. 3, pp. 277 – 285, Jun. 2015.
    DOI: 10.5851/kosfa.2015.35.3.277
    PMid: 26761840
    PMCid: PMC4662349
  9. S. Ayari, J. Han, K. D. Vu, M. Lacroix, “Effects of gamma radiation, individually and in combination with bioactive agents, on microbiological and physicochemical properties of ground beef,” Food Control, vol. 64, pp. 173 – 180, Jun. 2016.
    DOI: 10.1016/j.foodcont.2015.12.034
  10. S. Cheng et al., “The effects of electron beam application on the microbiological stability and physical–chemical quality of mince beef (M. longissimus Dorsi) during cold storage,” J. Food Process. Preserv ., vol. 42, no. 2, 2018.
    DOI: 10.1111/jfpp.13448
  11. C. Li et al., “Effect of different irradiation dose treatment on the lipid oxidation, instrumental color and volatiles of fresh pork and their changes during storage,” Meat Sci., vol. 128, pp. 68 – 76, Jun. 2017.
    DOI: 10.1016/j.meatsci.2017.02.009
    PMid: 28214694
  12. S. A. Bhoir, M. Jhaveri, S. P. Chawla, “Evaluation and predictive modeling of the effect of chitosan and gamma irradiation on quality of stored chilled chicken meat,” J. Food Process Eng., vol. 42, no. 6, Sep. 2019.
    DOI: 10.1111/jfpe.13254
  13. A. G. Barroso, N. L. Mastro, “Physicochemical characterization of irradiated arrowroot starch,” Radiat. Phys. Chem., vol. 158, pp. 194 – 198, May 2019.
    DOI: 10.1016/j.radphyschem.2019.02.020
  14. A. P. Chernyaev et al., “Study of the Effectiveness of Treating Trout with Electron Beam and X-Ray Radiation,” Bull. Russ. Acad. Sci.: Phys., vol. 84, no. 4, Moscow, Russia, Apr. 2020.
    DOI: 10.3103/S106287382004005X
  15. A. P. Chernyaev et al., “Modeling of electron irradiation treatment on kinetics of bacterial content in minced fish,” Memoirs of the Faculty of Physics, Lomonosov Moscow State University , no. 2, Moscow, Russia, 2020.
    Retrieved from: http://uzmu.phys.msu.ru/abstract/2020/2/2020401/
    Retrieved on: Sep. 19, 2020
  16. J. Kim, R. G. Moreira, M. E. Castell-Perez, “Validation of irradiation of broccoli with a 10 MeV electron beam accelerator,” J. Food Eng., vol. 86, no. 4, pp. 595 – 603, Jun. 2008.
    DOI: 10.1016/j.jfoodeng.2007.11.018
  17. H. Qin et al., “Concept development of X-ray mass thickness detection for irradiated items upon electron beam irradiation processing,” Radiat. Phys. Chem., vol. 143, pp. 8 – 13, Feb. 2018.
    DOI: 10.1016/j.radphyschem.2017.09.012
  18. J. Kim, R. G. Moreira, M. E. Castell-Perez, “Improving phytosanitary irradiation treatment of mangoes using Monte Carlo simulation,” J. Food Eng., vol. 149, pp. 137 – 143, Mar. 2015.
    DOI: 10.1016/j.jfoodeng.2014.10.005
  19. I. Peivaste, Gh. Alahyarizadeh, “Comparative Study on Absorbed Dose Distribution of Potato and Onion in X-ray and Electron Beam System by MCNPX2.6 Code,” MAPAN, vol. 34, no. 1, pp. 19 – 29, Mar. 2019.
    DOI: 10.1007/s12647-018-0287-z
  20. V. I. Shvedunov et al., “Electron accelerators design and construction at Lomonosov Moscow State University,” Radiat. Phys. Chem., vol. 159, pp. 95 – 100, Jun. 2019.
    DOI: 10.1016/j.radphyschem.2019.02.044
  21. J. Allison et al., “Recent developments in GEANT4,” Nucl. Instrum. Methods. Phys. Res. A, vol. 835, pp. 186 – 225, Nov. 2016.
    DOI: 10.1016/j.nima.2016.06.125
  22. U. A. Bliznyuk et al., “Computer simulation to determine food irradiation dose levels,” IOP Conf. Ser.: Earth Environ. Sci., vol. 365, article no. 012002, 2019.
    DOI: 10.1088/1755-1315/365/1/012002

Radioecology

FUKUSHIMA NUCLEAR DISASTER

Masaki Tan

Brief communication

Pages: 72-74

DOI: 10.37392/RapProc.2020.17

In this brief communication, some considerations related to Fukushima nuclear disaster are presented. They analyse the roles of public and private institutions in the crisis management of the accident. This topic is still under attention because the consequences of radiation on people, environment, and the whole planet must be taken into account. This short review of the facts that happened should be a warning and a memory. Lessons have been learnt and future science should be the science of safety.
  1. International Nuclear and Radiological Event Scale (INES) , IAEA, Vienna, Austria, 1990.
    Retrieved from: https://www.iaea.org/resources/databases/international-nuclear-and-radiological-event-scale
    Retrieved on: Jan. 21, 2020
  2. N. Onishi, K. Belson, “Culture of Complicity Tied to Stricken Nuclear Plant,” The New York Times, Apr. 26, 2011.
    Retrieved from: https://www.nytimes.com/2011/04/27/world/asia/27collusion.html
    Retrieved on: Jan. 23, 2020
  3. The official report of The Fukushima Nuclear Accident Independent Investigation Commission , The National Diet of Japan, Tokyo, Japan, 2012.
    Retrieved from: https://web.archive.org/web/20120710075620/http://naiic.go.jp/wp-content/uploads/2012/07/NAIIC_report_lo_res.pdf
    Retrieved on: Jan. 25, 2020
  4. Final report , Investigation Committee on the Accident at the Fukushima Nuclear Power Stations of Tokyo Electric Power Company, Tokyo, Japan, 2012.
    Retrieved from: https://www.cas.go.jp/jp/seisaku/icanps/eng/final-report.html
    Retrieved on: Jan. 31, 2020
  5. Z. Zhang et al., “Atmospheric Activity Concentration of 90 Sr and 137 Cs after the Fukushima Daiichi Nuclear Accident,” Environ. Sci. Technol., vol. 52, no. 17, pp. 9917 – 9925, Sep. 2018.
    DOI: 10.1021/acs.est.8b01697
    PMid: 30080962
  6. K. Hirose, “Atmospheric effects of Fukushima nuclear accident: A review from a sight of atmospheric monitoring,” J. Environ. Radioact., vol. 218, article no. 106240, Jul. 2020.
    DOI: 10.1016/j.jenvrad.2020.106240
    PMid: 32421574