Vol. 4, 2019
Radiobiology
ANALYSIS OF THE CAPABILITIES OF THE PROGRAMS FIJI, IPLAB AND DARFI IN THE STUDY OF DNA REPAIR ABILITIES IN THE CELLS OF PATIENTS WITH A MOSAIC FORM OF ATAXIA TELANGIECTASIA
Aleksandra Nozdracheva, Roman Ushakov, Nadezhda Pleskach, Mirya Kuranova
Pages: 1-6
Abstract | References | Full Text (PDF)
- E. Ledesma-Fernández, P. H. Thorpe, “Fluorescent foci quantitation for high-throughput analysis,” J. Biol. Methods, vol. 2, no. 2, Jul. 2015.
DOI: 10.14440/jbm.2015.62
PMid: 26290880
PMCid: PMC4538797 - J. M. Shillingford, IPLab Imaging Software for Microscopy from BD Biosciences version 4.0, Biocompare, South San Francisco (CA), USA, 2010.
Retrieved from: https://www.biocompare.com/Product-Reviews/41450-IPLab-Imaging-Software-For-Microscopy-from-BD-Biosciences/
Retrieved on: Aug. 22, 2019 - J. Schindelin et al., “Fiji: an open-source platform for biological-image analysis,” Nat. Methods, vol. 9, no. 7, pp. 676 - 682, Jun. 2012.
DOI: 10.1038/nmeth.2019
PMid: 22743772
PMCid: PMC3855844 - A. Sollazzo et al., “Live Dynamics of 53BP1 Foci Following Simultaneous Induction of Clustered and Dispersed DNA Damage in U2OS Cells,” Int. J. Mol. Sci., vol. 19, no. 2, Feb. 2018.
DOI: 10.3390/ijms19020519
PMid: 29419809
PMCid: PMC5855741 - E. Bobkova et al., “Recruitment of 53BP1 Proteins for DNA Repair and Persistence of Repair Clusters Differ for Cell Types as Detected by Single Molecule Localization Microscopy,” Int. J. Mol. Sci., vol. 19, no. 12, Nov. 2018
DOI: 10.3390/ijms19123713 PMid: 30469529
PMCid: PMC6321197 - T. Ferreira, W. Rasband, ImageJ User Guide – IJ 1.46r, National Institutes of Health, Bethesda (MD), USA, 2012.
Retrieved from: https://imagej.nih.gov/ij/docs/guide/user-guide.pdf
Retrieved on: Aug. 22, 2019 - M. L. Kuranova, N. M. Pleskach, T. A. Ledashcheva, V. M. Mikhel’son, I. M Spivak, “Mosaic forms of ataxia-telangiectasia,” Tsitologiia, vol. 56, no. 8, pp. 619 - 629, 2014.
PMid: 25697008 - И. В Озеров, “Математическое моделирование процессов индукции и репарации двунитевых разрывов ДНК в клетках млекопитающих при действии редкоионизирующего излучения с различной мощностью дозы,” к. ф.-м.н., МГУ имени М. В. Ломоносова, Радиобиология, Москва, Российской Федерации, 2015. (I.V. Ozerov, “Mathematical modeling of the processes of induction and repair of double-stranded DNA breaks in mammalian cells after the action of rarely ionizing radiation with different dose rates,” Ph.D dissertation, Lomonosov Moscow State University, Dept. of Radiobiology, Moscow, Russia, 2015.)
Retrieved from: http://www.bio.msu.ru/res/Dissertation/675/DOC_FILENAME/Ozerov_avtoref.pdf
Retrieved on: Aug. 22, 2019 - М. Г. Заднепрянец и др., “Влияние физических характеристик ускоренных тяжёлых ионов на формирование и репарацию двунитевых разрывов ДНК,” Письма в ЭЧАЯ., том. 15, но. 6(218), стр. 563 - 572, 2018. (M. G. Zadnipryanets, “The effect of the physical characteristics of accelerated heavy ions on the formation and repair of double-stranded DNA breaks,” Letters in JINR, vol. 15, no. 6(218), pp. 563 - 572, 2018.)
Retrieved from: http://www1.jinr.ru/Pepan_letters/panl_2018_6/17_zadnepryan.pdf
Retrieved on: Aug. 22, 2019
RADIOBIOLOGICAL RESEARCH AND DOSIMETRY USING A FLAT ALPHA SOURCE
Zygmunt Szefliński, Mateusz Filipek, Jakub Gotlib, Urszula Kaźmierczak
Pages: 7–9
Abstract | References | Full Text (PDF)
- M. Durante, “New challenges in high energy particle radiobiology,” Br. J. Radiol., vol. 87, no. 1035, Mar. 2014.
DOI: 10.1259/bjr.20130626
PMid: 24198199
PMCid: PMC4064605 - W. K. Weyrather, “Medical applications of accelerated ions,” Lect. Notes Phys., vol. 651, pp. 469 - 490, Aug. 2004.
DOI: 10.1007/978-3-540-44490-9_12 - W. H. Bragg, R. Kleeman, “On the α particles of radium, and their loss of range in passing through various atoms and molecules,” Philos. Mag., vol. 10, no. 57, pp. 318 - 340, Jun. 1905.
DOI: 10.1080/14786440509463378 - N. Ishigure, T. Nakano, H. Enomoto, “A device for in vitro irradiation with alpha-particles using an alpha-emitting radioactive source,” J. Radiat. Res., vol 32, no. 4, pp. 404 - 416, Dec. 1991.
DOI: 10.1269/jrr.32.404
PMid: 1817192 - J. Szabo et al., “In vitro cell irradiation systems based on 210Po alpha source: construction and characterization,” Radiat. Meas., vol. 35, no. 6, pp. 575 - 578, Dec. 2002.
DOI: 10.1016/s1350-4487(02)00089-6
PMid: 12455514 - J. F. Ziegler, J. P. Biersack, M. D. Ziegler, “SRIM — The stopping and range of ions in matter,” Nucl. Instrum. Methods Phys. Res., vol. 268, no. 11 - 12, pp. 1818 - 1823, Jun. 2010.
DOI: 10.1016/j.nimb.2010.02.091 - J. F. Ziegler, SRIM, Int. Bus. Mach. Corp., Armonk (NY), USA, 1985.
Retrieved from: http://www.srim.org
Retrieved on: May 8, 2019
Radiation Chemistry
PRODUCTION AND CHARACTERIZATION OF Al2O3+Ag COMPOSITE NANOPOWDERS
M. A. Kiseleva, S. Yu. Sokovnin, M. E. Balezin
Pages: 10–14
Abstract | References | Full Text (PDF)
- R. Salomoni et al., “Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa,” Nanotechnol. Sci. Appl., vol. 10, pp. 115 – 121, Dec. 2017.
DOI: 10.2147/NSA.S133415
PMid: 28721025
PMCid: PMC5499936 - Y. Yuan, Q. Peng, S. Gurunathan, “Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment,” Int. J. Nanomedicine, vol. 12, pp. 6487 – 6502, Sep. 2017.
DOI: 10.2147/IJN.S135482
PMid: 28919750
PMCid: PMC5592960 - Y. Long et al., “Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli,” Int. J. Nanomedicine, vol. 12, pp. 3193 – 3206, Apr. 2017.
DOI: 10.2147/IJN.S132327
PMid: 28458540
PMCid: PMC5402892 - A. Rónavári et al., “Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes,” Int. J. Nanomedicine, vol. 13, pp. 695 – 703, Feb. 2018.
DOI: 10.2147/IJN.S152010
PMid: 29440895
PMCid: PMC5798539 - J. Tanori, D. Vargas et al. “Metallic and bimetallic nanoparticles supported on mesoporous materials: photocatalytic and degradation properties” in Book of Abstr. BIT`s 8th Annu. World Congr. Nano Science and Technol. 2018 (Nano S&T-2018), Postdam, Germany, 2018, pp. 112.
Retrieved from: http://www.bitcongress.com/nano2018/default.asp
Retrieved on: Nov. 27, 2018 - Y. Yang et al., “Safety and efficacy of PLGA(Ag-Fe3O4)-coated dental implants in inhibiting bacteria adherence and osteogenic inducement under a magnetic field,” Int. J. Nanomedicine, vol. 13, pp. 3751 – 3762, Jul. 2018.
DOI: 10.2147/IJN.S159860
PMid: 29988768
PMCid: PMC6030938 - S. Jin et al., “Electrospun silver ion-loaded calcium phosphate/chitosan antibacterial composite fibrous membranes for guided bone regeneration,” Int. J. Nanomedicine, vol. 13, pp. 4591 - 4605, Aug. 2018.
DOI: 10.2147/IJN.S167793
PMid: 30127608
PMCid: PMC6091484 - С. Ю. Соковнин, М. Е. Балезин, “Использование наносекундного электронного пучка для производства серебряного нанопорошка,” Известия высших учебных заведений. Физика, том 59, но. 9-2, стр. 111 – 114, Дек. 2016. (S. Yu. Sokovnin, M. E. Balezin, “Using nanosecond electron beam for silver nanopowder producing,” Russ. Phys. J., vol. 59, no. 9-2, pp. 111- 114, Dec. 2016.)
Retrieved from: http://elibrary.ru/item.asp?id=28369894
Retrieved on: Dec. 11, 2018 - П. П. Коростелев, Реактивы и растворы в металлургическом анализе,Москва, Россия: Металлургия,1977. (P. P. Korostelev, Reagents and solutions in metallurgical analysis, Moscow, Russia: Metallurgy, 1977.)
Retrieved from: http://elib.pstu.ru/Record/RUPSTUbooks154349
Retrieved on: Dec. 23, 2018 - О. А. Злыгостева, С. Ю. Соковнин, В. Г. Ильвес, “Применение нанопорошка SiO2 — MnO2 для направленной доставки лекарств,” в Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов, В. М. Самсонова, Н. Ю. Сдобнякова, ур. Тверь, Россия: Твер. гос. ун-т, 2018, стр. 262 – 269. (O. A. Zlygosteva, S. Yu. Sokovnin, V. G. Ilves, “The use of SiO2 — MnO2 nanopowders for targeted drug delivery,” in Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials, V. M. Samsonov, N. Yu. Sdobnyakov, Eds., Tver, Russia: TSU, 2018, pp. 262 – 269.)
DOI: 10.26456/pcascnn/2018.10.262
Radiation in Medicine
ESR INVESTIGATION OF X-RAY EXPOSURE ON SOME ANTI-DIABETICS AND PROTON PUMP INHIBITORS
E. Tugce Sarcan, Asuman Tas, Mine Silindir-Gunay, A. Yekta Ozer, Seyda Colak, Baki Hekimoglu
Pages: 15–17
Abstract | References | Full Text (PDF)
- K. Uehara et al., “Effect of X-ray exposure on the pharmaceutical quality of drug tablets using X-ray inspaction equipment,” Drug Dev. Ind. Pharm., vol. 41, no. 6, pp. 953 – 958, Jun. 2015.
DOI: 10.3109/03639045.2014.917093
PMid: 24842380 - T. Miyazaki et al., “Estimation of irradiation dose of radiosterilized antibiotics by electron spin resonance: ampicilin,” J. Pharm. Sci., vol. 83, no. 11, pp.1643 – 1644, Nov. 1994.
DOI: 10.1002/jps.2600831122
PMid: 7891288 - S. Onori et al., “ESR identification of irradiated intibiotics: cephalosporins,” Appl. Radiat. Isot., vol. 47, no. 11 – 12, pp. 1569 – 1572, Nov. – Dec. 1996.
DOI: 10.1016/S0969-8043(96)00210-2 - M. Haupt et al., “Creation and Recombination of Free Radicals in Fluorocarbon Plasma Polymers: An Electron Spin Resonance Study,” Plasma Process. Polym., vol. 5, no. 1, pp. 33 – 43, Jan. 2008.
DOI: 10.1002/ppap.200700096 - I. B. Goldberg, “Improving the analytical accuracy of electron paramagnetic resonance spectroscopy,” J. Magn. Reson., vol. 32, no. 2, pp. 233 – 242, Nov. 1978.
DOI: 10.1016/0022-2364(78)90207-X - N. P. Crook, S. R. Hoon, K. G. Taylor, C. T. Perry, “Electron spin resonance as a high sensitivity technique for environmental magnetism: determination of contamination in carbonate sediments,” Geophys. J. Int., vol. 149, no. 2, pp. 328 – 337, May 2002.
DOI: 10.1046/j.1365-246X.2002.01647.x - H. J. M. Slangen, “Determination of the spin concentration by electron spin resonance,” J. Phys. E: Sci. Inst., vol. 3, no. 10, pp. 775 – 778, Oct. 1970.
DOI: 10.1088/0022-3735/3/10/306 - J. Smidt, Bulletin du Groupment Ampere Compte Rendu du 9e Colloque, Pisa, Italy, 1960, pp. 331 – 337.
DEVELOPMENT OF HIGH TEMPERATURE AND MASS-SEPARATION METHODS FOR SELECTIVE PRODUCTION OF MEDICAL RADIONUCLIDES
V.N. Panteleev, A.E. Barzakh, L.Kh. Batist, D.V. Fedorov, V.S. Ivanov, S.A. Molkanov, S.Yu. Orlov, M.D. Seliverstov, Yu.M. Volkov
Pages: 18–22
Abstract | References | Full Text (PDF)
- S. A. Artamonov et al., “Design features of the 80 MeV H¯ isochronous cyclotron in Gatchina,” in High Energy Physics Division. Main scientific Activities, G. D. Alkhazov, Eds., 4th ed., Gatchina, Russia: PNPI of NRC “Kurchatov Institute”, 2013, pp. 332 – 338.
Retrieved from: http://hepd.pnpi.spb.ru/hepd/articles/PNPI_2007-2012.pdf
Retrieved on: May 15, 2019 - V. N. Panteleev et al., “Project of The Radioisotope Facility RIC-80 at PNPI”, in High Energy Physics Division. Main scientific Activities, G. D. Alkhazov, Eds., 4th ed., Gatchina, Russia: PNPI of NRC “Kurchatov Institute”, 2013, pp. 278 – 282.
Retrieved from: http://hepd.pnpi.spb.ru/hepd/articles/PNPI_2007-2012.pdf
Retrieved on: May 15, 2019 - V. N. Panteleev et al., “The radioisotope complex project "RIC-80" at the Petersburg Nuclear Physics Institute,” Rev. Sci. Instr., vol. 86, no. 12, Dec. 2015.
DOI: 10.1063/1.4937620
PMid: 26724030 - V. N. Panteleev et al., “Status of the project of radioisotope complex RIC-80 (RadioIsotopes at cyclotron C-80) at PNPI,” Radiat. Appl., vol. 1, no. 2, pp. 95 – 100, 2016.
DOI: 10.21175/RadJ.2016.02.017 - V. N. Panteleev et al., “High temperature ion sources with ion confinement,” Rev. Sci. Instrum., vol. 73, no. 2, pp. 738 – 740, Feb. 2002.
DOI: 10.1063/1.1427345 - V. N. Fedosseev, Yu. Kudryavtsev, V. I. Mishin, “Resonance laser ionization of atoms for nuclear physics,” Phys. Scr., vol. 85, no. 5, Apr. 2012.
DOI: 10.1088/0031-8949/85/05/058104 - M. Dombsky, P. Bricault, “High intensity targets for ISOL, historical and practical perspectives Nucl. Instrum. Methods Phys. Res., vol. 266, no. 19 – 20, pp. 4240 – 4246, Oct. 2008.
DOI: 10.1016/j.nimb.2008.05.044 - V. N. Panteleev et. al., “Studies of uranium carbide targets of a high density,” Nucl. Instrum. Methods Phys. Res., vol. 266, no. 19 – 20, pp. 4247 – 4251, Oct. 2008.
DOI: 10.1016/j.nimb.2008.05.045 - G. J. Beyer, “Radioactive ion beams for biomedical research and nuclear medical application,” Hyperfine Interact., vol. 129, no. 1 – 4, pp. 529 – 553, Dec. 2000.
Retrieved from: https://www.academia.edu/32087425/Radioactive_ion_beams_for_biomedical_research_and_nuclear_medical_application
Retrieved on: Feb. 14, 2019 - G. J. Beyer, T. J. Ruth, “The role of electromagnetic separators in the production of radiotracers for bio-medical research and nuclear medical application,” Nucl. Instrum. Methods Phys. Res., vol. 204, pp. 694 – 700, May 2003.
DOI: 10.1016/S0168-583X(03)00489-0 - V. N. Panteleev et al., “Production of Cs and Fr isotopes from a high-density UC targets with different grain dimensions,” Eur. Phys. J. A, vol. 42, no. 3, pp. 495 – 501, Dec. 2009.
DOI: 10.1140/epja/i2009-10841-3 - V. N. Panteleev et al., “New Method Development for Medical Radionuclide 223,224Ra, 225Ac Production,” Radiat. Appl., vol. 3, no. 2, pp. 106 – 109, 2018.
DOI: 10.21175/RadJ.2018.02.017 - V. N. Panteleev et al., “A New Method for Production of the Sr-82 Generator Radionuclide and Other Medical Radionuclides,” Tech. Phys., vol. 63, no. 9, pp. 1254 – 1261, Sep. 2018.
DOI: 10.1134/S1063784218090153 - R. Kirchner, “An ion source with bunched beam release,” Nucl. Instrum. Methods Phys. Res., vol. 26, no. 1 – 3, pp. 204 – 212, May 1987.
DOI: 10.1016/0168-583X(87)90751-8 - V. N. Panteleev et al., “Target Development For Medical Radionuclides Cu-67 And Sr-82 Production,” in Proc. 5th Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2017), Budva, Montenegro, 2017, pp. 43 – 47.
DOI: 10.21175/RadProc.2017.10
PRE-CLINICAL BNCT GLIOBLASTOMA RESEARCH. ICP-AES BORON DETERMINATION METHOD. STUDIES ON 10B BORON BIODISTRIBUTION IN MICE’S ORGANS
А. Tsygankova, V. Каnygin, А. Каsatova, Е. Zavjalov, Т. Guselnikova, А. Kichigin, R. Mukhamadiyarov
Pages: 23–29
Abstract | References | Full Text (PDF)
- R. F. Barth et al., “Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer,” Radiat. Oncol., vol. 7, no. 1, p. 146, Aug. 2012.
DOI: 10.1186/1748-717X-7-146
PMid: 22929110
PMCid: PMC3583064 - R. F. Barth, Z. Zhang, T. Liu, “A realistic appraisal of boron neutron capture therapy as a cancer treatment modality,” Cancer Commun., vol. 38, no. 1, p. 36, Jun. 2018.
DOI: 10.1186/s40880-018-0280-5
PMid: 29914575
PMCid: PMC6006699 - В. В. Каныгин, А. И. Кичигин, Н. В. Губанова, С. Ю. Таскаев, “Возможности бор-нейтронозахватной терапии в лечении злокачественных опухолей головного мозга,” Вестник рентгенологии и радиологии, но. 6, cтр. 36 - 42, 2015. (V. V. Kanygin, A. I. Kichigin, N. V. Gubanova, S. Y. Taskaev, “Possibilities of boron neutron capture therapy in the treatment of malignant brain tumors,” J. Radiol. Nucl. Med., no. 6, pp. 36 - 42, 2015.)
DOI: 10.20862/0042-4676-2015-0-6-142-142 - S. Y. Taskaev et al., “Opportunities for using an accelerator-based epithermal neutron source for boron neutron capture therapy,” Biomed. Eng., vol. 52, no. 2, pp. 73 - 76, Jul. 2018.
DOI: 10.1007/s10527-018-9785-0 - С. Ю. Таскаев и др., “Перспективы использования ускорительного источника эпитепловых нейтронов для бор-нейтронозахватной терапии,” Медицинская техника, т. 308, но. 2, cтр. 1 - 3, 2018. (S. Y. Taskaev et al., “Prospects for the use of an accelerating source of epithermal neutrons for boron-neutron capture therapy,” Med. Equip., vol. 308, no. 2, pp. 1 - 3, 2018.)
Retrieved from: https://elibrary.ru/item.asp?id=34878615
Retrieved on: Aug. 15, 2019 - J. A. Coderre, D. D. Joel, P. L. Micca, M. M. Nawrocky, D. N. Slatkin, “Control of intracerebral gliosarcomas in rats by boron neutron capture therapy with p-boronophenylalanine,” Radiat. Res., vol. 129, no. 3, pp. 290 - 296, Mar. 1992.
DOI: 10.2307/3578028
PMid: 1542717 - J. A. Coderre et al., “Neutron capture therapy of the 9L rat gliosarcoma using the p-boronophenylalanine-fructose complex,” Int. J. Radiat. Oncol. Biol. Phys., vol. 30, no. 3, pp. 643 - 652, Oct. 1994.
DOI: 10.1016/0360-3016(92)90951-d
PMid: 7928496 - K. Ono, Y. Kinashi, M. Suzuki, M. Takagaki, S. Masunaga, “The combined effect of electroporation and borocaptate in boron neutron capture therapy for murine solid tumors,” Jpn. J. Cancer Res., vol. 91, no .8, pp. 853 - 858, Aug. 2000.
DOI: 10.1111/j.1349-7006.2000.tb01024.x
PMid: 10965028
PMCid: PMC5926423 - D. D. Joel, J. A. Coderre, P. L. Micca, M. M. Nawrocky, “Effect of dose and infusion time on the delivery of p-boronophenylalanine for neutron capture therapy,” J. Neurooncol., vol. 41, no. 3, pp. 213 - 221, Feb. 1999.
DOI: 10.1023/A: 100617690
PMid: 10359141 - A. Deagostino et al., “Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications,” Future Med. Chem., vol. 8, no. 8, pp. 899 - 917, May 2016.
DOI: 10.4155/fmc-2016-0022
PMid: 27195428 - P. Agüi-Gonzalez, S. Jähne, N. T. N. Phan, “SIMS imaging in neurobiology and cell biology,” J. Anal. At. Spectrom., vol. 34, no. 7, pp. 1355 - 1368, 2019.
DOI: 10.1039/C9JA00118B - Y. C. Lin et al., “Macro-and microdistributions of boron drug for boron neutron capture therapy in an animal model,” Anticancer Res., vol. 32, no. 7, pp. 2657 - 2664, Jul. 2012.
PMid: 22753723 - P. J. Kueffer et al., “Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes,” Proc. Natl. Acad. Sci. U.S.A., vol. 110, no. 16, pp. 6512 - 6517, Apr. 2013.
DOI: 10.1073/pnas.1303437110
PMid: 23536304
PMCid: PMC3631690 - A. Matsumura et al., “A new boronated porphyrin (STA-BX909) for neutron capture therapy: an in vitro survival assay and in vivo tissue uptake study,” Cancer Lett., vol. 141, no. 1 - 2, pp. 203 - 209, Jul. 1999.
DOI: 10.1016/s0304-3835(99)00105-6
PMid: 10454263 - M. A. Garabalino et al., “Boron biodistribution for BNCT in the hamster cheek pouch oral cancer model: combined administration of BSH and BPA,” Appl. Radiat. Isot., vol. 88, pp. 64 - 68, Jun. 2014.
DOI: 10.1016/j.apradiso.2013.11.118
PMid: 24360859 - M. Carpano et al., “Experimental Studies of Boronophenylalanine ((10)BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment,” Int. J. Radiat. Oncol. Biol. Phys., vol. 93, no. 2, pp. 344 - 352, Oct. 2015.
DOI: 10.1016/j.ijrobp.2015.05.039
PMid: 26232853 - R. F. Barth et al., “Evaluation of unnatural cyclic amino acids as boron delivery agents for treatment of melanomas and gliomas,” Appl. Radiat. Isot., vol. 88, pp. 38 - 42, Jun. 2014.
DOI: 10.1016/j.apradiso.2013.11.133
PMid: 24393770
PMCid: PMC4049841 - M. A. Dagrosa et al., “Selective uptake of p-borophenylalanine by undifferentiated thyroid carcinoma for boron neutron capture therapy,” Thyroid, vol. 12, no. 1, pp .7 - 12, Jan. 2002.
DOI: 10.1089/105072502753451904
PMid: 11838734 - A. Doi et al., “Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy,” J. Neurooncol., vol. 87, no. 3, pp. 287 - 294, May 2008.
DOI: 10.1007/s11060-008-9522-8
PMid: 18219552 - J. Hiratsuka, K. Yoshino, H. Kondoh, Y. Imajo, Y. Mishima, “Biodistribution of boron concentration on melanoma‐bearing hamsters after administration of p‐, m‐, o‐boronophenylalanine,” Jpn. J. Cancer Res., vol. 91, no. 4, pp. 446 - 450, Apr. 2000.
DOI: 10.1111/j.1349-7006.2000.tb00965.x
PMid: 10804294
PMCid: PMC5926464 - M. Białek-Pietras, A. B. Olejniczak, S. Tachikawa, H. Nakamura, Z. J. Leśnikowski, “Towards new boron carriers for boron neutron capture therapy: metallacarboranes bearing cobalt, iron and chromium and their cholesterol conjugates,” Bioorg. Med. Chem., vol. 21, no. 5, pp. 1136 - 1142, Mar. 2013.
DOI: 10.1016/j.bmc.2012.12.039
PMid: 23357039 - J. Laakso et al., “Atomic emission method for total boron in blood during neutron-capture therapy,” Clin. Chem., vol. 47, no. 10, pp. 1796 - 1803, Oct. 2001.
PMid: 11568089 - M. Korkmaz et al., “Estimation of human daily boron exposure in a boron-rich area,” Br. J. Nutr., vol. 98, no. 3, pp. 571 - 575, Sep. 2007.
DOI: 10.1017/S000711450770911X
PMid: 17419890 - R. Rahil-Khazen, B. J. Bolann, R. J. Ulvik, “Trace element reference values in serum determined by inductively coupled plasma atomic emission spectrometry,” Clin. Chem. Lab. Med., vol. 38, no. 8, pp. 765 - 772, Aug. 2000.
DOI: 10.1515/CCLM.2000.109
PMid: 11071071 - В. И. Федоров, “К проблеме определения микроэлементов в сыворотке крови человека,” Аналитика и контроль, т. 9, но. 4, cтр. 358 - 366, Mар. 2005. (V. I. Fedorov, “On the problem of determining trace elements in human serum,” Anal. Control, vol. 9, no. 4, pp. 358 - 366, Mar. 2005.)
Retrieved from: http://elar.urfu.ru/bitstream/10995/58893/1/aik-2005-04-03.pdf
Retrieved on: Aug. 12, 2019 - A. Wittig et al., “Boron analysis and boron imaging in biological materials for Boron Neutron Capture Therapy (BNCT),” Crit. Rev. Oncol. Hematol., vol. 68, no. 1, pp. 66 - 90, Oct. 2008.
DOI: 10.1016/j.critrevonc.2008.03.004
PMid: 18439836 - S. Evans, U. Krähenbühl, “Boron analysis in biological material: microwave digestion procedure and determination by different methods,” Fresenius` J. Anal. Chem., vol. 349, no. 6, pp. 454- 459. Jun. 1994.
Retrieved from: https://link.springer.com/article/10.1007/BF00322933
Retrieved on: Jul. 27, 2019 - D. H. Sun, J. K. Waters, T. P. Mawhinney, “Microwave digestion and ultrasonic nebulization for determination of boron in animal tissues by inductively coupled plasma atomic emission spectrometry with internal standardization and addition of mannitol,” J. Anal. At. Spectrom., vol. 12, no. 6, pp. 675 - 679, Jun. 1997.
Retrieved from: https://www.uvm.edu/cosmolab/boron/boronbyicp.pdf
Retrieved on: Jun. 11, 2019 - T. U. Probst et al., “Comparison of inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry with quantitative neutron capture radiography for the determination of boron in biological samples from cancer therapy,” J. Anal. At. Spectrom., vol. 12, no. 10, pp. 1115 - 1122, Oct. 1997.
DOI: 10.1039/a700445a - A. S. Al-Ammar, R. K. Gupta, R. Barnes, “Elimination of boron memory effect in inductively coupled plasma-mass spectrometry by ammonia gas injection into spray chamber during analysis,” Spectrochimica Acta Part B: At. Spectrosc., vol. 55, no. 6, pp. 629 - 635, Jun. 2000.
DOI: 10.1016/S0584-8547(00)00197-X - N. P. Zaksas, T. T. Sultangazieva, T. M. Korda, “Using a two-jet arc plasmatron for determining the trace element composition of powdered biological samples,” J. Anal. Chem., vol. 61, no. 6, pp. 582 - 587, Jun. 2006.
DOI: 10.1134/S1061934806060128 - N. P. Zaksas et al., “Effect of CoCl2 treatment on major and trace elements metabolism and protein concentration in mice,” J. Trace Elem. Med. Biol., vol. 27, no. 1, pp. 27 - 30, Jan. 2013.
DOI: 10.1016/j.jtemb.2012.07.005
PMid: 22944586 - Ж. Ж. Жеенбаев, В. С. Энгельшт, Двухструйный плазмотрон, Фрунзе, Киргизия: Илим, 1983. (Z. Z. Zheenbaev, V. S. Engelsht, Two-jet plasmatron, Frunze, Kyrgyzstan: Ilim, 1983.
Retrieved from: https://rusneb.ru/catalog/000199_000009_001177139/
Retrieved on: Feb. 20, 2019 - А. Р. Цыганкова, Г. В. Макашова, И. Р. Шелпакова, “Зависимость интенсивности спектральных линий элементов от мощности ИСП-плазмы и расхода аргона,” Методы и объекты химического анализа, т. 7, но. 3, cтр. 138 - 142, 2012. (A.R. Tsygankova, G. V. Makashova, I. R. Shelpakova, “Dependence of the intensity of the spectral lines of elements on the power of ICP plasma and argon consumption.,” Methods and Objects of Chem. Anal., vol. 7, no. 3, pp. 138 - 142, 2012.)
Retrieved from: http://www.moca.net.ua/12/3/pdf/07032012_138-142.pdf
Retrieved on: Nov. 10, 2019 - A. Kramida, Y. Ralchenko, J. Reader, Atomic Spectra Database version 5.6.1, NIST, Gaithersburg (MD), US, 2018.
Retrieved from: https://www.nist.gov/pml/atomic-spectra-database
Retrieved on: Mar. 13, 2019 - А. Н. Зайдель, В. К. Прокофьев, С. М. Райский, Таблицы спектральных линий, Москва, Россия: Издательство Наука, 1969. (A. N. Zaidel, V. K. Prokofiev, S. M. Rayskiy, Tables of spectral lines, Moscow, Russia: Publishing House Science, 1969.)
Retrieved from: https://buklit.ru/book_133920_tablicy_spektralnyh_linij.html
Retrieved on: Jan. 19, 2019
USING THE LUMINESCENT DYES FOR THE ASSESSMENT OF LIPOSOME TRANSPORT PROPERTIES AS THE BORON (10B) CARRIER FOR BORON NEUTRON CAPTURE
R. Mukhamadiyarov, A. Tsygankova, V. Kanygin
Pages: 30–35
Abstract | References | Full Text (PDF)
- H. Nakamura, “Boron lipid-based liposomal boron delivery system for neutron capture therapy: recent development and future perspective,” Future Med. Chem., vol. 5, no. 6, pp. 715 - 730, Apr. 2013.
DOI: 10.4155/fmc.13.48
PMid: 23617433 - S. J. Baker et al., “Therapeutic potential of boron-containing compounds,” Future Med. Chem., vol. 1, no. 7, pp. 1275 - 1288, Oct. 2009.
DOI: 10.4155/fmc.09.71
PMid: 21426103 - S. Altieri et al., “Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy,” J. Med. Chem., vol. 52, no. 23, pp. 7829 - 7835, Dec. 2009.
DOI: 10.1021/jm900763b
PMid: 19954249 - R. F. Barth, P. Mi, W. Yang, “Boron delivery agents for neutron capture therapy of cancer,” Cancer Commun. (Lond.), vol. 38, no. 1, p. 35, Jun. 2018.
DOI: 10.1186/s40880-018-0299-7
PMid: 29914561
PMCid: PMC6006782 - E. M. Heber et al., “Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model,” Proc. Natl. Acad. Sci. U S A, vol. 111, no. 45, pp. 16077 - 16081, Nov. 2014.
DOI: 10.1073/pnas.1410865111
PMid: 25349432
PMCid: PMC4234606 - C. A. Maitz et al., “Validation and comparison of the therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes in multiple murine tumor models,” Transl. Oncol., vol. 10, no. 4, pp. 686 - 692, Aug. 2017.
DOI: 10.1016/j.tranon.2017.05.003
PMid: 28683435
PMCid: PMC5498409 - J. C. Axtell, L. M. A. Saleh, E. A. Qian, A. I. Wixtrom, A. M. Spokoyny, “Synthesis and applications of perfunctionalized boron clusters,” Inorg. Chem., vol. 57, no. 5, pp. 2333 – 2350, Mar. 2018.
DOI: 10.1021/acs.inorgchem.7b02912
PMid: 29465227
PMCid: PMC5985200 - G. Y. Wiederschain, The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologie, 11th ed., Therm. Fisher Sci., Waltham (MA), USA, 2010.
Retrieved from: https://www.thermofisher.com/rs/en/home/references/molecular-probes-the-handbook.html?icid=WE216841
Retrieved on: Oct. 5, 2019 - Y. Fan, Q. Zhang, “Development of liposomal formulations: From concept to clinical investigations,” Asian J. Pharm. Sci., vol. 8, no. 2, pp. 81 – 87, Apr. 2013.
DOI: 10.1016/j.ajps.2013.07.010 - R. V. Thekkedath, “Development of cell-specific and organelle-specific delivery systems by surface modification of lipid-based pharmaceutical nanocarriers,” Ph.D. dissertation, Northeastern University, Boston (MA), USA, 2012.
Retrieved from: https://pdfs.semanticscholar.org/9f0a/8ff7acf7f80579f5945bbd154c2ac634e63b.pdf?_ga=2.18598460.468378157.1573 917423-1171382453.1572199832
Retrieved on: Apr. 8, 2019
TWO LABELED EDTMP RADIOPHARMACEUTICALS WITH Sm-153 AND Lu-177 FOR HUMAN BONE RADIOTHERAPY
Hesham MH Zakaly, Mostafa Y. A. Mostafa, M Zhukovsky
Pages: 36–40
Abstract | References | Full Text (PDF)
177Lu and 153Sm are perspective radionuclides used in nuclear medicine. High-energy beta particles and the relative half-life of the radionuclides are used to achieve an effective palliative treatment of bone metastases. In this paper, the effect of the drug carrier EDTMP (i.e. ethylene diamine tetramethylene phosphonate) on the ionic form of 177Lu and 153Sm is presented. The absorbed doses of 177Lu and 153Sm in ionic form labeled with EDTMP in different organs and tissues are determined by IDAC-Dose 2.1 (Internal Dose Assessment by Computer) software and WinAct software which is used to calculate cumulative activity. 177Lu and 153Sm are lanthanide radionuclides which actively accumulate in the liver and bones when used in ionic form. In the case of labeling with EDTMP, the distribution and elimination of the drug occur according to the kinetics of the carrier, EDTMP. The use of an osteotropic complex (drugs attracted to and targeting bones) allows creating a large dose in the pathological areas and minimizes the damage of healthy organs and tissues. 177Lu and 153Sm labeled with EDTMP decrease the liver dose absorption and increase the bone surface absorption for a more effective treatment and minimizing side effects. The effective dose per administered activity is 0.189 mGy/MBq for 177Lu-ionic form, 0.232 mGy/MBq for 153Sm-ionic form and 0.242 mGy/MBq for 177Lu-EDTMP and 0.139 mGy/MBq for 153sm-EDTMP.
- S. Chakraborty et al., "177Lu-EDTMP: a viable bone pain palliative in skeletal metastasis," Cancer Biother. Radiopharm., vol. 23, no. 2, pp. 202 – 213, Apr. 2008.
DOI: 10.1089/cbr.2007.374
PMid: 18454689 - P. Anderson, R. Nuñez, "Samarium lexidronam (153Sm-EDTMP): skeletal radiation for osteoblastic bone metastases and osteosarcoma," Expert Rev. Anticancer Ther., vol. 7, no. 11, pp. 1517 – 1527, Nov. 2007.
DOI: 10.1586/14737140.7.11.1517
PMid: 18020921 - A. Ahonen et al., "Samarium-153-EDTMP in bone metastases," J. Nucl. Biol. Med., vol. 38, suppl. 1, pp. 123 – 127, Dec. 1994.
PMid: 7543288 - I. G. Finlay, M. D. Mason, M. Shelley, "Radioisotopes for the palliation of metastatic bone cancer: a systematic review," Lancet Oncol., vol. 6, no. 6, pp. 392 – 400, Jun. 2005.
DOI: 10.1016/S1470-2045(05)70206-0
PMid: 15925817 - S. E. Abram, "Radiopharmaceutical Therapy for Palliation of Bone Pain From Osseous Metastases," in The Year book of anesthesiology and pain management, D. H. Chestnut, Eds., 1st ed., Maryland Heights (MO), USA: Mosby, 2006, pp. 256 – 257.
DOI: 10.1016/s1073-5437(08)70502-3 - T. Das, H. D. Sarma, A. Shinto, K. K. Kamaleshwaran, S. Banerjee, "Formulation, preclinical evaluation, and preliminary clinical investigation of an in-house freeze-dried EDTMP kit suitable for the preparation of 177Lu-EDTMP," Cancer Biother. Radiopharm., vol. 29, no. 10, pp. 412 – 421, Dec. 2004.
DOI: 10.1089/cbr.2014.1664
PMid: 25409337 - K. F. Eckerman, R. W. Leggett, WinAct version 1.0, ORNL, Oak Ridge (TN), USA, 2002.
Retrieved from: https://www.ornl.gov/crpk/software
Retrieved on: Mar. 22, 2019 - H. M. H. Zakaly, M. Y. A. Mostafa, M. Zhukovsky, "Dosimetry Assessment of Injected 89Zr-Labeled Monoclonal Antibodies in Humans," Radiat. Res., vol. 191, no. 5, pp. 466 - 474, May 2019.
DOI: 10.1667/RR15321.1
PMid: 30896281 - M. Y. A. Mostafa, H. M. H. Zakaly, M. Zhukovsky, "Assessment of exposure after injection of 99mTc-labeled intact monoclonal antibodies and their fragments into humans," Radiol. Phys. Technol., vol. 12, no. 1, pp. 96 – 104, Mar. 2019.
DOI: 10.1007/s12194-018-00496-1
PMid: 30604358 - S. Chakraborty, T. Das, H. D. Sarma, M. Venkatesh, S. Banerjee, "Comparative studies of 177Lu-EDTMP and 177Lu-DOTMP as potential agents for palliative radiotherapy of bone metastasis," Appl. Radiat. Isot., vol. 66, no. 9, pp. 1196 – 1205, Sep. 2008.
DOI: 10.1016/j.apradiso.2008.02.061
PMid: 18372188 - L. Vigna et al., "Characterization of the [(153)Sm]Sm-EDTMP pharmacokinetics and estimation of radiation absorbed dose on an individual basis," Phys. Med., vol. 27, no. 3, pp. 144 – 152, Jul. 2011.
DOI: 10.1016/j.ejmp.2010.08.001
PMid: 20864370 - D. M. Taylor, R. W. Leggett, "A generic biokinetic model for predicting the behaviour of the lanthanide elements in the human body," Radiat. Prot. Dosim., vol. 105, no. 1 - 4, pp. 193 – 198, 2003.
DOI: 10.1093/oxfordjournals.rpd.a006222
PMid: 14526955 - M. Andersson, L. Johansson, K. Eckerman, S. Mattsson, "IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms," EJNMMI Res., vol. 7, no. 88, Nov. 2017.
DOI: 10.1186/s13550-017-0339-3
PMid: 29098485
PMCid: PMC5668221 - H. M. H. Zakaly, M. Y. A. Mostafa, M. Zhukovsky, "Radiopharmaceutical dose distribution in different organs and tissues for Lu-177 with different carrier," AIP Conf. Proc., vol. 2174, no. 1, 2019.
DOI: 10.1063/1.5134421 - Education and Training in Radiological Protection for Diagnostic and Interventional Procedures, vol. 39, ICRP Publication no. 113, ICRP, Ottawa, Canada, 2009.
Retrieved from: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_39_5
Retrieved on: May 8, 2019
Radiation Measurements
COMPARISON OF ENERGY RESPONSE FUNCTION OF STILBENE, BC501 AND EJ309 NEUTRON GAMMA DETECTION SYSTEM
Annesha Karmakar, Anil K. Gourishetty, A. Kelkar
Pages: 41–46
Abstract | References | Full Text (PDF)
- S. T. Paul et al., “Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick 9Be target and estimation of neutron yields,” Rev. Sci. Instrum., vol. 85, no. 6, pp. 4 – 11, Jun. 2014.
DOI: 10.1063/1.4880202
PMid: 24985813 - What is Neutron Therapy?, Fermilab, Batavia (IL), USA.
Retrieved from: https://www-bd.fnal.gov/ntf/what_is/index.html
Retrieved on: May 6, 2019 - IBC, 1.7 MV TANDETRON ACCELERATOR FACILITY, Indian Institute of Technology Kanpur, Kanpur, India.
- Retrieved from: https://www.iitk.ac.in/ibc/
Retrieved on: May 7, 2019 - D. L. Chichester, Production and Applications of Neutrons using Particle Accelerators, Idaho National Laboratory, Idaho (ID), USA, 2009.
Retrieved from: https://inldigitallibrary.inl.gov/sites/sti/sti/6302373.pdf
Retrieved on: May 7, 2019 - Geant4 Book For Application Developers, CERN, Geneva, Switzerland.
Retrieved from: http://cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/ Retrieved on: May 10, 2019 - B. H. Kang, S. K. Lee, Y. K. Kim, N. Z. Galunov, G. D. Kim, “Evaluation of a composite stilbene for the fast neutron detection,” in Proc. IEEE Nucl. Sci. Symp. Med. Imaging Conf. (NSS/MIC), Knoxville (TN), USA, 2010.
DOI: 10.1109/NSSMIC.2010.5873729 - CAS DataBase, CAS, Columbus (OH), USA.
Retrieved from: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB4331036.htm/
Retrieved on: May 11, 2019 - BC-501, BC-501A, BC-519 Liquid Scintillators, Saint Gobain, Courbevoie, France.
Retrieved from: https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/bc501-501a-519-data-sheet.pdf
Retrieved on: May 11, 2019 - EJ-301, EJ-309, Eljen Technology, Sweetwater (TX), USA.
Retrieved from: https://eljentechnology.com/products/liquid-scintillators/ej-301-ej-309/
Retrieved on: May 11, 2019 - O. Tarasenko, N. Galunov, N. Karavaeva, I. Lazarev, V. Panikarskaya, “Stilbene composite scintillators as detectors of fast neutrons emitted by a 252Cf source,” Radiat. Meas., vol. 58, pp. 61 – 65, Nov. 2013.
DOI: 10.1016/j.radmeas.2013.08.005 - Geant4 User`s Guide for Application Developers, CERN, Geneva, Switzerland, 2016.
Retrieved from: https://gentoo.osuosl.org/distfiles/BookForAppliDev-4.10.03.pdf
Retrieved on: Apr. 10, 2019 - J. Iwanowska et al., “Neutron/gamma discrimination properties of composite scintillation detectors,” J. Instrum., vol. 6, Jul. 2011.
DOI: 10.1088/1748-0221/6/07/P07007 - J. Iwanowska et al., “Neutron/gamma discrimination properties of composite scintillation detectors,” J. Instrum., vol. 6, Jul. 2011.
DOI: 10.1088/1748-0221/6/07/P07007
TRITIUM AND CARBON-14 IN RELEASES OF NUCLEAR REACTOR FACILITIES OF VARIOUS TYPES
E. Nazarov, A. Ekidin, A. Vasilyev, M. Pyshkina, M. Vasyanovich
Pages: 47–52
Abstract | References | Full Text (PDF)
- Indicators for Nuclear Power Development, Nuclear Energy Series No. NG-T-4.5, IAEA, Vienna, Austria, 2015, pp. 3 – 4.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1712_web.pdf
Retrieved on: May 2, 2018 - Environmental and Source Monitoring for Purposes of Radiation Protection, Safety Guide No. RS-G-1.8, IAEA, Vienna, Austria, 2005, pp. 5 – 13.
Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1216_web.pdf
Retrieved on: May. 2, 2018 - A. A. Ekidin, M. H. Zhukovskii, M. E. Vasyanovich, “Identification of the main dose-forming radionuclides in NPP emissions,” Atomic energy, vol. 120, no. 2, pp. 134 – 137, Jun. 2016.
DOI: 10.1007/s10512-016-0107-x - М. Д. Пышкина, “Определение основных дозообразующих нуклидов в выбросах АЭС PWR и ВВЭР,” Биосферная совместимость: человек, регион, технологии, нo. 2 (18), стр. 98 – 107, 2017. (M. D. Pyshkina, “The determination of main dose-forming nuclides in NPP PWR and VVER releases,” Biosphernaya sovmestimost`: Chelovek, Region, Technologii, no. 2 (18), pp. 98 – 107, 2017.)
Retrieved from: https://elibrary.ru/download/elibrary_29435089_67 17971.pdf
Retrieved on: May 2, 2018 - Е. И. Назаров, A. A. Eкидин, A. В. Васильев, “Оценка поступления углерода-14 в атмосферу, обусловленного выбросами АЭС,” Известия высших учебных заведений. Физика, тoм 61, нo. 12 – 2, стр. 67 – 73, 2018. (E. I. Nazarov, A. A. Ekidin, A. V. Vasiljev, “Assessment of the atmospheric carbon-14 caused by NPP emissions,” Izvestiya Vuz. Fizika,) vol. 61, no. 12 – 2, pp. 67 – 73, 2018.
Retrieved from: https://elibrary.ru/item.asp?id=36888653
Retrieved on: May 2, 2018 - Carbon-14 and the environment, Radionuclide Fact Sheet, IRSN, Paris, France, 2010.
Retrieved from: https://www.irsn.fr/EN/Research/publications-documentation/radionuclides-sheets/environment/Documents/Carbone _UK.pdf
Retrieved on: Nov. 23, 2017 - Investigation of the Environmental Fate of Tritium in the Atmosphere, Rep. INFO-0792, CNSC, Ottawa, Canada, 2009.
Retrieved from: https://nuclearsafety.gc.ca/pubs_catalogue/uploads/Investigation_of_Environmental_Fate_of_Tritium_in_the_ Atmosphere_INFO-0792_e.pdf
Retrieved on: Jan. 25, 2019. - Д. Д. Дмитриевич, A. A. Екидин, “Оценка поступления трития в окружающую среду от выбросов АЭС,” Биосферная совместимость: человек, регион, технологии, нo. 1 (21), стр. 88 – 96, 2018. (D. D. Desyatov, A. A. Ekidin, “Evaluation of tritium`s entry into the environment from nuclear power plants` emissions,” Biosphernaya sovmestimost`: Chelovek, Region, Technologii, no. 1 (21), pp. 88 – 96, 2018.)
Retrieved from: https://elibrary.ru/download/elibrary_34959688_70998513.pdf
Retrieved on: Mar. 2, 2019 - A. A. Екидин, К. Л. Антонов, М. В. Жуковский,
“Оценка загрязнения атмосферы тритием при испарении воды с поверхности промышленных водоёмов,” Вопросы радиационной безопасности, нo. 3 (67), стр. 3 – 10, 2012. (A.A. Ekidin, K. L. Antonov, M. V. Zhukovskii, “Assessment of tritium air pollution due to water evaporation from the surface of industrial reservoirs,” Voprosy Radiatsionnoy Bezopasnosti, no. 3 (67), pp. 3 – 10, 2012.)
Retrieved from: https://elibrary.ru/item.asp?id=18037186
Retrieved on: Mar. 12, 2019 - A. A. Екидин и др., “Оценка поступления трития в атмосферу из брызгальных бассейнов балаковской АЭС в холодный период,” Ядерная и радиационная безопасность, нo. 3 (85), стр. 35 – 46, 2017. (A. A. Ekidin et al., “Assessment of Tritium Escape into Atmosphere from the Spray Ponds of the Balakovo NPP in Cold Seasons,” Yadernaya i Radiatsionnaya Bezopasnost`, no. 3 (85), pp. 35 – 46, 2017.)
Retrieved from: https://elibrary.ru/download/elibrary_30297016_17720315.pdf
Retrieved on: Mar. 2, 2019 - А. Г. Цикунов, В. В. Алексеев, С. В. Забродская, К. В. Тыклеева, “Источники образования трития в реакторах типа БН,” Вопросы атомной науки и техники. Серия: ядерно-реакторные константы, нo. 1, стр. 74 – 78, 2015. (A. G. Tsikunov, V. V. Alekseev, S. V. Zabrodskaya, K. V. Tykleeva, “Sources of tritium production in bn-type reactors,” Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yaderno-Reaktornyye Konstanty, no. 1, pp. 74 – 78, 2015.)
Retrieved from: https://vant.ippe.ru/images/pdf/2015/1-9.pdf
Retrieved on: Mar. 2, 2019 - X. Hou, “Tritium and 14C in the Environment and Nuclear Facilities: Sources and Analytical Methods,” J. Nucl. Fuel Cycle Waste Technol., vol. 16, no. 1, pp. 11 – 39, Mar. 2018.
DOI: 10.7733/jnfcwt.2018.16.1.11 - Radioactive Discharges Database, European Commission, Brussels, Belgium, 2016.
Retrieved from: http://europa.eu/radd/nuclideDischargeOverview.dox?pageID=NuclideDischargeOverview
Retrieved on: Jan. 5, 2018 - Power Reactor Information System, IAEA, Vienna, Austria.
Retrieved from: https://pris.iaea.org/PRIS/home.aspx
Retrieved on: Jan. 5, 2018 - S. S. Shapiro, M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika, vol. 52, no 3/4. pp. 591 – 611, Dec. 1965.
Retrieved from: http://www.bios.unc.edu/~mhudgens/bios/662/2008fall/Backup/wilkshapiro1965.pdf
Retrieved on: Mar. 10, 2019 - Encyclopedia of Mathematics: Kolmogorov-Smirnov test, The European Mathematical Society, Helsinki, Finland, 2012.
Retrieved from: https://www.encyclopediaofmath.org/index.php/Kolmogorov-Smirnov_test
Retrieved on: Mar. 10, 2019 - Encyclopedia of Mathematics: Spearman coefficient of rank correlation, The European Mathematical Society, Helsinki, Finland, 2012.
Retrieved from: https://www.encyclopediaofmath.org/index.php/Spearman_coefficient_of_rank_correlation
Retrieved on: Mar. 10, 2019 - M. Vasyanovich et al., “Special monitoring results for determination of radionuclide composition of Russian NPP atmospheric releases,” Nucl. Eng. Technol., vol. 51, no. 4, pp. 1176 – 1179, Jul. 2019.
DOI: 10.1016/j.net.2019.02.010 - И. М. Русских, “Исследовательский реактор ИВВ-2М”, Атомная энергия, тoм 121, нo. 4, стр. 183 – 186, 2016.(I. M. Russkikh, “Research Reactor IVV-2M,” Atomnaya Energiya, vol. 121, no. 4, pp. 183 – 186, 2016.)
Retrieved from: https://elibrary.ru/item.asp?id=27201105
Retrieved on: Apr. 10, 2019 - И. В. Прозорова, “Влияние отравления бериллиевых блоков на нейтронно-физические характеристики реактора ИВГ.1М,” Известия томского политехнического университета. Инжиниринг георесурсов, тoм. 326, нo. 2, стр. 148 – 155, 2015. (I. V. Prozorova, “The effect of poisoning of beryllium blocks on the neutron-physical characteristics of the IVG.1M reactor,” Izvestiya Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov, vol. 326, no. 2, pp. 148 – 155, 2015.)
Retrieved from: http://www.lib.tpu.ru/fulltext/v/Bulletin_TPU/2015/v326/i2/15.pdf
Retrieved on: Apr. 11, 2019 - С. Б. Злоказов и др., “Методические и инженерные подходы к производству изотопов на реакторе ИВВ-2М”, Атомная энергия, тoм 121, нo. 4, стр. 227 – 232, Oкт. 2016. (S. B. Zlokazov et al., “Methodological and engineering approaches to the production of isotopes at the IVV-2M reactor,” Atomnaya Energiya, vol. 121, no. 4, pp. 227 – 232, Oct. 2016.)
Retrieved from: https://j-atomicenergy.ru/index.php/ae/article/view/461
Retrieved on: Apr. 11, 2019
ASSESSMENT OF INDUSTRIAL DIAMONDS USING FOR Co, Cr, Fe, Mn, Ni, AND Si USING THERMAL AND EPITHERMAL NEUTRON ACTIVATION ANALYSIS WITH COMPTON SUPPRESSION
C. Brenan, S. Landsberger
Pages: 53–56
Abstract | References | Full Text (PDF)
- Y. Weiss, W. L. Griffin, S. Elhlou, O. Navon, “Comparison between LA-ICP-MS and EPMA analysis of trace elements in diamonds,” Chem. Geol., vol. 252, no. 3 – 4, pp. 158 – 168, Jul. 2008.
DOI: 10.1016/j.chemgeo.2008.02.008 - J. McNeill et al., “Quantitative analysis of trace element concentrations in some gem-quality diamonds,” J. Phys. Condens. Matter, vol. 21, no. 36, Sep. 2009.
DOI: 10.1088/0953-8984/21/36/364207
PMid: 21832313 - D. M. Bibby, “Zonal distribution of impurities in diamond,” Geochim. Cosmochim. Acta, vol. 43, no. 3, pp 415 – 423, Mar. 1979.
DOI: 10.1016/0016-7037(79)90206-0 - D. M. Bibby, “Impurities in natural diamond,” Chem. Phys. Carbon, vol. 18, pp. 1 – 91, 1982.
Retrieved from: https://ci.nii.ac.jp/naid/80001518268/
Retrieved on: Sep. 3, 2019 - H. W. Fesq, D. M. Bibby, J. P. F. Sellschop, J. I. W. Watterson, “The determination of trace-element impurities in natural diamonds by instrumental neutron activation analysis,” J. Radioanal. Chem., vol. 17, no. 1 – 2, pp. 195 – 216, Mar. 1973.
DOI: 10.1007/BF02520785 - A. Damarupurshad, R. J. Hart, J. P. F. Sellschop, H. O. Meyer, “The application of INAA to the geochemical analysis of single diamonds,” J. Radioanal. Nucl. Chem., vol. 219, no. 1, pp. 33 – 39, May 1997.
DOI: 10.1007/BF02040261 - J. J. Fardy, Y. J. Farrar, “Trace-element analysis of argyle diamonds using instrumental neutron activation analysis,” J. Radioanal. Nucl. Chem., vol. 164, no. 5, pp. 337 – 345, Mar. 1992.
DOI: 10.1007/BF02164957 - E. M. Smith et al., “Blue boron-bearing diamonds from Earth’s lower mantle,” Nature, vol. 560, pp. 84 – 87, Aug. 2018.
DOI: 10.1038/s41586-018-0334-5 - E. Gaillou, J. E. Post, D. Rost, J. E. Butler, “Boron in natural type IIb blue diamonds: Chemical and spectroscopic measurements,” Am. Mineral., vol 97, no. 1, pp. 1 – 18, Jan. 2012.
DOI: 10.2138/am.2012.3925 - J. M. King, et al., “Characterizing natural-color type IIb blue diamonds,” Gems Gemol., vol. 34, no. 4, pp. 246 – 268, Dec. 1998.
DOI: 10.5741/GEMS.34.4.246 - S. Landsberger, J. Yellin, “Minimizing sample sizes while achieving accurate elemental concentrations in neutron activation analysis of precious pottery,” J. Archaeol. Sci.,vol. 20, pp. 622 – 625, Aug. 2018.
DOI: 10.1016/j.jasrep.2018.05.029 - M. B. Stokley, S. Landsberger, “A non-destructive analytical technique for low level detection of praseodymium using epithermal neutron activation analysis and compton suppression gamma-ray spectroscopy,” J. Radioanal. Nucl. Chem., vol. 318, no. 1, pp. 369 – 373, Oct. 2018.
DOI: 10.1007/s10967-018-6071-2 - S. Landsberger, J. Yellin, “Minimizing sample sizes while achieving accurate elemental concentrations in neutron activation analysis of precious pottery,” J. Archaeol. Sci.,vol. 20, pp. 622 – 625, Aug. 2018.
DOI: 10.1016/j.jasrep.2018.05.029 - I. K. Baidoo et al., “Determination of aluminium, silicon and magnesium in geological matrices by delayed neutron activation analysis based on k0 instrumental neutron activation analysis,” Appl. Rad. Isot., vol. 82, pp. 152 – 157, Dec. 2013.
DOI: 10.1016/j.apradiso.2013.07.032
PMid: 23999324 - J. Kučera, R. Zeisler, “Low-level determination of silicon in biological materials using radiochemical neutron activation analysis,” J. Radioanal. Nucl. Chem., vol. 263, no. 3, pp 811 – 816, Feb. 2005.
DOI: 10.1007/s10967-005-0663-3 - S. Yusuf, “Improving the detection limit of silicon, magnesium and aluminum in neutron activation analysis of polymers using a TRIGA® reactor,” J Radioanal. Nucl. Chem., vol. 282, pp. 99 – 104, Oct. 2009.
DOI: 10.1007/s10967-009-0212-6 - S. Landsberger, S. Peshev, D. A. Becker, “Determination of silicon in biological and botanical reference materials by epithermal INAA and Compton suppression,” Nucl. Instrum. Methods Phys. Res., vol. 353, no. 1 – 3, pp. 601 – 605, Dec. 1994.
DOI: 10.1016/0168-9002(94)91732-9 - S. Landsberger, D. Wu, “Improvement of analytical sensitivities for the determination of antimony, arsenic, cadmium, indium, iodine, molybdenum, silicon and uranium in airborne particulate matter by epithermal neutron activation analysis,” J. Radioanal. Nucl. Chem., vol. 167, no. 2, pp. 219 – 225, Jan. 1993.
DOI: 10.1007/BF02037181 - B. Canion, S. Landsberger, “Determining trace amounts of nickel in plant samples by neutron activation analysis,” J. Radioanal. Nucl. Chem., vol. 296, no. 1, pp. 315 – 317, Apr. 2013.
DOI: 10.1007/s10967-012-2070-x - S. Landsberger, W. D. Cizek, R. H. Campbell, “NADA92: An automated, user-friendly program for neutron activation data analysis,” J. Radioanal. Nucl. Chem., vol. 180, no. 1, pp. 55 – 63, May 1994.
DOI: 10.1007/BF02039903 - Gamma-ray Spectrometry Catalog, Idaho National Laboratory, Idaho (ID), USA.
Retrieved from: https://gammaray.inl.gov/SitePages/Home.aspx
Retrieved on: Sep. 29, 2019 - L. A. Currie, “Limits for qualitative detection and quantitative determination. Application to radiochemistry,” Anal. Chem., vol. 40, no. 3, pp. 586 – 593, Mar. 1968.
DOI: 10.1021/ac60259a007
Radiation Protection
ASSESSMENT OF NATURAL RADIONUCLIDE LEVELS FOR TEA SAMPLES IN NAJAF, IRAQ
Dhahir Mohammed Dhahir, Azhar Salman Ali, Ali Abid Abojassim, Hayder H. Hussain
Pages: 57–60
Abstract | References | Full Text (PDF)
- J. E. Turner, Atoms, Radiation and Radiation Protection, 2nd ed., Weinheim, Germany: Wiley-VCH, 1995.
Retrieved from: https://ui.adsabs.harvard.edu/abs/1995arrp.book.....T/abstract
Retrieved on: May 15, 2019 - D. Desideri, M. A. Meli, C. Roselli, L. Feduzi, “Alpha and gamma spectrometry for determination of natural and artificial radionuclides in tea, herbal tea and camomile marketed in Italy,” Microchem. J., vol. 98, no. 1, pp. 170 – 175, May 2011.
DOI: 10.1016/j.microc.2011.01.005 - M. S. Al-Masri et al., “Transfer of (40)K, (238)U, (210)Pb, and (210)Po from soil to plant in various locations in south of Syria,” J. Environ. Radioact., vol. 99, no. 2, pp. 322 – 331, Feb. 2008.
DOI: 10.1016/j.jenvrad.2007.08.021
PMid: 17920734 - S. L. Simon, S. A. Ibrahim, “The plant/soil concentration ratio for calcium, radium, lead, and polonium: Evidence for non-linearity with reference to substrate concentration,” J. Environ. Radioact., vol. 5, no.2, pp. 123 – 142, 1987.
DOI: 10.1016/0265-931X(87)90028-2 - B. L. Tracy, F. A. Prantl, J. M. Quinn, “Transfer of 226Ra, 210Pb and uranium from soil to garden produce: assessment of risk,” Health Phys., vol. 44, no. 5, pp. 469 – 477, May 1983.
DOI: 10.1097/00004032-198305000-00001
PMid: 6853169 - A. C. Paul, K. C. Pillai, “Transfer and uptake of radium in a natural and in a technologically modified radiation environment,” J. Environ. Radioact., vol. 3, no. 1, pp. 55 – 73, Dec. 1986.
DOI: 10.1016/0265-931X(86)90049-4 - V. A. Pulhani, S. Dafauti, A. G. Hegde, R. M. Sharma, U. C. Mishra, “Uptake and distribution of natural radioactivity in wheat plants from soil,” J. Environ. Radioact., vol. 79, no. 3, pp. 331 – 346, Feb. 2005.
DOI: 10.1016/j.jenvrad.2004.08.007
PMid: 15607519 - J. C. Veselsky, “The isotopic composition of uranium in soils and plants from the environment of Seibersdorf, Lower Austria,” Radiochem, Radioanal. Lett., vol. 30, pp. 193 – 198, 1977.
- K. Bunzl, M. Trautmannsheimer, “Transfer of 238U, 226Ra and 210Pb from slag-contaminated soils to vegetables under field conditions,” Sci. Total Environ., vol. 231, no. 2 – 3, pp. 91 – 99, Jul. 1999.
DOI: 10.1016/S0048-9697(99)00020-0 - Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environment, Technical Reports Series no. 364, IAEA, Vienna, Austria, 1994.
Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/25/063/25063861.pdf
Retrieved on: Aug. 21, 2019 - H. Noordijk, K. E. van Bergeijk, J. Lembrechts, M. J. Frissel, “Impact of ageing and weather conditions on soil-to-plant transfer of radiocesium and radiostrontium,” J. Environ. Radioact., vol. 15, no. 3, pp. 277 – 286, 1992.
DOI: 10.1016/0265-931X(92)90063-Y - P. Linsalata, “Uranium and thorium decay series radionuclides in human and animal foodchains - a review,” J. Environ. Qual., vol. 23, no. 4, pp. 633 – 642, Jul. 1994.
DOI: 10.2134/jeq1994.00472425002300040003x - N. Karunakara et al., “Soil to rice transfer factors for (226)Ra, (228)Ra, (210)Pb, (40)K and (137)Cs: a study on rice grown in India,” J. Environ.Radioact., vol. 118, pp. 80 – 92, Apr. 2013.
DOI: 10.1016/j.jenvrad.2012.11.002
PMid: 23266913 - Y. Ağuş, “Determination of the Radioactivity in the Turkish Tea Samples,” Karaelmas J. Sci. Eng., vol. 7, no. 1, pp. 68 – 73, 2017.
Retrieved from: http://fbd.beun.edu.tr/index.php/zkufbd/article/download/523/286
Retrieved on: Jun. 22, 2019 - S. Topcuoğlu, N. Güngör, A. Köse, A. Varinlioğlu, “Translocation and depuration of 137Cs in tea plants,” J. Radioanal. Nucl. Chem., vol. 218, no. 2, pp. 263 – 266, Apr. 1997.
DOI: 10.1007/BF02039348 - V. A. Becegato, F. J. F. Ferreira, W. C. P. Machado, “Concentration of radioactive elements (U, Th and K) derived from phosphatic fertilizers in cultivated soils,” Braz. Arch. Biol. Technol., vol. 51, no. 6, pp. 1255 – 1266, Nov. – Dec. 2008.
DOI: 10.1590/S1516-89132008000600022 - O. Baykara, M. Dogru, “Determination of terrestrial gamma, 238U, 232Th and 40K in soil along fracture zones,” Radiat. Meas., vol. 44, no. 1, pp. 116 – 121, Jan. 2009.
DOI: 10.1016/j.radmeas.2008.10.001 - B. Oktay, K. Sule, D. Mahmut, “Assessments of natural radioactivity and radiological hazards in construction materials used in Elazig, Turkey,” Radiat. Meas., vol. 46, no. 1, pp. 153 – 158, Jan. 2011.
DOI: 10.1016/j.radmeas.2010.08.010 - I. C. Okeyode, A. M. Oluseye, “Studies of the Terrestrial outdoor Gamma Dose Rate Levels in Ogun-Osun River Basins Development Authority Headquarters, Abeokuta, Nigeria,” Phys. Int., vol. 6, no. 1, pp. 1 – 8, 2010.
Retrieved from: http://s3.amazonaws.com/zanran_storage/www.scipub.org/ContentPages/137399400.pdf
Retrieved on: Apr. 12, 2019 - Sources and Effects of Ionizing Radiation, Rep. A/55/46, UNSCEAR, New York (NY), USA, 2000.
Retrieved from: https://www.unscear.org/unscear/publications.html
Retrieved on: Jun. 1, 2019
NUCLEAR STATE LIABILITY FOR DAMAGE RESULTING FROM NUCLEAR ACTIVITIES
Lilian Letícia Nieri Madi, Gian-Maria Agostino Angelo Sordi, Edmir Netto de Araújo
Pages: 61–66
Abstract | References | Full Text (PDF)
- E. N. de Araújo, Curso de direito administrativo, 8a ed., São Paulo, Brasil: Saraiva Educação, 2018. (E. N. de Araújo, Administrative law course., 8th ed., Sao Paulo, Brazil: Saraiva Education, 2018).
- Y. S. Cahali, Responsabilidade civil do Estado, 4a ed., São Paulo, Brasil: Revista dos Tribunais, 2012. (Y. S. Cahali, State’s civil liability, 4th ed., Sao Paulo, Brazil: Journal of the Courts, 2012).
- C. A. Bittar, Responsabilidade civil nas atividades nucleares, São Paulo, Brasil: Revista dos Tribunais, 1985. (C. A. Bittar, Civil liability in nuclear activities, Sao Paulo, Brazil: Journal of the Courts, 1985.)
- F. Tartuce, “Responsabilidade civil,” em Manual de Direito Civil: volume único, 9a ed., São Paulo, Brasil: Método, 2019, cap. 4, seç. 4.3.3.1, págs. 393 – 470. (F. Tartuce, “Civil responsibility,” in Civil Law Manual: single volume, 9th ed., Sao Paulo, Brazil: Method, 2019, ch. 4, sec. 4.3.3.1, pp. 393 – 470.)
Retrieved from: https://www.academia.edu/31961479/Manual_de_Direito_Civil_Volume_Unico_Flavio_Tartuce
Retrieved on: Apr. 10, 2019 - Presidência da República. (10.1.2010). Lei nº 10.406 Institui o Código Civil art. 945. (Presidency of the Republic. (Jan. 10, 2010). Law no. 10.406 Institutes the Civil Code art. 945.)
Retrieved from: http://www.planalto.gov.br/ccivil_03/leis/2002/l10406.htm?fbclid=IwAR1nFCh-8euJD9h0ZNKoTazsM-UaDzFmgitZ4JMgcrepl7Q4CZLFpmy9rO4
Retrieved on: Apr. 10, 2019 - N. Hungria, Comentários ao Código Penal, vol. 1, Tom. 2, 3a ed., Rio de Janeiro, Brasil: Revista Forense, 1955, Arts. 11 a 27. (N. Hungria, Comments on the Penal Code, vol. 1, Tom. 2, 3rd ed., Rio de Janeiro, Brazil: Forense Magazine, 1955, Arts. 11 to 27.)
- Presidência da República. (05.10.1988). Constituição da República Federativa do Brasil de 1988. (Presidency of the Republic. (Oct. 5, 1988). Constitution of the Federative Republic of Brazil, 1988.)
Retrieved from: http://www.planalto.gov.br/ccivil_03/constituicao/constituicao.htm
Retrieved on: Mar. 22, 2019 - Presidência da República. (10.1.2002). Lei nº 10.406 Institui o Código Civil. (Presidency of the Republic. (Jan. 10, 2002). Law no. 10.406 Establishes the Civil Code.)
Retrieved from: http://www.planalto.gov.br/ccivil_03/leis/2002/l10406.htm
Retrieved on: Apr. 13, 2019 - H. L. Meirelles, “Responsabilidade civil da administração,” em Direito Administrativo Brasileiro, 42a ed., São Paulo, Brasil: Malheiros, 2016, cap. 10, seç. 1, p. 779 – 792. (H. L. Meirelles, “Civil liability of the administration,” in Brazilian Administrative Law, 42nd ed., Sao Paulo, Brazil: Malheiros, 2016, ch. 10, sec.1, p. 779 – 792.)
Retrieved from: https://libgen.is/book/index.php?md5=4055D00327A90FF80D397AD18960E99F
Retrieved on: Apr. 13, 2019 - E. Freitas, “Teorias do Risco,” Jusbrasil, 03.11.2015. (E. Freitas, “Risk theories,” Jusbrasil, Nov. 3, 2015.)
Retrieved from: https://eleniltonfreitas.jusbrasil.com.br/artigos/250885109/teorias-do-risco
Retrieved on: Mar. 15, 2019 - Superior Tribunal de Justiça. (18.3.2015). no 30 Direito Ambiental. (Superior Justice Tribunal. (Mar. 18, 2015). no. 30 Environmental Law.)
Retrieved from: http://www.stj.jus.br/internet_docs/jurisprudencia/jurisprudenciaemteses/Jurisprud%C3%AAncia%20em%20teses% 2030%20-%20direito%20ambiental.pdf
Retrieved on: May 22, 2019 - P. F. I. Lemos, Direito ambiental: responsabilidade civil e proteção ao meio ambiente, 3a ed., São Paulo, Brasil: Revista dos Tribunais, 2010. (P. F. I. Lemos, Environmental law: civil liability and protection of the environment, 3rd ed., Sao Paulo, Brazil: Journal of the Courts, 2010.)
- É. Milaré, “Responsabilidade civil ambiental,” em Direito do ambiente, 11ª ed., São Paulo, Brasil: Thomson Reuters, 2018, cap. 2, seç. 4.2, pp. 430 – 522. (É. Milaré, “Environmental liability,” in Environmental law, 11th ed., Sao Paulo, Brazil: Thomson Reuters, 2018, ch. 2, sec. 4.2, pp. 430 – 522.)
Retrieved from: http://www.mpsp.mp.br/portal/page/portal/documentacao_e_divulgacao/doc_biblioteca/bibli_servicos_produtos/bibli _boletim/2019_Boletim/Bol05_04.pdf
Retrieved on: Apr. 13, 2019 - J. L. G. de Almeida, Temas atuais de responsabilidade civil, São Paulo, Brasil: Atlas, 2007. (J. L. G. de Almeida, Current issues of civil liability, José Luiz Gavião de Almeida, Sao Paulo, Brazil: Atlas, 2007.)
Retrieved from: https://repositorio.usp.br/item/002194592
Retrieved on: Mar. 22, 2019 - Presidência da República. (28.3.1977). Decreto nº 79.437 Promulga a Convenção Internacional sobre Responsabilidade Civil em Danos Causados por Poluição por óleo, 1969. (Presidency of the Republic. (Mar. 28, 1977). Decree no. 79.437 Promulgates the International Convention on Civil Liability for Oil Pollution Damage, 1969.)
Retrieved from: http://www.planalto.gov.br/ccivil_03/decreto/1970-1979/D79437.htm
Retrieved on: Apr. 13, 2019 - Presidência da República. (31.8.1981). Lei nº 6.938 Dispõe sobre a Política Nacional do Meio Ambiente, seus fins e mecanismos de formulação e aplicação, e dá outras providências. (Presidency of the Republic. (Aug. 31, 1981). Law no. 6,938 Provides for the National Environmental Policy, its purposes and mechanisms of formulation and application, and other measures.)
Retrieved from: http://www.planalto.gov.br/ccivil_03/leis/l6938.htm
Retrieved on: Apr. 13, 2019 - S. L. Henkes, “A Responsabilidade Civil no Direito Ambiental Brasileiro,” Revista de Direito Sanitário, v. 10, n. 1, págs. 51 – 70, Mar./Jul. 2009. (S. L. Henkes, “The Civil Responsibility in the Brazilian Environmental Law,” Health Law J., vol. 10, no. 1, pp. 51 – 70, Mar./Jul. 2009.)
DOI: 10.11606/issn.2316-9044.v10i1p51-70 - C. R. Gonçalves, Direito Civil Brasileiro: responsabilidade Civil, vol. 4, 10a ed., São Paulo, Brasil: Saraiva, 2015. (C. R. Gonçalves, Brazilian Civil Law: Civil Liability. vol. 4, 1oth ed., Sao Paulo, Brazil: Saraiva, 2015.)
- S. S. Venosa, Direito Civil: obrigações e responsabilidade civil, vol. 2, 17a ed., São Paulo, Brasil: Atlas, 2017. (S. S. Venosa, Civil Law: obligations and civil liability, vol. 2, 17th ed., Sao Paulo, Brazil: Atlas, 2017.)
Retrieved from: http://93.174.95.29/_ads/C4C10068CF480095FB6087C46D89B092
Retrieved on: Apr. 13, 2019 - Presidência da República. (07.10.1980). Decreto-Lei nº 1.809 Institui o Sistema de Proteção ao Programa Nuclear Brasileiro, e dá outras providências (Revogado pela Lei nº 12.731, de 2012). (Presidency of the Republic. (Oct. 7, 1980). Decree-Law no. 1,809 Establishes the System of Protection to the Brazilian Nuclear Program, and other measures [Repealed by Law no. 12,731 of 2012]).
Retrieved from: http://www.planalto.gov.br/ccivil_03/Decreto-Lei/1965-1988/Del1809.htm
Retrieved on: Apr. 13, 2019 - A. Tostes, Sistema de legislação ambiental, Petrópolis, Brasil: Vozes/CECIP, 1994. (A.Tostes, System of environmental legislation, Petropolis, Brazil: Voices/CECIP, 1994.)
- C. A. P. Fiorillo, Curso de Direito Ambiental Brasileiro, 19a ed., São Paulo, Brasil: Saraiva Educação, 2019. (C. A. P. Fiorillo, Brazilian Environmental Law Course, 19th ed., Sao Paulo, Brazil: Saraiva Education, 2019.)
- Presidência da República. (17.10.1977). Lei nº 6.453 Dispõe sobre a responsabilidade civil por danos nucleares e a responsabilidade criminal por atos relacionados com atividades nucleares e dá outras providências. (Presidency of the Republic. (Oct. 17, 1977). Law no. 6,453 Provides for civil liability for nuclear damage and criminal liability for acts related to nuclear activities and other measures.)
Retrieved from: http://www.planalto.gov.br/ccivil_03/Leis/L6453.htm
Retrieved on: Mar. 22, 2019 - Presidência da República. (03.9.1993). Decreto nº 911 Promulga a Convenção de Viena sobre Responsabilidade Civil por Danos Nucleares, de 21/05/1963. (Presidency of the Republic. (Sep. 3, 1993). Decree no. 911 Promulgates the Vienna Convention on Civil Liability for Nuclear Damage of May 21, 1963.)
Retrieved from: http://www.planalto.gov.br/ccivil_03/decreto/1990-1994/D0911.htm
Retrieved on: Mar. 22, 2019
A NEED FOR EYE LENS DOSIMETRY IN NUCLEAR MEDICINE
M. Wrzesień, L. Królicki, Ł. Albiniak, J. Olszewski
Pages: 67–71
Abstract | References | Full Text (PDF)
- ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context, vol. 41, ICRP Publication no. 118, ICRP, Ottawa, Canada, 2012.
DOI: 10.1016/j.icrp.2012.02.001
PMid: 22925378 - The 2007 Recommendations of the International Commission on Radiological Protection, vol. 37, ICRP Publication no. 103, ICRP, Ottawa, Canada, 2007.
Retrieved from: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_37_2-4
Retrieved on: Apr. 20. 2019 - Implications for Occupational Radiation Protection of the New Dose Limit for the Lens of the Eye, TECDOC No. 1731, IAEA, Vienna, Austria, 2013.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1731_web.pdf
Retrieved on: May 12, 2019 - J. Dabin et al., “Eye lens doses in nuclear medicine: a multicentric study in Belgium and Poland,” Radiat. Prot. Dosim., vol. 170, no. 1 – 4, pp. 297 – 301, Sep. 2016.
DOI: 10.1093/rpd/ncv538
PMid: 26822424 - S. Leide-Svegborn, “External radiation exposure of personnel in nuclear medicine from 18F, 99mTc and 131I with special reference to fingers, eyes and thyroid,” Radiat. Prot. Dosim., vol. 149, no. 2, pp. 196 – 206, Apr. 2012.
DOI: 10.1093/rpd/ncr213
PMid: 21571739 - Materiały i sprzęt ochronny przed promieniowaniem X i gamma -- Obliczanie osłon stałych, PN-86/J-80001, Czerwiec 10, 1986. (Materials and equipment protection against X-rays and gamma rays. Calculation the thickness of shields used against ionizing radiation, PN-86/J-80001, Jun. 10, 1986.)
Retrieved from: http://www.narzedziownie.pl/?t=k&i=202&n=21274
Retrieved on: Jan. 18, 2019 - K. A. Pachocki, A. Sackiewicz-Słaby, “Determining the current status and potential of nuclear medicine in Poland,” Rocz. Państw. Zakł. Hig., vol. 64, no. 3, pp. 243 – 250, 2013.
Retrieved from: http://wydawnictwa.pzh.gov.pl/roczniki_pzh/download-article?id=992
Retrieved on: Aug. 22, 2019 - Stan zdrowia ludnoœci polski w 2004 r., Główny urząd statystyczny, Warszawa, Polska, 2006. (The health status of the Polish population in 2004, Central Statistical Office, Warsaw, Poland, 2006.)
Retrieved from: https://stat.gov.pl/cps/rde/xbcr/gus/stan_zdrowia_2004.pdf
Retrieved on: Aug. 28, 2019 - X and gamma reference radiations for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy, part 1,ISO Report 4037–1, ISO, Geneva, Switzerland, 1997.
- X and gamma reference radiation for calibrating dosemeters and doserate meters and determining their response as a function of photon energy, part 3, ISO Report 4037–3, ISO, Geneva, Switzerland, 1999.
Retrieved from: https://www.sis.se/api/document/preview/615127/
Retrieved on: May 15, 2019 - F. Vanhavere et al., “Measurements of eye lens doses in interventional radiology and cardiology: Final results of the ORAMED project,” Radiat. Meas., vol. 46, no. 11, pp. 1243 – 1247, Nov. 2011.
DOI: 10.1016/j.radmeas.2011.08.013 - F. Vanhavere et al., ORAMED: Optimization of radiation protection of medical staff, Rep. 2012-02, EURADOS, Braunschweig, Germany, 2012.
Retrieved from: https://eurados.sckcen.be/-/media/Files/Eurados/documents/EURADOS_Report_201202.pdf?la=en&hash=06DAE419D9DE47 619319719264086015D1D9143E
Retrieved on: Sep. 4, 2019 - M. Wrzesień, “18F-FDG production procedures as a source of eye lens exposure to radiation,” J. Radiol. Prot., vol. 38, no. 1, pp. 382 – 393, Feb. 2018.
DOI: 10.1088/1361-6498/aaa287
PMid: 29447122 - M. Wrzesień, L. Królicki, Ł. Albiniak, J. Olszewski, “Is eye lens dosimetry needed in nuclear medicine?,” J. Radiol. Prot., vol. 38, no. 2, pp. 763 – 774, Jun. 2018.
DOI: 10.1088/1361-6498/aabef5
PMid: 29667600 - M. Wrzesień, Ł. Albiniak, “68Ga-DOTA-TATE—a source of eye lens exposure for nuclear medicine department workers,” J. Radiol. Prot., vol. 38, no. 4, pp. 1512 – 1523, Dec. 2018.
DOI: 10.1088/1361-6498/aaea8e
PMid: 30468680 - The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM. Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF
Retrieved on: Jul. 21, 2019
COMPARISON OF COMPUTATIONAL AND EXPERIMENTAL DOSE RATES IN A NEUTRON ACTIVATION ANALYSIS FACILITY
Jose Rafael Parga, Sheldon Landsberger
Pages: 72–77
Abstract | References | Full Text (PDF)
- Research Reactor Database, IAEA, Vienna, Austria, 2019.
Retrieved from: https://nucleus.iaea.org/RRDB/Content/Util/NAA.aspx
Retrieved on: Jun. 17, 2019 - H. Cember, T. E. Johnson, “Interaction of Radiation with Matter,” in Introduction to Health Physics, 4th ed., New York (NY), USA: McGraw-Hill, 2009, ch. 5, pp. 192 – 193.
Retrieved from: http://93.174.95.29/_ads/0EF2AF24D5751F8535C0FDEE9BE39D48
Retrieved on: Aug. 12, 2019 - Sampling and Analytical Methodologies for Instrumental Neutron Activation Analysis of Airborne Particulate Matter, Training Course Series No. 4, IAEA, Vienna, Austria, 1992.
Retrieved from: https://www.iaea.org/publications/346/sampling-and-analytical-methodologies-for-instrumental-neutron-activation-analysis-of-airborne-particulate-matter
Retrieved on: Aug. 12, 2019 - Occupational Radiation Protection, Safety Standards Series No. GSG-7, IAEA, Vienna, Austria, 2018.
Retrieved from: https://www.iaea.org/publications/11113/occupational-radiation-protection
Retrieved on: Aug. 12, 2019 - Safety of Research Reactors, Safety Standards Series No. SSR-3, IAEA, Vienna, Austria, 2016.
Retrieved from: https://www.iaea.org/publications/11031/safety-of-research-reactors
Retrieved on: Aug. 12, 2019 - C. J. Werner et al., MCNP6.2 Release Notes, Los Alamos National Laboratory, Los Alamos (NM), USA, 2018.
Retrieved from: https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-18-20808.pdf
Retrieved on: Jul. 15, 2019 - W. Charlton, “NETL TRIGA Input Deck,” Unpublished.
- M. L. Fensin, J. S. Hendricks, G. W. McKinney, “Monte Carlo Burnup Interactive Tutorial,” presented at the ANS 2009 Student Meeting, Gainesville (FL), USA, Apr. 2009.
Retrieved from: https://mcnp.lanl.gov/pdf_files/la-ur-09-2051.pdf
Retrieved on: Apr. 12, 2019 - Peach Leaves, SRM 1547, Apr. 2, 2019.
Retrieved from: https://www-s.nist.gov/srmors/certificates/1547.pdf
Retrieved on: Apr. 12, 2019 - Trace Elements in Coal, SRM 1632D, Oct. 14, 2014.
Retrieved from: https://www-s.nist.gov/srmors/certificates/1632d.pdf
Retrieved on: Apr. 12, 2019 - Trace Elements in Coal Fly Ash, SRM 1633C, Jun. 23, 2011.
Retrieved from: https://www-s.nist.gov/srmors/certificates/1633C.pdf
Retrieved on: Apr. 12, 2019 - Montana I Soil, SRM 2710A, Nov. 2, 2018.
Retrieved from: https://www-s.nist.gov/srmors/certificates/2710a.pdf
Retrieved on: Apr. 12, 2019 - J. L. Conlin, Listing of Available ACE Data Tables: Formerly Appendix G of the MCNP Manual, Los Alamos National Laboratory, Los Alamos (NM), USA, 2017.
Retrieved from: https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-17-20709.pdf
Retrieved on: Jul. 15, 2019 - S. Landsberger, A. Sharp, S. Wang, Y. Pontikes, A. H. Tkaczyk, “Characterization of bauxite residue (red mud) for 235U, 238U, 232Th and 40K using neutron activation analysis and the radiation dose levels as modeled by MCNP,” J. Environ. Radioact., vol. 173, pp. 97 – 101, Jul. 2017.
DOI: 10.1016/j.jenvrad.2016.12.008
PMid: 28049554 - S. Wang, S. Landsberger, “MCNP modeling of NORM dosimetry in the oil and gas Industry,” J. Radioanal. Nucl. Chem., vol. 309, no. 1, pp. 367 – 371, Jul. 2016.
DOI: 10.1007/s10967-016-4781-x - PIMAL: Phantom with Moving Arms and Legs, Nuclear Regulatory Commission, Oak Ridge (TN), USA, 2017.
Retrieved from: https://ramp.nrc-gateway.gov/PIMAL
Retrieved on: Apr. 12, 2019 - G. F. Knoll, Radiation Detection and Measurement, 3rd ed., Hoboken (NJ), USA: John Wiley & Sons, Inc., 2000.
Retrieved from: https://libgen.is/book/index.php?md5=51A49204DB42FB158A457EADB9FB7239
Retrieved on: Jun. 19, 2019
RADIOLOGICAL RISK ASSESSMENT OF PHOSPHATE MINING IN EL-SEBAIYA LOCALITY, ASWAN ZONE, EGYPT
E. H. Ghanim, A. Salman, S. Harb
Pages: 78–82
Abstract | References | Full Text (PDF)
- R. I. Obed, I. P. Farai, N. N. Jibiri, “Population dose distribution due to soil radioactivity concentration levels in 18 cities across Nigeria,” J. Radiol. Prot., vol. 25, no. 3, pp. 305 – 312, Sep. 2005.
DOI: 10.1088/0952-4746/25/3/007
PMid: 16286693 - A. Rani, S. Singh, “Natural radioactivity levels in soil samples from some areas of Himachal Pradesh, India using γ-ray spectrometry,” Atmospheric Environ., vol. 39, no. 34, pp. 6306 – 6314, Nov. 2005.
DOI: 10.1016/j.atmosenv.2005.07.050 - H. Orabi, A. Al-Shareaif, M. El-Galefi, “Gamma-ray measurements of naturally occurring radioactive sample from Alkharje City,” J. Radioanal. Nucl. Chem., vol. 269, no. 1, pp. 99 – 102, Jul. 2006.
DOI: 10.1007/s10967-006-0237-z - Sources and Effects of Ionizing Radiation, Rep. A/55/46, UNSCEAR, New York (NY), USA, 2000.
Retrieved from: https://www.unscear.org/unscear/publications.html
Retrieved on: Feb. 12, 2019 - L. Oosterhuis, “Radiological aspects of the non-nuclear industry in the Netherlands,” Radiat. Prot. Dosim., vol. 45, no. 1 – 4, pp. 703 – 705, Dec. 1992.
DOI: 10.1093/rpd/45.1-4.703 - P. Becker, Phosphates and phosphoric acid: raw materials, technology, and economics of the wet process, New York (NY), USA: M. Decker, 1983.
Retrieved from: https://libgen.is/book/index.php?md5=4967F430B4E5602346CD8848E61BCB2A
Retrieved on: Feb. 27, 2019 - A. El-Gabar M. El-Arabi, I. H. Khalifa, “Application of multivariate statistical analyses in the interpretation of geochemical behaviour of uranium in phosphatic rocks in the Red Sea, Nile Valley and Western Desert, Egypt,” J. Environ. Radioact., vol. 61, no. 2, pp. 169 – 190, Dec. 2002.
DOI: 10.1016/s0265-931x(01)00124-2
PMid: 12066979 - A. G. E. Abbady, M. A. M. Uosif, A. El-Taher, “Natural radioactivity and dose assessment for phosphate rocks from Wadi El-Mashash and El-Mahamid Mines, Egypt,” J. Environ. Radioact., vol. 84, no. 1, pp. 65 – 78, 2005.
DOI: 10.1016/j.jenvrad.2005.04.003
PMid: 15951069 - S. El-Sharkawy, M. S. El-Tahawy, W. F. Bakr, A. Salman, “The activity concentrations of 226Ra, 232Th and 40K for the building materials in Sohag Region, Egypt,” J. Nucl. Radiat. Phys., vol. 10, no. 1 - 2, pp. 23 – 37, 2015.
Retrieved from: http://www.afaqscientific.com/jnrp/v10n003.pdf
Retrieved on: Jun. 5, 2019 - K. A. Allam, Z. Ahmed, S. El-Sharkawy, A. Salman, “Analysis and statistical treatment of 238U series isotopic ratios using gamma-ray spectrometry in phosphate samples,” Radiat. Prot. Environ., vol. 40, no. 3, pp. 110 – 115, Jan. 2017.
DOI: 10.4103/rpe.RPE_30_17 - A. Salman, Z. Ahmed, K. A. Allam, S. El‑Sharkawy, “A comparative study for 235U radioactivity concentration calculation methods in phosphate samples,” Radiat. Prot. Environ., vol. 42, no. 1, pp. 5 – 9, Jan. 2019.
DOI: 10.4103/rpe.RPE_77_18 - Sources and Effects of Ionizing Radiation, Rep. A/63/46, UNSCEAR, New York (NY), USA, 2008.
Retrieved from: https://www.unscear.org/unscear/publications.html
Retrieved on: Feb. 10, 2019 - J. Beretka, P. J. Matthew, “Natural radioactivity of Australian building materials, industrial wastes and by-products,” Health Phys., vol. 48, no. 1, pp. 87 – 95, Jan. 1985.
DOI: 10.1097/00004032-198501000-00007
PMid: 3967976 - K. A. Allam, “A methodology for evaluation of absorbed gamma dose-rate factors for radionuclides distribution in soil,” Radiat. Prot. Environ., vol. 39, no. 4, pp. 177 – 182, Jan. 2016.
DOI: 10.4103/0972-0464.199975 - A. A. Qureshi et al., “Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan,” J. Radiat. Res. Appl. Sci., vol. 7, no. 4, pp. 438 – 447, Oct. 2014.
DOI: 10.1016/j.jrras.2014.07.008 - The 2007 Recommendations of the International Commission on Radiological Protection, vol. 37, ICRP Publication no. 103, ICRP, Ottawa, Canada, 2007.
Retrieved from: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_37_2-4
Retrieved on: Apr. 10, 2019 - M. T. Kaleel, M. J. Mohammad, “Natural radioactivity levels and estimation of radiation exposure in environmental soil samples from Tulkarem province-Palestine,” Open J. Soil Sci., vol. 2, no. 1, pp. 7 – 16, Mar. 2012.
DOI: 10.4236/ojss.2012.21002 - M. Rafique et al., “Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley,” J. Radiat. Res. Appl. Sci., vol. 7, no. 1, pp. 29 – 35, Jan. 2014.
DOI: 10.1016/j.jrras.2013.11.005 - 1990 Recommendations of the International Commission on Radiological Protection, vol. 21, ICRP Publication no. 60, ICRP, Ottawa, Canada, 1991.
Retrieved from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%2060
Retrieved on: Oct. 11, 2019
LUNG CANCER INCIDENCE AND CANCER RISK FROM RADIOACTIVITY – SOME DATA FOR THE CAPITAL OF MONTENEGRO
Danko Živković, Nevenka M. Antović
Pages: 83–89
Abstract | References | Full Text (PDF)
- Ionizing radiation, part 1: X- and gamma (γ)-radiation, and neutrons, vol. 75, IARC monographs on the evaluation of carcinogenic risks to humans, IARC, Lyon, France, 2000.
Retrieved from: https://monographs.iarc.fr/wp-content/uploads/2018/06/mono75.pdf
Retrieved on: Aug. 02, 2018 - Radiation – A review of human carcinogens, vol. 100 D, IARC monographs on the evaluation of carcinogenic risks to humans, IARC, Lyon, France, 2012.
Retrieved from: https://monographs.iarc.fr/wp-content/uploads/2018/06/mono100D.pdf
Retrieved on: Aug. 02, 2018 - 1990 Recommendations of the International Commission on Radiological Protection, vol. 21, ICRP Publication no. 60, ICRP, Ottawa, Canada, 1991.
Retrieved from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%2060
Retrieved on: Aug. 02, 2018 - The 2007 Recommendations of the International Commission on Radiological Protection, vol. 37, ICRP Publication no. 103, ICRP, Ottawa, Canada, 2007.
Retrieved from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%20103
Retrieved on: Aug. 02, 2018 - Sources and Effects of Ionizing Radiation, Annex B, Rep. A/55/46, UNSCEAR, New York (NY), USA, 2000.
Retrieved from: https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Annex-B.pdf
Retrieved on: Nov. 14, 2009 - Effects of ionizing radiation, Annex E, Rep. A/61/46 + Corr, UNSCEAR, New York (NY), USA, 2009.
Retrieved from: https://www.unscear.org/docs/publications/2006/UNSCEAR_2006_Annex-E-CORR.pdf
Retrieved on: Jul. 19, 2013 - D. Živković, “Efekat izgubljenog vremena na preživljavanje bolesnika sa karcinomom pluća,” Doktorska disertacija, Univerzitet u Beogradu, Medicinski fakultet, Beograd, Srbija, 2009. (D. Živković, “Effect of delays on surviving patients with lung carcinoma,” Ph.D. dissertation, University of Belgrade, Faculty of Medicine, Belgrade, Serbia, 2009.)
Retrieved from: https://plus.cg.cobiss.net/opac7/bib/35934479
Retrieved on: Jul. 19, 2013 - Ministarstvo zdravlja Crne Gore. (Jul 2011). Nacionalni program za kontrolu raka. (Ministry of Health of Montenegro. (Jul. 2011). National programme for cancer control.)
Retrieved from: http://www.mzdravlja.gov.me/ResourceManager/FileDownload.aspx?rid=217336&rType=2&file=NACIONALNI%20 PROGRAM%20ZA%20KONTROLU%20RAKA%20SA%20PLANOM%20AKTIVNOSTI%202011-2015.pdf
Retrieved on: Aug. 19, 2019 - Statistical Yearbook of Montenegro 2018, Statistical Office of Montenegro – MONSTAT, Podgorica, Montenegro, 2018.
Retrieved from: hhttp://monstat.org/userfiles/file/publikacije/godisnjak%202018/GODISNJAK%202018%20PRELOM.pdf
Retrieved on: Aug. 26, 2019 - P. Vukotic et al., “Indoor radon concentrations in the capital of Montenegro,” Bull. The Montenegrin Academy of Sciences and Arts, no. 17, pp. 85 – 95, 2007.
- P. Vukotic et al., “Radon survey in Montenegro – A base to set national radon reference and “urgent action” level,” J. Environ. Radioact., vol. 196, pp. 232 – 239, Jan. 2019.
DOI: 10.1016/j.jenvrad.2018.02.009
PMid: 29501265 - P. Vukotic et al., “Main findings from radon indoor survey in Montenegro,” Radiat. Prot. Dosim., 2019.
DOI: 10.1093/rpd/ncz022
PMid: 30839085 - P. Vukotić i dr., “Istraživanje radona u stanovima u Crnoj Gori,” u Zborniku 29. Simp. Društva za zaštitu od zračenja Srbije i Crne Gore, Srebrno jezero, Srbija, 2017, str. 161 – 166. (P. Vukotić et al., “Radon indoor survey in Montenegro,” in Proc. 29th Symp. Radiat. Prot. Soc. Ser. Monten., Srebrno jezero, Serbia, 2017, pp. 161 – 166.)
Retrieved from: https://mail.ipb.ac.rs/~centar3/radovi171020/2017_CN03-04_Zbornik_XXIX_Simpozijum_DZZ_SCG_2017.pdf
Retrieved on: Jan. 15, 2019 - P. Vukotić i dr., “Procjena procenta stanova u Crnoj Gori sa koncentracijama radona iznad datog nivoa,” u Zborniku 11. Simp. Hrvatskog društva za zaštitu od zračenja, Osijek, Hrvatska, 2017, str. 356 – 361. (P. Vukotic et al., “Estimation of a percentage of dwellings in Montenegro with radon concentrations above a given level,” in Proc. 11th Symp. Croat. Radiat. Prot. Assoc., Osijek, Croatia, 2017, pp. 356 – 361.)
Retrieved from: https://www.hdzz.hr/wp-content/uploads/2017/04/11HDZZ_zbornik.pdf
Retrieved on: Feb. 4, 2019 - I. Antović, N. Svrkota, D. Živković, N. M. Antović, “A cancer risk due to natural radiation on the Coast of Montenegro,”in Proc. 14th Int. Cong. Int. Rad. Prot. Assoc. (IRPA), Cape Town, South Africa, 2016, pp. 1470 – 1477.
- N. M. Аntović et al., “Radioactivity impact assessment of Nikšić region in Montenegro,” J. Rаdioаnаl. Nucl. Chem., vol. 302, no. 2, pp. 831 – 836, Nov. 2014.
DOI: 10.1007/s10967-014-3254-3 - I. Antović, N. M. Antović, “Nasljedni efekti jonizujućeg zračenja – procjene rizika,” u Zborniku 29. Simp. Društva za zaštitu od zračenja Srbije i Crne Gore, Srebrno jezero, Srbija, 2017, str. 343 – 350. (I. Antović, N. M. Antović, “Hereditary effects of ionizing radiation – risk estimations,” in Proc. 29th Symp. Radiat. Prot. Soc. Ser. Monten., Srebrno jezero, Serbia, 2017, pp. 343 – 350.)
Retrieved from: http://fulir.irb.hr/3649/2/Zbornik%20XXIX%20Simpozijum%20DZZ%20SCG%20Srebrno%20jezero.pdf
Retrieved on: Jan. 21, 2019 - International Commission on Radiological Protection Statement on Radon, ICRP Ref: 00/902/09, ICRP, Ottawa, Canada, 2009.
Retrieved from: http://www.icrp.org/docs/ICRP_Statement_on_Radon(November_2009).pdf
Retrieved on: Jan. 21, 2019 - D. J. Pawel, J. S. Puskin, EPA assessment of risk from radon in homes, Rep. EPA 402-R03-003, EPA, Washington DC, USA, 2003.
Retrieved from: https://www.epa.gov/sites/production/files/2015-05/documents/402-r-03-003.pdf
Retrieved on: Feb. 3, 2019 - N. M. Antovic, N. Svrkota, I. Antovic, “Radiological impacts of natural radioactivity from soil in Montenegro,” Radiat. Prot. Dosim., vol. 148, no. 3, pp. 310 – 317, Feb. 2012.
DOI: 10.1093/rpd/ncr087
PMid: 21498861 - I. Softić, “Doze terestrijalnog gama zračenja u Podgorici,” Magistarski rad, Univerzitet Crne Gore, Prirodno-matematički fakultet, Podgorica, Crna Gora, 2017. (I. Softić, “Doses of terrestrial gamma radiation in Podgorica,” M.Sc. thesis, University of Montenegro, Faculty of Natural Sciences and Mathematics, Podgorica, Montenegro, 2017.)
Retrieved from: https://www.ucg.ac.me/skladiste/blog_101/objava_4601/fajlovi/MSc%20rad%20_%20Ilda%20Softi%c4%87.pdf
Retrieved on: May 15, 2019 - Environmental Measurements Laboratory (EML) Procedures Manual, Rep. HASL-300, U.S. Department of Homeland Security, New York (NY), USA, 1997.
Retrieved from: https://www.hsdl.org/?abstract&did=487142
Retrieved on: Apr. 2, 2019 - GammaVision-32 Software User’s Manual, 6th ed., AMETEK Inc. (ORTEC), Oak Ridge (TN), USA, 2003.
Retrieved from: https://www.ortec-online.com/-/media/ametekortec/manuals/a66-mnl.pdf
Retrieved on: Feb. 15, 2019 - M. A. Baloch et al., “A study on natural radioactivity in Khewra Salt Mines, Pakistan,” J. Radiat. Res., vol. 53, no. 3, pp. 411 – 421, May 2012.
DOI: 10.1269/jrr.11162
PMid: 22739011 - Z. Gledovic, O. Bojovic, T. Pekmezovic, “The pattern of lung cancer mortality in Montenegro,” Eur. J. Cancer Prev.,vol. 12, no. 5, pp. 373 – 376, Oct. 2003.
DOI: 10.1097/00008469-200310000-00005
PMid: 14512801 - L. A. Torre et al., “Global cancer statistics, 2012,” CA: Cancer J. Clin., vol. 65, no. 2, pp. 87 – 108, Mar. 2015.
DOI: 10.3322/caac.21262
PMid: 25651787 - L. A. Torre, R. L. Siegel, E. M. Ward, A. Jemal, “Global cancer incidence and mortality rates and trends – an update,”Cancer Epidemiol. Biomarkers Prev., vol. 25, no. 1, pp. 16 – 27, Jan. 2016.
DOI: 10.1158/1055-9965.EPI-15-0578
PMid: 26667886 - M. Nedović-Vuković, D. Laušević, A. Ljajević, M. Golubović, G. Trajković, “Lung cancer mortality in Montenegro, 1990 to 2015,” Croat. Med. J., vol. 60, no. 1, pp. 26 – 32, Feb. 2019.
DOI: 10.3325/cmj.2019.60.26
PMid: 30825275
PMCid: PMC6406062 - Health Effects of Exposure to Radon (BEIR VI), Committee on the Biological Effects of Ionizing Radiation, Washington DC, USA, 1999.
Retrieved from: https://www.nap.edu/read/5499/chapter/1
Retrieved on: Jan. 15, 2019
Radioecology
EVALUATION OF RADIOACTIVITY IN MONTENEGRO SOIL USING A STATISTICAL APPROACH
Nevenka M. Antović, Nikola R. Svrkota
Pages: 90–95
Abstract | References | Full Text (PDF)
Surface soil from 47 locations in Montenegro had been previously analyzed for radioactivity due to natural 226Ra, 232Th, 40K and man-made 137Cs, and showed mean activity concentrations around 41.1, 45.8, 500 and 95.2 Bq/kg, respectively. Discriminant Analysis used in the present study for the classification, with activity concentrations of radionuclides as independent variables and the Montenegro region (South, Center, North) as a grouping variable, showed 76.6% of original grouped cases as correctly classified. The radium equivalent activity, external and internal hazard index showed a mean of 142 Bq/kg, 0.39 and 0.5, respectively. An average external terrestrial gamma absorbed dose rate was found to be 67.5 nGy/h – for natural radionuclides only, and 79.3 nGy/h for natural radionuclides and 137Cs. The corresponding annual effective dose showed a mean of 0.08 mSv and around 0.1 mSv, respectively. These hazard indices, together with radionuclide activities, are used in the factor analysis performed with Principal Component Analysis as the extraction method and Varimax with Kaiser Normalization as the rotation method. Two components were extracted. The first one loaded basically on 232Th and 226Ra activity explained ~80.6% of the total variance, while the second component explaining ~12.2% of the total variance is found to be strongly correlated with 137Cs and 40K activity.
- Statistical Yearbook of Montenegro 2018, Statistical Office of Montenegro – MONSTAT, Podgorica, Montenegro, 2018.
Retrieved from: http://monstat.org/userfiles/file/publikacije/godisnjak%202018/GODISNJAK%202018%20PRELOM.pdf
Retrieved on: Sep. 26, 2019 - N. M. Antovic, N. Svrkota, I. Antovic, “Radiological impacts of natural radioactivity from soil in Montenegro,” Radiat. Prot. Dosim., vol. 148, no. 3, pp. 310 – 317, Feb. 2012.
DOI: 10.1093/rpd/ncr087
PMid: 21498861 - N. M. Antović, D. S. Bošković, N. R. Svrkota, I. M. Antović, “Radioactivity in soil from Mojkovac, Montenegro, and assessment of radiological and cancer risk,” Nucl. Technol. Radiat. Prot., vol. 27, no. 1, pp. 57 – 63, Mar. 2012.
DOI: 10.2298/NTRP1201057A - N. M. Аntović et al., “Radioactivity impact assessment of Nikšić region in Montenegro,” J. Rаdioаnаl. Nucl. Chem., vol. 302, no. 2, pp. 831 – 836, Nov. 2014.
DOI: 10.1007/s10967-014-3254-3 - N. M. Аntovic, P. Vukotic, N. Svrkotа, S. K. Аndrukhovich, “Pu-239+240 аnd Cs-137 in Montenegro soil: their correlation and origin,” J. Environ. Rаdioаct., vol. 110, pp. 90 – 97, Aug. 2012.
DOI: 10.1016/j.jenvrad.2012.02.001
PMid: 22445877 - Sources and Effects of Ionizing Radiation, Annex B, Rep. A/55/46, UNSCEAR, New York (NY), USA, 2000.
Retrieved from: https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Annex-B.pdf
Retrieved on: Jun. 25, 2016 - Sources and Effects of Ionizing Radiation, Annex B, Rep. A/63/46, UNSCEAR, New York (NY), USA, 2010.
Retrieved from: https://www.unscear.org/docs/publications/2008/UNSCEAR_2008_Annex-B-CORR.pdf
Retrieved on: Feb. 10, 2019 - Environmental Measurements Laboratory (EML) Procedures Manual, Rep. HASL-300, U.S. Department of Homeland Security, New York (NY), USA, 1997.
Retrieved from: https://www.hsdl.org/?abstract&did=487142
Retrieved on: Apr. 2, 2019 - GammaVision-32 Software User’s Manual, 6th ed., AMETEK Inc. (ORTEC), Oak Ridge (TN), USA, 2003.
Retrieved from: https://www.ortec-online.com/-/media/ametekortec/manuals/a66-mnl.pdf
Retrieved on: Feb. 10, 2019 - Recommended data, Laboratoire National Henri Becquerel, Gif-Sur-Yvette, France, 2017.
Retrieved from: http://www.nucleide.org/DDEP_WG/DDEPdata.htm
Retrieved on: Nov. 09, 2018 - J. Beretka, P. J. Matthew, “Natural radioactivity of Australian building materials, industrial wastes and by-products,” Health Phys., vol. 48, no. 1, pp. 87 – 95, Jan. 1985.
DOI: 10.1097/00004032-198501000-00007
PMid: 3967976 - The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM. Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF
Retrieved on: Jul. 11, 2019 - SPSS Statistics version 20, IBM, Armonk (NY), USA, 2011.
Retrieved from: https://www.ibm.com/support/pages/ibm-spss-statistics-200-release-notes#relnotes__description
Retrieved on: Aug. 29, 2019 - N. M. Antovic, N. Svrkota, I. Antovic, R. Svrkota, D. Jančić, “Radioactivity in Montenegro beach sands and assessment of the corresponding environmental risk,” Isot. Environ. Health Stud., vol. 49, no. 2, pp. 153 – 162, Jun. 2013.
DOI: 10.1080/10256016.2013.734303
PMid: 23452289 - M. Mirković i dr., “Geološka karta Crne Gore, 1:200.000,”Zavod za geološka istraživanja Crne Gore, Podgorica, Crna Gora, 1985. (M. Mirković et al., “Geological Map of Montenegro, 1:200,000,”Geological Survey of Montenegro, Podgorica, Montenegro, 1985.)
Retrieved from: https://geozavod.co.me/
Retrieved on: Jun. 29, 2019
HEAVY METALS AND RADIONUCLIDES IN MUSCLES OF FISH SPECIES IN THE SOUTH ADRIATIC – MONTENEGRO
Ivanka Antović, Danijela Šuković, Snežana Andjelić, Nikola Svrkota
Pages: 96–102
Abstract | References | Full Text (PDF)
- R. J. Medeiros et al., “Determination of inorganic trace elements in edible marine fish from Rio de Janeiro State, Brazil,” Food Control, vol. 23, no. 2, pp. 535 –541, Feb. 2012.
DOI: 10.1016/j.foodcont.2011.08.027 - K. M. El-Moselhy, A. I. Othman, H. A. El-Azem , M. E. A. El-Metwally, “Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt,” Egypt. J. Basic and Appl. Sci., vol. 1, no. 2, pp. 97 – 105, Dec. 2014.
DOI: 10.1016/j.ejbas.2014.06.001 - Evaluation of certain food additives and the contaminants mercury, lead, and cadmium, WHO Technical Report Series No. 505, WHO, Geneva, Switzerland, 1972.
Retrieved from: https://apps.who.int/iris/bitstream/handle/10665/40985/WHO_TRS_505.pdf
Retrieved on:Feb. 07, 2016 - Compilation of legal limits for hazardous substances in fish and fishery products, FAO Fisheries Circular No. 764, FAO, Rome, Italy, 1983.
Retrieved from: http://www.fao.org/3/q5114e/q5114e.pdf
Retrieved on: Jan. 26, 2017 - Evaluation of certain food additives and the contaminants, WHO Technical Report Series No. 776, WHO, Geneva, Switzerland, 1989.
Retrieved from: https://apps.who.int/iris/bitstream/handle/10665/39252/WHO_TRS_776.pdf
Retrieved on: Feb. 07, 2016 - The Commission of European Communities. (Jan. 19, 2005). COMMISSION REGULATION (EC) No. 78/2005. Amending Regulation (EC) No. 466/2001 as regards heavy metals.
Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:016:0043:0045:EN:PDF
Retrieved on: Nov. 15, 2015 - Savezna vlada Savezne Republike Jugoslavije. (Maj 28, 1992). Br. 05/92. Pravilnik o kolicinama pesticida, metala i metaloida i drugih otrovnih supstancija, hemioterapeutika, anabolika i drugih supstancija koje se mogu nalaziti u namirnicama. (Federal Government of the Federal Republic of Yugoslavia. (May 28, 1992). No. 05/92. Ordinance on the quantities of pesticides, metals and metalloids and other toxic substances, chemotherapeutics, anabolics and other substances which may be present in foods.)
Retrieved from: http://extwprlegs1.fao.org/docs/pdf/yug72666.pdf
Retrieved on: Feb. 04, 2016 - Službeni list Crne Gore. (Dec. 8, 2009, Sep. 30, 2015). br. 81/2009, 55/2015. Pravilnik o dozvoljenim količinama teških metala, mikotoksina i drugih supstanci u hrani. (Official Gazette of Montenegro. (Dec. 8, 2009, Sep. 30, 2015). No. 81/2009, 55/2015. Rulebook on the allowable amounts of heavy metals, mycotoxins and other substances in food.)
Retrieved from: http://www.mzdravlja.gov.me/ResourceManager/FileDownload.aspx?rid=236146&rType=2&file=Pravilnik%20o%20dozvolje nim%20koli%C4%8Dinama%20te% C5%A1kih%20metala,%20mikotoksina%20i%20drugih%20supstanci%20u%20hrani.pdf;
Retrieved on: Apr. 24, 2016 - N. M. Antovic, N. Svrkota, I. Antovic, R. Svrkota, D. Jančić, “Radioactivity in Montenegro beach sands and assessment of the corresponding environmental risk,” Isot. Environ. Health Stud., vol. 49, no. 2, pp. 153 – 162, Jun. 2013.
DOI: 10.1080/10256016.2013.734303
PMid: 23452289 - J. M. Thomson, “The Mugilidae of the world,” Mem. Qld. Mus., vol. 41, no. 3, pp. 457 – 562, 1997.
Retrieved from: http://biostor.org/pdfproxy.php?url=https%3A%2F%2Farchive.org%2Fdownload%2Fbiostor-105310%2Fbiostor-105310.pdf
Retrieved on: Mar. 20, 2019 - Species fact sheet, FAO, Rome, Italy.
Retrieved from: http://www.fao.org/fishery/species/search/en
Retrieved on:Jun. 03, 2019 - N. M. Antovic, I. Antovic, N. Svrkota, “Levels of 232Th activity in the South Adriatic Sea marine environment of Montenegro,” J. Radioanal. Nucl. Chem., vol. 284, no. 3, pp. 605 – 614, Jun. 2010.
DOI: 10.1007/s10967-010-0512-x - I. Antovic, N. M. Antovic, “Determination of concentration factors for Cs-137 and Ra-226 in the mullet species Chelon labrosus (Mugilidae) from the South Adriatic Sea,” J. Environ. Radioact.,vol. 102, no. 7, pp. 713 – 717, Jul. 2011.
DOI: 10.1016/j.jenvrad.2011.04.006
PMid: 21514703 - I. Antovic, N. Svrkota, N. M. Antovic, “Beryllium-7 in six fish species from the Bay of Boka Kotorska,” in Book of Abstr. 7th Int. Conf. Radiation in Various Fields of Research (RAD 2019), Herceg Novi, Montenegro, 2019, p. 437.
Retrieved from: http://www.rad-conference.org/books.php
Retrieved on: May 15, 2019 - N. Stamatis, N. Kamidis, P. Pigada, D. Stergiou, A. Kallianiotis, “Bioaccumulation levels and potential health risks of mercury, cadmium, and lead in Albacore (Thunnus alalunga, Bonnaterre, 1788) from the Aegean Sea, Greece,” Int. J. Environ. Res. Public Health, vol. 16, no. 5, p. 821, Mar. 2019.
DOI: 10.3390/ijerph16050821
PMid: 30845745
PMCid: PMC6427763 - Compendium of dose coefficients based on ICRP Publication 60, vol. 41, ICRP Publication no. 119, ICRP, Ottawa, Canada, 2012.
Retrieved from: http://www.icrp.org/docs/P%20119%20JAICRP%2041(s)%20Compendium%20of%20Dose%20Coefficients%20based%20on %20ICRP%20Publication%2060.pdf
Retrieved on: Mar. 30, 2016 - J. Usero, C. Izquierdo, J. Morillo, I. Gracia, “Heavy metals in fish (Solea vulgaris, Anguilla anguilla and Liza aurata) from salt marshes on the southern Atlantic coast of Spain,” Environ. Int., vol. 29, no. 7, pp. 949 – 956, Jan. 2004.
DOI: 10.1016/S0160-4120(03)00061-8
PMid: 14592572 - H. T. Jelodar, M. S. Baei, S. H. Najafpour, H. Fazli, “The comparison of heavy metals concentrations in different organs of Liza aurata inhabiting in southern part of Caspian Sea,” World Appl. Sci. J., vol. 14, spec. issue, pp. 96 – 100, 2011.
Retrieved from: https://www.academia.edu/31511122/The_Comparison_of_Heavy_Metals_Concentrations_in_Different_Organs_of_Liza_aur ata_ Inhabiting_in_Southern_Part_of_Caspian_Sea
Retrieved on: Jan. 23, 2019 - M. H. Bahnasawy, A. A. Khidr, N. Dheina, “Seasonal variations of heavy metals concentrations in mullet, Mugil cephalus and Liza ramada (Mugilidae) from Lake Manzala, Egypt,” Egypt. J. Aquat. Biol. Fish., vol. 13, no.2, pp. 81 – 100, Apr. 2009.
DOI: 10.21608/ejabf.2009.2034 - C. Fernandes, A. Fontaínhas-Fernandes, F. Peixoto, M. A. Salgado, “Bioaccumulation of heavy metals in Liza saliens from the Esmoriz–Paramos coastal lagoon, Portugal,” Ecotoxicol. Environ. Saf., vol. 66, no. 3, pp. 426 – 431, Mar. 2007.
DOI: 10.1016/j.ecoenv.2006.02.007
PMid: 16620977 - M. Dural, M. Z. L. Goksu, A. A. Ozak, “Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon,” Food Chem., vol. 102, no. 1, pp. 415 – 421, Dec. 2007.
DOI: 10.1016/j.foodchem.2006.03.001 - M. P. Olgunoglu, E. Artar, İ. A. Olgunoglu, “Comparison of heavy metal levels in muscle and gills of four benthic fish species from the Northeastern Mediterranean Sea,” Pol. J. Environ. Stud., vol. 24, no. 4, pp. 1743 – 1748, 2015.
DOI: 10.15244/pjoes/38972 - A. Ozyilmaz, A. Demirci, D. B. Konuskan, S. Demirci, “Macro minerals, micro minerals, heavy metal, fat, and fatty acid profiles of European hake (Merluccius merluccius Linnaeus, 1758) caught by gillnet,” J. Entomol. Zool. Stud., vol. 5, no. 6, pp. 272 – 275, 2017.
Retrieved from: http://www.entomoljournal.com/archives/2017/vol5issue6/PartD/5-5-219-283.pdf
Retrieved on: Jun. 04, 2019 - H. Karadede, S. A. Oymak, E. Unlu, “Heavy metals in mullet, Liza abu, and catfish, Silurus triostegus, from the Ataturk Dam Lake (Euphrates), Turkey,” Environ. Int., vol. 30, no. 2, pp. 183 – 188, Apr. 2004.
DOI: 10.1016/S0160-4120(03)00169-7
PMid: 14749107 - F. Yılmaz, N. Özdemir, A. Demirak, A. L. Tuna, “Heavy metal levels in two fish species Leuciscus cephalus and Lepomis gibbosus,” Food Chem., vol. 100, no. 2, pp. 830 – 835, 2007.
DOI: 10.1016/j.foodchem.2005.09.020 - F. H. Bashir, M. S. Othman, A. G. Mazlan, S. M. Rahim, K. D. Simon, “Heavy metal concentration in fishes from the coastal waters of Kapar and Mersing, Malaysia,” Turk. J. Fish. Aquat. Sci., vol. 13, no. 2, pp. 375 – 382, Jun. 2013.
Retrieved from: https://pdfs.semanticscholar.org/6ddd/3fb72046819662c96a07964ccd8e0ed5d9bf.pdf
Retrieved on: May 17, 2019 - M. Perugini et al., “Heavy metal (As, Cd, Hg, Pb, Cu, Zn, Se) concentrations in muscle and bone of four commercial fish caught in the central Adriatic Sea, Italy,” Environ. Monit. Assess., vol. 186, no. 4, pp. 2205 – 2213, Apr. 2014.
DOI: 10.1007/s10661-013-3530-7
PMid: 24242233 - Sources and Effects of Ionizing Radiation, Annex B, Rep. A/55/46, UNSCEAR, New York (NY), USA, 2000.
Retrieved from: https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Annex-B.pdf
Retrieved on: Jun. 25, 2016
THE TENSILE BREAKING STRENGTH OF PHRAGMITES AUSTRALIS (CAV.) TRIN. EX STEUD. LEAVES AS A CHRONIC IRRADIATION EFFECT
D. Ganzha, D. Ganzha, A. Nazarov, B. Sploshnoi
Pages: 103–107
Abstract | References | Full Text (PDF)
- Д. Ганжа, О. Назаров, “Вплив хронічного радіаційного опромінення на жилкування та розташування продихів у листках Phragmites australis (Cav.) Trin. ex Steud,” Вісник Львівського університету, Випуск 69, Львов, Украина, 2015. (D. Ganzha, O. Nazarov, “Influence of chronic radiation exposure on the housing and location of stomata in the leaves Phragmites australis (Cav.) Trin. ex stoud,” Bull. University of Lviv, no. 69, Lviv, Ukraine, 2015.)
Retrieved from: http://prima.franko.lviv.ua/faculty/biologh/wis/69/6/14/14.pdf
Retrieved on: Apr. 21, 2019 - Д. Д. Ганжа, А. Б. Назаров, “Изменение механических характеристик листьев тростника обыкновенного под влиянием хронического радиационного облучения,” в Материалы Биологические эффекты малых доз ионизирующей радиации и радиоактивное загрязнение среды, Сыктывкар, Россия, 2014, стр. 210 – 214. (D. D. Ganja, A. B. Nazarov, “Changes in mechanical characteristics in phragmites communis resulted from radioactive irradiation chronic effect,” in Proc. Int. Conf. Biol. Eff. Low Dose Ioniz. Radiat. Radioact. Pollut. Environ., Syktyvkar, Russia, 2014, pp. 210 – 214.)
Retrieved from: https://ib.komisc.ru/add/conf/biorad/wp-content/uploads/2014/01/material_biorad_2014.pdf
Retrieved on: Jun. 15, 2019 - M. T. Максимов, Г. О. Оджагов, Радиоактивные загрязнения и их измерение, Изд. 2, Москва, Россия: Энергоатомиздат, 1989. (M. T. Maksimov, G. O. Odjagov, Radioactive contamination and their measurement, 2nd ed., Moscow, Russia: Energoatomizdat, 1989.)
Retrieved from: https://urss.ru/cgi-bin/db.pl?lang=Ru&blang=ru&page=Book&id=111343
Retrieved on: Mar. 30, 2019 - J. Brown, P. Strand, A. Hosseini, P. Børretzen, Handbook for Assessment of the Exposure of Biota to Ionising Radiation from Radionuclides in the Environment, European Commission, Brussels, Belgium, 2003.
Retrieved from: https://wiki.ceh.ac.uk/download/attachments/115802176/fasset_d5.pdf%3Fversion%3D1%26modificationDate% 3D1263905014000
Retrieved on: Oct. 6, 2019 - Корма. Методы определения аммиачного азота и активной кислотности (рН), ГОСТ 26180-84, Aпр. 29, 1984. (Fodder. Determination of ammonia nitrogen content and actual acidity), GOST 26180–84, Apr. 29, 1984.)
Retrieved from: http://docs.cntd.ru/document/1200024363
Retrieved on: Sep. 9, 2019 - Бумага и картон. Методы определения влагопрочности (с Изменениями N 1, 2), ГОСТ 13525.7-68, Июл. 5, 1968. (Paper and board. Methods for determination of wet strength, GOST 13525.1-68, Jul. 5, 1968.)
Retrieved from: http://docs.cntd.ru/document/1200018216
Retrieved on: Dec. 21, 2018 - D. Ganzha, Ch. Ganzha, A. Nazarov, B. Sploshnoi, “Specifics of using phragmites australis for holding a radioecological monitoring,” in Proc. 3rd Int. Con. Radiation and Applications in Various Fields of Research (RAD2015), Budva, Montenegro, 2015, pp. 257 - 262.
Retrieved from: http://www.rad-conference.org/proceedings.php
Retrieved on: Sep. 13, 2019 - Evaluation of measurement data — Guide to the expression of uncertainty in measurement, 1st ed., JCGM, Paris, France, 2008.
Retrieved from: https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
Retrieved on: Jul. 13, 2019
THE PROGRAMME AND RESULTS OF THE RADIOECOLOGICAL MONITORING OF FRESHWATER ECOSYSTEMS IN THE VICINITY OF ROOPPUR NPP (PEOPLE’S REPUBLIC OF BANGLADESH)
Rena A. Mikailova, Aleksei V. Panov, Dmitry N. Kurbakov
Pages: 108–112
Abstract | References | Full Text (PDF)
- R. Karim et al., “Nuclear energy development in Bangladesh: A study of opportunities and challenges,” Energies, vol. 11, no. 7, Jun. 2018.
DOI: 10.3390/en11071672 - А. В. Панов, Н. И. Санжарова, В. К. Кузнецов, С. И. Спиридонов, Д. Н. Курбаков, “Анализ подходов к радиационно-экологическому мониторингу в районах размещения ядерно- и радиационно-опасных объектов. Обзор,” Бюллетень Национального Радиационно-Эпидемиологического Регистра, том 28, но. 3, 2019. (A. V. Panov, N. I. Sanzharova, V. K. Kuznetsov, S. I. Spiridonov, D. N. Kurbakov, “Analysis of approaches to organization of radioecological monitoring on areas of nuclear and radiation-hazardous facilities location. Review,” Bull. National Radiation and Epidemiological Registry, vol. 28, no. 3, Moscow, Russia, 2019.)
DOI: 10.21870/0131-3878-2019-28-3-75-95 - Санитарно-защитные зоны и зоны наблюдения радиационных объектов. Условия эксплуатации и обоснование границ, СП 2.6.1.2216—07, июня 27, 2007. (Sanitary protection zones and observation zones of radiation objects. Operating conditions and justification of borders, SP 2.6.1.2216—07, Jun. 27, 2007.
Retrieved from: https://files.stroyinf.ru/Data2/1/4293841/4293841228.pdf
Retrieved on: Dec. 8, 2019 - Programmes and systems for source and environmental radiation monitoring, Safety Reports Series no. 64, IAEA, Vienna, Austria, 2010.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1427_web.pdf
Retrieved on: Aug. 22, 2019 - Environmental and source monitoring for purposes of radiation protection: safety guide, Safety Standards Series no. RS-G-1.8, IAEA, Vienna, Austria, 2005.
Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1216_web.pdf
Retrieved on: Aug. 22, 2019 - Инженерно-экологические изыскания для строительства, СП 11-102-97, Aвг. 15, 1997. (Engineering environmental site investigations for construction, SP 11-102-97, Aug. 15, 1997.)
Retrieved from: https://files.stroyinf.ru/Data2/1/4294851/4294851544.pdf
Retrieved on: Aug. 22, 2019 - Организация и проведение режимных наблюдений за состоянием и загрязнением поверхностных вод суши, РД 52.24.309-2016, Дец. 20, 2016. (Organisation and conduct of operational monitoring of the state and pollution of surface waters, RD 52.24.309-2016, Dec. 20, 2016.)
Retrieved from: https://pdf.standartgost.ru/catalog/Data2/1/4293748/4293748080.pdf
Retrieved on: Aug. 22, 2019 - Охрана природы. Гидросфера. Правила контроля качества воды водоёмов и водотоков, ГОСТ 17.1.3.07-82, Янв. 1, 1983. (Nature protection. Hydrosphere. Procedures for quality control of water in reservoires and stream flows, GOST 17.1.3.07-82, Jan. 1, 1983.)
Retrieved from: http://docs.cntd.ru/document/gost-17-1-3-07-82
Retrieved on: Aug. 22, 2019 - Нормы радиационной безопасности. Санитарные правила и нормативы (НРБ-99/2009), СанПиН 2.6.1.2523-09, июля 7, 2009. (Radiation Safety Standards NRB-99/2009. Sanitary standards and regulations, SanPiN 2.6.1.2523-09, Jul. 7, 2009.)
Retrieved from: http://docs.cntd.ru/document/902170553
Retrieved on: Aug. 22, 2019 - Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ 99/2010), СП 2.6.1.2612-10, Aвг. 11, 2010. (Basic sanitary rules for ensuring radiation safety (OSPORB 99/2010), SP 2.6.1.2612-10, Aug. 11, 2010.)
Retrieved from: https://files.stroyinf.ru/Data2/1/4293816/4293816468.pdf
Retrieved on: Aug. 22, 2019 - АЭС Руппур. Энергоблоки 1, 2. Предпроектная документация. Отчеты по инженерным изысканиям. Т. 5. Технический отчет инженерно-экологические изысканиям. Книга 2., АО Атомэнергопроект, Москва, Россия, 2014. (Rooppur NPP. Units 1, 2. Pre-project documentation. Reports on the engineering surveys. V. 5. Technical report on engineering and environmental surveys. Book 2., Atomenergoproekt JSC, Moscow, Russia, 2014.)
- АЭС Руппур. Энергоблоки 1,2. Предпроектная документация. Сводный технический отчёт. Экологический мониторинг в 30-км зоне площадки АЭС Руппур: комплексное обследование атмосферного воздуха, наземных и водных экосистем. Книги 1, 2., АО Атомэнергопроект, Москва, Россия, 2015. (Rooppur NPP. Units 1, 2. Pre-project documentation. Consolidated technical report. Environmental monitoring in the 30-km zone of the Rooppur NPP site: a comprehensive survey of atmospheric air, terrestrial and aquatic ecosystems. Books 1, 2., Atomenergoproekt JSC, Moscow, Russia, 2015.)
- АЭС Руппур. Энергоблоки 1,2. Технический отчёт. Экологический мониторинг на площадке АЭС Руппур в 2016 г. Книги 1, 2., АО Атомэнергопроект, Москва, Россия, 2017. (Rooppur NPP. Units 1, 2. Technical report. Environmental monitoring of the Rooppur NPP site in 2016. Books 1, 2., Atomenergoproekt JSC, Moscow, Russia, 2017.)
- АЭС Руппур. Энергоблоки 1,2. Технический отчёт. Экологический мониторинг на площадке АЭС Руппур в 2017 г. Книги 1, 2., АО Атомэнергопроект, Москва, Россия, 2017. Rooppur NPP. Units 1, 2. Technical report. Environmental monitoring of the Rooppur NPP site in 2017. Books 1, 2., Atomenergoproekt JSC, Moscow, Russia, 2017.
- S. R. Chakraborty, A. S. Mollah, A. Begum, G. U. Ahmad, “Radioactivity in Drinking Water of Bangladesh,” Jpn. J. Health Phys., vol. 40, no. 2, pp. 191 – 201, 2005.
DOI: 10.5453/jhps.40.191 - General Standard For Contaminants And Toxins In Food And Feed,CODEX STAN 193-1995,2015.
Retrieved from: http://www.fao.org/input/download/standards/17/CXS_193e_2015.pdf
Retrieved on: Dec. 8, 2019 - A. S. Mollah, S. R. Chakraborty, “Radioactivity and Radiation Levels in and around the Proposed Nuclear Power Plant Site at Rooppur,” Jpn. Health J. Phys., vol. 44, no. 4, pp. 408 – 413, 2009.
DOI: 10.5453/jhps.44.408 - M. I. Khalil et al., “Assessment of natural radioactivity levels and identification of minerals in Brahmaputra (Jamuna) river sand and sediment, Bangladesh,” Radiat. Prot. Environ., vol. 39, no. 4, pp. 204 – 211, 2016.
DOI: 10.4103/0972-0464.199980
Radiation Detectors
RADIATION HARD MONOLITHIC CMOS SENSORS WITH SMALL ELECTRODE SIZE FOR THE ATLAS EXPERIMENT IN THE HL-LHC
I. Asensi Tortajada et al.
Pages: 113–116
Abstract | References | Full Text (PDF)
- ATLAS Phase-II Upgrade Scoping Document, Rep. CERN-LHCC-2015-020; LHCC-G-166, CERN, Geneva, Switzerland, 2015.
Retrieved from: https://cds.cern.ch/record/2055248
Retrieved on: Feb. 25, 2019 - Technical Design Report for the ATLAS Inner Tracker Pixel Detector, Rep. CERN-LHCC-2017-021; ATLAS-TDR-030, CERN, Geneva, Switzerland, 2017.
Retrieved from: https://cds.cern.ch/record/2285585
Retrieved on: Feb. 25, 2019 - P. S. Miyagawa, I. Dawson, Radiation background studies for the Phase II inner tracker upgrade, Rep. ATL-UPGRADE-PUB-2013-012, CERN, Geneva, Switzerland, 2013.
Retrieved from: https://cds.cern.ch/record/1516824
Retrieved on: Feb. 25, 2019 - H. Pernegger et al., “First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors,” J. Instrum., vol. 12, no. 6, Jun. 2017.
DOI: 10.1088/1748-0221/12/06/P06008 - I. Caicedo et al., “The Monopix chips: depleted monolithic active pixel sensors with a column-drain read-out architecture for the ATLAS Inner Tracker upgrade,”in Proc. 9th Int. Workshop Semicond. Pixel Detect. Part. Imaging (PIXEL 2018), Taipei, Taiwan, 2018.
DOI: 10.1088/1748-0221/14/06/C06006 - R. Cardella et al., “MALTA: an asynchronous readout CMOS monolithic pixel detector for the ATLAS High-Luminosity upgrade,” in Proc. 9th Int. Workshop Semicond. Pixel Detect. Part. Imaging(PIXEL 2018), Taipei, Taiwan, 2018.
DOI : 10.1088/1748-0221/14/06/C06019 - M. Munker et al., “Simulations of CMOS pixel sensors with a small collection electrode, improved for a faster charge collection and increased radiation tolerance,” J. Instrum., vol. 14, no. 5, May 2019.
DOI: 10.1088/1748-0221/14/05/C05013 - I. A. Tortajada, “MiniMALTA: Radiation hard pixel designs for small-electrode monolithic CMOS sensors for the High Luminosity LHC,” J. Instrum., Unpublished.
- M. Kiehn et al., Proteus beam telescope reconstruction version 1.4.0, Zenodo, Geneva, Switzerland, 2019.
DOI: 10.5281/zenodo.2586736 - C. Kleinwort, “General broken lines as advanced track fitting method,” Nucl. Instrum. Methods Phys. Res. vol. 673, pp. 107 – 110, May 2012.
DOI: 10.1016/j.nima.2012.01.024
STUDY AND DEVELOPMENT OF NEUTRON DETECTORS USING DOPED CsI CRYSTALS
Tufic Madi Filho, Maria da Conceição Costa Pereira, José Roberto Berretta, Lucas Faustino Tomaz, Miriam Nieri Madi
Pages: 117–121
Abstract | References | Full Text (PDF)
- M. C. C. Pereira, “Desenvolvimento de cristais baseados em iodeto de Césio para aplicação como detectores de radiação” Tese de doutorado, Universidade de São Paulo, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brasil, 2006. (M. C. C. Pereira, “Development of crystals based in cesium iodide for application as radiation detectors,” Ph.D thesis, University of Sao Paulo, Nuclear and Energy Research Institute, Sao Paulo, Brazil, 2006.)
DOI: 10.11606/T.85.2006.tde-16052012-084114 - M. C. C. Pereira, T. M. Filho, M. M. Hamada,“Development of crystals based on cesium iodide for measurements of gamma radiation and alpha particles,” Nukleonika, vol. 54, no. 3, pp. 151 – 155, 2009.
Retrieved from: http://www.nukleonika.pl/www/back/full/vol54_2009/v54n3p151f.pdf
Retrieved on: Apr. 11, 2019 - M. C. C. Pereira, T. M. Filho, M. M. Hamada, “The effect of Pb2+ dopant in the crystal of CsI and its application as scintillation detector: A study of alpha particles,” Radiat. Eff. Defects in Solids, vol. 167, no. 12, pp. 921 – 928, Nov. 2012.
DOI: 10.1080/10420150.2012.723002 - M. C. C. Pereira, T. M. Filho, “Scintillation Characteristics of CsI Crystal Doped Br under Gamma and Alpha Particles Excitation,” Mater. Sci. Appl., vol. 5, no. 6, pp. 368 – 377, May 2014.
DOI: 10.4236/msa.2014.56042 - M. C. C. Pereira, T. M. Filho, V. M. Lopes, J. R. Berretta, J. P. N. Cárdenas, “Scintillation Response of CsI:Tl Crystal Under Neutron, Gamma, Alpha Particles and Beta Excitations,” in Proc. 2015 Int. Nuc. Atl. Conf. (INAC 2015),Sao Paulo, Brazil, 2015.
Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/47/032/47032097.pdf?r=1&r=1
Retrieved on: Mar. 15, 2019 - M. C. C. Pereira, T. M. Filho, J. R. Berretta, C. H. Mesquita, “Characteristics of the CsI:Tl Scintillator Crystal for X-Ray Imaging Applications,” Mater. Sci. Appl.,vol. 9, no. 2, pp. 268 – 280, Feb. 2018.
DOI: 10.4236/msa.2018.92018 - T. M. Filho, M. C. C. Pereira, J. R. Berretta, J. P. N. Cárdenas, “Study of a Li doped CsI scintillator crystal as a neutron detector,” J. Phys. Conf. Ser., vol. 630, no. 1, 2015.
DOI: 10.1088/1742-6596/630/1/012010 - M. C. C. Pereira, T. M. Filho, J. P. N. Cárdenas, “Inorganic scintillation crystals for neutron detection,” in Proc. 2013 3rd Int. Conf. Adv. Nucl. Instrum., Measurement Methods and their Appl. (ANIMMA), Marseille, France, 2013.
DOI: 10.1109/ANIMMA.2013.6727878
ELECTRONIC READER DESIGN WITH RADFET (PMOSFET) DOSIMETER SENSOR
Nesrin Teki̇n, Ferdi Sarimli, Zeynel Abidin Sezer, Ercan Yilmaz
Pages: 122–124
Abstract | References | Full Text (PDF)
- A. Holmes-Siedle, “The space-charge dosimeter: General principles of a new method of radiation detection,” Nucl. Instrum. Meth., vol. 121, no. 1, pp. 169 – 179, Oct. 1974.
DOI: 10.1016/0029-554X(74)90153-0 - C. Pongpisit, L. Adul, G. Qi-Wei, Sa-Ngiamsak Chiranut, “Biasing technique of MOSFET for an accurate and real-time-readout radiation sensor,” J. East Asian Stud., no. 16, pp. 175 – 183, Apr. 2018.
Retrieved from: http://petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/27439/20180509100641/D300016000011.pdf
Retrieved on: Jul. 12, 2019 - G. Mitev, S. S. Jordanova, M. G. Mitev, “Enhanced Read-out Systems for RADFET dosimeters research,” Anu. J. Electron., pp. 250 – 253, 2015.
Retrieved from: http://ecad.tu-sofia.bg/et/2015/ET2015/AJE-2015/250_Paper-M_Mitev.pdf
Retrieved on: Jul. 21, 2019 - S. Kaya, A. Jaksic, R. Duane, N. Vasovic, E. Yilmaz, “FET-based radiation sensors With Er2O3 gate dielectric,” Nucl. Instrum. Methods Phys. Res., vol. 430, pp. 36 – 41, Sep. 2018.
Retrieved from: https://www.varadis.com/wp-content/uploads/2019/06/1-s2.0-S0168583X18303835-main.pdf
Retrieved on: Aug. 18, 2019 - G. S. Ristic, N. D. Vasovic, M. Kovacevic, A. B. Jaksic, “The sensitivity of 100 nm RADFETs with zero gate bias up to dose of 230 Gy(Si),” Nucl. Instrum. Methods Phys. Res., vol. 269, no. 23, pp. 2703 – 2708, Dec. 2011.
DOI: 10.1016/j.nimb.2011.08.015 - Medium-density performance line ARM®-based. 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 com. Interfaces, STMicroelectronics, Geneva, Switzerland, 2015.
Retrieved from: https://www.st.com/resource/en/datasheet/stm32f103c8.pdf
Retrieved on: Jan. 27, 2019 - N. D. Vasovic, G. S. Ristic, “A new microcontroller-based RADFET dosimeter reader,” Radiat. Meas., vol. 47, no. 4, pp. 272 – 276, Apr. 2012.
DOI: 10.1016/j.radmeas.2012.01.017
NEUTRON ACTIVATION ANALYSIS TO PROBE THE AIR POLLUTION USING PLANT BIOMONITORING IN EGYPT
Yasmin Sarhan, Wael Badawy, Marina Frontasyeva, Wafaa Arafa, Abd ElAzeem Hussein, Hussein El-samman
Pages: 125–130
Abstract | References | Full Text (PDF)
- P. L. Kinney, “Climate change, air quality, and human health,” Am. J. Prev. Med., vol. 35, no. 5, pp. 459 – 467, Nov. 2008.
DOI: 10.1016/j.amepre.2008.08.025
PMid: 18929972 - M. Brauer et al., “Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution,” Environ. Sci. Technol., vol. 46, no. 2, pp. 652 – 660, Jan. 2012.
DOI: 10.1021/es2025752
PMid: 22148428
PMCid: PMC4043337 - K. H. Kim, E. Kabir, S. Kabir, “A review on the human health impact of airborne particulate matter,” Environ. Int., vol. 74, pp. 136 – 143, Jan. 2015.
DOI: 10.1016/j.envint.2014.10.005
PMid: 25454230 - A. Yalaltdinova, J. Kim, N. Baranovskaya, L. Rikhvanov, “Populus nigra L. as a bioindicator of atmospheric trace element pollution and potential toxic impacts on human and ecosystem,” Ecol. Indic., vol. 95, pp. 974 - 983, Dec. 2018.
DOI: 10.1016/j.ecolind.2017.06.021 - S. V. Gorelova, M. V. Frontasyeva, "The Use of Higher Plants in Biomonitoring and Environmental Bioremediation," in Phytoremediation, vol. 5, A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, L. Newman, Eds., New York (NY), USA: Springer Int. Publ., 2017, ch. 5, sec. 5.3, pp. 103 - 156.
Retrieved from: http://93.174.95.29/_ads/4B05012D1ADCCBC5C812A088B059F8FE
Retrieved on: Apr. 15, 2019 - A. A. Shaltout, M. I. Khoder, A. A. El-Abssawy, S. K. Hassan, D. L. Borges, “Determination of rare earth elements in dust deposited on tree leaves from Greater Cairo using inductively coupled plasma mass spectrometry,” Environ. Pollut., vol. 178, pp. 197 – 201, Jul. 2013.
DOI: 10.1016/j.envpol.2013.03.044
PMid: 23583939 - P. H. Freer-Smith, A. A. El-Khatib, G. Taylor, “Capture of Particulate Pollution by Trees: A Comparison of Species Typical of Semi-Arid Areas (Ficus Nitida and Eucalyptus Globulus) with European and North American Species,” Water, Air, Soil Pollut., vol. 155, no. 1 - 4, pp. 173 – 187, Jun. 2004.
DOI: 10.1023/B:WATE.0000026521.99552.fd - A. A. El-Khatib, F. A. Faheed, M. M. Azooz, “Physiological response of Eucalyptus rostrata to heavy metal air pollution,” El-Minia Sci. Bull., vol. 15, no. 2, pp. 429 – 451, 2004.
Retrieved from: https://www.academia.edu/27489910/Physiological_response_of_Eucalyptus_rostorata_to_heavy_metal_air_pollution
Retrieved on: Apr. 5, 2019 - M. V. Frontasyeva, “NAA for Life Sciences at Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research in Dubna,” Ecol. Chem. Eng. S, vol. 18, no. 3, pp. 281 - 304, 2011.
Retrieved from: http://tchie.uni.opole.pl/freeECE/S_18_3/Frontasyeva_18(S3).pdf
Retrieved on: Apr. 5, 2019 - M. Tomašević, M. Aničić, Lj. Jovanović, A. Perić-Grujić, M. Ristić, “Deciduous tree leaves in trace elements biomonitoring: A contribution to methodology,” Ecol. Indic., vol. 11, no. 6, pp. 1689 – 1695, Nov. 2011.
DOI: 10.1016/j.ecolind.2011.04.017 - W. M. Badawy et al., “Instrumental neutron activation analysis of soil and sediment samples from Siwa Oasis, Egypt,” Phys. Part. Nucl. Lett., vol. 12, no. 4, pp. 637 – 644, Jul. 2015.
DOI: 10.1134/S154747711504007X - M. V. Frontasyeva, “Neutron activation analysis in the life sciences,” Phys. Part. Nucl., vol. 42, no. 2, pp. 332 – 378, Mar. 2011.
DOI: 10.1134/S1063779611020043 - M. V. Frontasyeva, S. S. Pavlov, Analytical investigations at the ibr-2 reactor in Dubna, Rep. JINR-E--14-2000-177, Jt. Inst. Nucl. Res, Dubna, Russia, 2000.
Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.475.614&rep=rep1&type=pdf
Retrieved on: Nov. 3, 2019 - A. I. Madadzada et al., “Assessment of atmospheric deposition of major and trace elements using neutron activation analysis and GIS technology: Baku - Azerbaijan,” Microchem. J., vol. 147, pp. 605 – 614, Jun. 2019.
DOI: 10.1016/j.microc.2019.03.061 - A. Kabata-Pendias, H. Pendias, Trace Elements in Soils and Plants, 3rd ed., Boca Raton (FL), USA: CRC Press, 2001.
Retrieved from: http://base.dnsgb.com.ua/files/book/Agriculture/Soil/Trace-Elements-in-Soils-and-Plants.pdf
Retrieved on: Jun. 14, 2019 - M. Almeida-Silva, N. Canha, M. C. Freitas, H. M. Dung, I. Dionísio, “Air pollution at an urban traffic tunnel in Lisbon, Portugal: an INAA study,” Appl. Radiat. Isot., vol. 69, no. 11, pp. 1586 – 1591, Nov. 2011.
DOI: 10.1016/j.apradiso.2011.01.014
PMid: 21288730 - L. Qi et al., “Source identification of trace elements in the atmosphere during the second Asian Youth Games in Nanjing, China: Influence of control measures on air quality,” vol. 7, no. 3, pp. 547 – 556, May 2016.
DOI: 10.1016/j.apr.2016.01.003 - Natural and Anthropogenic Sources of Trace Elements in the Environment, USGS, Reston (VA), USA.
Retrieved from: http://www.cprm.gov.br/publique/media/gestao_territorial/geologia_medica/natural_anthropogenic_sources.pdf
Retrieved on: Apr. 18, 2019 - S. Zhou et al., “Trace metals in atmospheric fine particles in one industrial urban city : spatial variations, sources, and health implications,” J. Environ. Sci., vol. 26, no. 1, pp. 205 – 213, Jan. 2014.
DOI: 10.1016/s1001-0742(13)60399-x
PMid: 24649708 - S. Wilbur et al., “Potential for human exposure,” in Toxicological Profile for Chromium, Atlanta (GA), USA: Agency for Toxic Subst. Dis. Regist., 2012, ch. 6, pp. 363 – 399.
Retrieved from: https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf
Retrieved on: Sep. 12, 2019 - S. Hoornaert, H. van Malderen, R. van Grieken, “Gypsum and Other Calcium-Rich Aerosol Particles above the North Sea,” Environ. Sci. Technol., vol. 30, no. 5, pp. 1515 – 1520, Apr. 1996.
DOI: 10.1021/es9504350 - B. Markert, “Establishing of ‘Reference Plant’ for inorganic characterization of different plant species by chemical fingerprinting,” Water, Air, Soil Pollut., vol. 64, no. 3 - 4, pp. 533 – 538, Sep. 1992.
DOI: 10.1007/BF00483363 - B. Markert, “Instrumental multi-element analysis in plant materials: A modern method in environmental chemistry and tropical systems research,” Environ. Geochem. Trop., pp. 75 - 95, Apr. 2006.
DOI: 10.1007/BFb0010907 - A. Kabata-Pendias, H. Pendias, Trace Elements in Soils and Plants, 2nd ed., Boca Raton (FL), USA: CRC Press, 1992.
Retrieved from: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1609922
Retrieved on: Apr. 30, 2019
OPTICAL PROPERTIES AND RADIATION RESPONSE OF Li ION-DOPED CsI SCINTILLATOR CRYSTAL
Maria da Conceição Costa Pereira, Tufic Madi Filho, José Roberto Berretta, Lucas Faustino Tomaz, Miriam Nieri Madi
Pages: 131–135
Abstract | References | Full Text (PDF)
- C. W. E. Eijk, “Inorganic-scintillator development,” Nucl. Inst. Methods Phy. Res., vol. 460, no. 1, pp. 1 - 14, Mar. 2001.
DOI: 10.1016/S0168-9002(00)01088-3 - T. Yanagida, “Inorganic scintillating materials and scintillation detectors,” Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., vol. 94, no. 2, pp. 75 - 97, Feb. 2018.
DOI: 10.2183/pjab.94.007
PMid: 29434081
PMCid: PMC5843761 - G. F. Knoll, Radiation Detection and Measurement, 4th ed., New York (NY), USA: J. Wiley & Sons, 2010.
Retrieved from: http://93.174.95.29/main/1194000/64bb25ec206620f0366594375c40438a/Glenn%20F.%20Knoll%20-%20Radiation%20Detection%20and%20Measurement-Wiley%20%282010%29.pdf
Retrieved on: Jun. 17, 2019 - N. Tsoulfanidis, Measurement and detection of radiation, 1st ed., New York (NY), USA: McGraw-Hill, 1983.
Retrieved from:https://trove.nla.gov.au/work/24937117?q&sort=holdings+desc&_=1574102120578&versionId=30083295#get
Retrieved on: Jan. 27, 2019 - C. Dujardin et al., “Needs, Trends, and Advances in Inorganic Scintillators,” IEEE Trans. Nucl. Sci., vol. 65, no. 8, pp. 1977 - 1997, Aug. 2018.
DOI: 10.1109/TNS.2018.2840160 - A. Pushak et al., “Luminescent properties of BaCl2-Eu microcrystals embedded in a CsI matrix,” Radiat. Meas., vol. 56, pp. 402 - 406, Sep. 2013.
DOI: 10.1016/j.radmeas.2013.01.071 - D. M. Slaughter, C. R.Stuart, R. F. Klaass, D. B. Merrill, “Performance of Large Neutron Detectors Containing Lithium-Gadolinium-Borate Scintillator,” IEEE Trans. Nucl. Sci., vol. 63, no. 3, pp. 1650 – 1658, Jun. 2016.
DOI: 10.1109/TNS.2016.2561240 - K. Yang, P. R. Menge, V. Ouspenski, “Li Co-Doped NaI:Tl (NaIL)—A Large Volume Neutron-Gamma Scintillator With Exceptional Pulse Shape Discrimination,” IEEE Trans. Nucl. Sci., vol. 64, no. 8, pp. 2406 - 2413, Jun. 2017.
DOI: 10.1109/TNS.2017.2721398 - P. W. Bridgman, “The Effect of Tension on the Transverse and Longitudinal Resistance of Metals,” Proc. Amer. Acad. Arts Sci., vol. 60, no. 8, pp. 423 - 449, Oct. 1925.
DOI: 10.2307/25130064 - K. Kliemt, C. Krellner, “Crystal growth by Bridgman and Czochralski method of the ferromagnetic quantum critical material YbNi4P2,” J. Cryst. Growth, vol. 449, pp. 129 - 133, Sep. 2016.
DOI: 10.1016/j.jcrysgro.2016.05.042 - 11. V. B. Mikhailik, V. Kapustyanyk, V. Tsybulskyi, V. Rudyk, H. Kraus, “Luminescence and scintillation properties of CsI: A potential cryogenic scintillator,” Phys. Status Solidi B, vol. 252, no. 4, pp. 804 - 810, Jan. 2015.
DOI: 10.1002/pssb.201451464 - 12. B. D. Milbrath, A. J. Peurrung, M. Bliss, W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res., vol. 23, n0. 10, pp. 2561 - 2581, Oct. 2008.
DOI: 10.1557/JMR.2008.0319 - 13. M. Korzhik et al., “Detection of neutrons in a wide energy range with crystalline Gd3Al2Ga3O12, Lu2SiO5 and LaBr3 doped with Ce scintillators,” Nucl. Inst. Meth. Phy. Res., vol. 931, pp. 88 - 91, Jul. 2019.
DOI: 10.1016/j.nima.2019.04.034
DETERMINATION OF THE MINIMUM DETECTABLE DOSE AND THE EFFECT OF DIFFERENT FILTERS ON TLD-100H 260°C THERMOLUMINESCENCE PEAK
Kemal Firat Oguz, Mehmet Yüksel
Pages: 136–138
Abstract | References | Full Text (PDF)
- K. F. Oguz et al., “Study of luminescence of Mn-doped CaB4O7 prepared by wet chemical method”, J. Alloys Compd., vol. 683, no. C, pp. 76 – 85, May 2016.
DOI: 10.1016/j.jallcom.2016.05.050 - T. Nakajima, Y. Murayama, T. Matsuzawa, A. Koyano, “Development of a new highly sensitive LiF thermoluminescence dosimeter and its applications”, Nucl. Instrum. Methods, vol. 157, no. 1, pp. 155 – 162, Nov. 1978.
DOI: 10.1016/0029-554X(78)90601-8 - P. Bilski et al., “Characteristics of LiF:Mg,Cu,P thermoluminescence at ultra-high dose range,” Radiat. Meas., vol. 43, no. 2 – 6, pp. 315 – 318, Feb.-Jun. 2008.
DOI: 10.1016/j.radmeas.2007.10.015 - B. Ben-Shachar, M. Weinstein, U. German, “LiF:Mg, Cu, P vs LiF:Mg, Ti: A comparıson of some dosımetrıc propertıes,” in Proc. 20th Conf. Nucl. Soc. Isr. (INS), Dead Sea, Israel, 1999, pp. 181 – 184.
Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/049/31049561.pdf
Retrieved on: May 31, 2019 - K. Remy, S. Sholom, B. Obryk, S. W. S. McKeever, “Optical absorption in LiF, LiF:Mg, LiF:Mg,Cu,P irradiated with high gamma and beta doses,” Radiat. Meas., vol. 106, pp. 113 – 117, Nov. 2017.
DOI: 10.1016/j.radmeas.2016.11.007 - S. P. Voss et al., “Effect of TLD-700H (LiF: Mg, Cu, P) sensitivity loss at multiple read-irradiation cycles on TLD reader calibration,” Radiat. Meas., vol. 46, no. 12, pp. 1590 – 1594, Dec. 2011.
DOI: 10.1016/j.radmeas.2011.04.017 - M. Moscovitch, Y. S. Horowitz, “Thermoluminescent materials for medical applications: LiF:Mg,Ti and LiF:Mg,Cu,P,” Radiat. Meas., vol. 41, suppl. 1, pp. 71 – 77, Dec. 2006.
DOI: 10.1016/j.radmeas.2007.01.008 - D. Richter, A. Richter, K. Dornich, “Lexsyg smart — a luminescence detection system for dosimetry, material research and dating application,” Geochronometria, vol. 42, no. 1, pp. 202 – 209, Dec. 2015.
DOI: 10.1515/geochr-2015-0022 - C. Furetta, M. Prokic, R. Salamon, G. Kitis, “Dosimetric characterisation of a new production of MgB4O7:Dy,Na thermoluminescent material,” Appl. Radiat. Isot., vol. 52, no. 2, pp. 243 – 250, Feb. 2000.
DOI: 10.1016/s0969-8043(99)00124-4
PMid: 10697735 - M. Yüksel, "Termolüminesans Yöntemi ve Dozimetrik Çalışmalar," içinde Fen Bilimleri ve Matematik Temel Alanı Örnek Araştırmaları Kitabı, A. Yakar, H. Topalki, editörler, 1. baskı, Ankara, Türkiye: NOBEL Akade. Yayın., ss. 171 - 192, Kasım 2018. (M. Yüksel, “Thermoluminescence Method and Dosimetric Studies,” in Science and Mathematics Basic Field Sample Research Book, A. Yakar, H. Topalki, Eds., 1st ed., Ankara, Turkey: NOBEL Acad. Publ., pp. 171 – 192, Nov. 2018.)
Retrieved from: https://www.nobelyayin.com/detay.asp?u=15124
Retrieved on: May 25, 2019 - M. Yüksel, “Thermoluminescence and dosimetric characteristics study of quartz samples from Seyhan Dam Lake Terraces”, Can. J. Phys., vol. 96, no. 7, pp. 779 - 783, Jul. 2018.
DOI: 10.1139/cjp-2017-0741
DEVELOPMENT OF RADIATION DETECTOR (RADIATION MODULE) WITH THREE DIFFERENT SENSORS FOR SPACE APPLICATIONS
Bugra Kocaman, Mehmet Kopru, Bekir Solak, Murat Harmandali, Eylem Guven, Ercan Yilmaz
Pages: 139–144
Abstract | References | Full Text (PDF)
- N. Bhat, J. Vasi, “Interface-state generation under radiation and high-field stressing in reoxidized nitrided oxide MOS capacitors,” IEEE Trans. Nucl. Sci., vol. 39, no. 6, pp. 2230 - 2235, Dec. 1992.
DOI: 10.1109/23.211425 - L. Adams, A. Holmes-Siedle, “The Development of an MOS Dosimetry Unit for Use in Space,” IEEE Trans. Nucl. Sci., vol. 25, no. 6, pp. 1607 – 1612, Dec. 1978.
DOI: 10.1109/TNS.1978.4329580 - S. Kaya, E. Yilmaz, “Use of BiFeO3 layer as a dielectric in MOS based radiation sensors fabricated on a Si substrate,” Nucl. Instrum. Methods Phys. Res., vol. 319, pp. 168 - 170, Jan. 2014.
DOI: 10.1016/j.nimb.2013.10.016 - E. R. Benton, E. V. Benton, “Space radiation dosimetry in low-Earth orbit and beyond,” Nucl. Instrum. Methods Phys. Res. Sec. B, vol. 184, no. 1–2, pp. 255 - 294, Sep. 2001.
DOI: 10.1016/S0168-583X(01)00748-0
PMid: 11863032 - S. Kaya, A. Jaksic, R. Duane, N. Vasovic, E. Yilmaz, “FET-based radiation sensors with Er2O3 gate dielectric,” Nucl. Instrum. Methods Phys. Res. B, vol. 430, pp. 36 - 41, Sep. 2018.
DOI: 10.1016/j.nimb.2018.06.007 - E. Garcia-Moreno et al., “Floating Gate CMOS Dosimeter With Frequency Output,” IEEE Trans. Nucl. Sci., vol. 59, no. 2, pp. 373 - 378, Apr. 2012.
DOI: 10.1109/TNS.2012.2184301 - G. Spiezia et al., “A New RadMon Version for the LHC and its Injection Lines,” ,” IEEE Trans. Nucl. Sci., vol. 61, no. 6, pp. 3424 - 3431, Dec. 2014.
DOI: 10.1109/TNS.2014.2365046 - R. Ferraro et al., “Design of a radiation tolerant system for total ionizing dose monitoring using floating gate and RadFET dosimeters,” J. Instrum., vol. 12, no. 4, Apr. 2017.
DOI: 10.1088/1748-0221/12/04/C04007 - M. Brucoli et al., “A complete qualification of floating gate dosimeter for CERN applications,” in Proc. 16th Eur. Conf. Radiation and Its Effects on Comp. Syst. (RADECS), Bremen, Germany, 2016.
DOI: 10.1109/RADECS.2016.8093162 - S. Dahiya, K. Kumar, “Drain Current and Radiation Relation for MOSFET,” Int. res. j. eng. tech., vol. 4, no. 5, pp. 1509 - 1511, May 2017.
Retrieved from: https://www.irjet.net/archives/V4/i5/IRJET-V4I5435.pdf
Retrieved on: Aug. 11, 2019 - M. M. Pejovic, “Processes in radiation sensitive MOSFETs during irradiation and post irradiation annealing responsible for threshold voltage shift,” Radiat. Phys. Chem., vol. 130, pp. 221 – 228, Jan. 2017.
DOI: 10.1016/j.radphyschem.2016.08.027 - Nisha, R. Yadav, “Radiation Effect on MOSFET at Deep Submicron Technology,” Int. J. Adv. Res. Computer Sci. Software Eng., vol. 3, no. 8, pp. 162–173, August 2013.
Retrieved from: http://ijarcsse.com/Before_August_2017/docs/papers/Volume_3/8_August2013/V3I7-0560.pdf
Retrieved on: Aug. 11, 2019 - S. Stanic et al., “Radiation monitoring in Mrad range using radiation-sensing field-effect transistors,” Nucl. Instrum. Methods Phys. Res. Sec. A, vol. 545, no. 1-2, pp. 252 – 260, Jun. 2005.
DOI: 10.1016/j.nima.2005.01.347 - J. Cesari, A. Barbancho, A. Pineda, G. Ruy, H. Moser, “Floating Gate Dosimeter Measurements at 4M Lunar Flyby Mission,” in Proc. IEEE Radiation Effects Data Workshop (REDW), Boston (MA), USA, 2015.
DOI: 10.1109/REDW.2015.7336710 - S. Danzeca et al., “Characterization and Modeling of a Floating Gate Dosimeter with Gamma and Protons at Various Energies,” IEEE Trans. Nucl. Sci., vol. 61, no. 6, pp. 3451 – 3457, Nov. 2014.
DOI: 10.1109/TNS.2014.2364274 - Radiation Sensor Information, iC Malaga, Alaró, Spain, 2019.
Retrieved from: http://www.ic-malaga.com/servicios_rad_en.html;
Retrieved on: Aug. 11, 2019 - Sarayköy nükleer araştırma ve eğitim merkezi - Tanitim kitabi, Türkiye atom enerjisi kurumu, Ankara, Türkiye, 2012. (Sarayköy nuclear research and training center – Promotion book, Turkey atomic energy agency, Ankara, Turkey, 2012.)
Retrieved from: http://www.taek.gov.tr/tr/belgeler-formlar/sanaem/SANAEM-Tanıtım-Kitabı/lang,tr-tr/
Retrieved on: Aug. 12, 2019
ELECTRICAL CHARACTERISTICS AND ALPHA PARTICLE DETECTION PERFORMANCE OF A NEWLY DEVELOPED PIN PHOTODIODE
Ercan Yilmaz, Emre Doganci, Farid Ahmadov, Gadir Ahmadov, Azar Sadigov, Samir Suleymanov
Pages: 145–147
Abstract | References | Full Text (PDF)
- M. Daraee, A. Araghi, M. Sadeghi, A. Hashemizadeh, “Investigation of thermal treatment on improving the performance behavior of Si PIN alpha radiation detectors,’’ Optik, vol. 184, pp. 364 - 369, May 2019.
DOI: https://doi.org/10.1016/j.ijleo.2019.04.116 - S. M. Ahmed, Physic and Engineering of Radiation Detection, London, UK: Academic Press, 2007.
Retrieved from: http://bookfi.net/dl/1085949/a947a5
Retrieved on: May 10, 2019 - H. Tan, T. A. DeVol, “Development of a flow-cell alpha detector utilizing microencapsulated CsI: Tl granules and silicon PIN-photodiodes,’’ in 2001 IEEE Nucl. Sci. Sympos. Conf. Rec., San Diego (CA), USA, 2011, pp. 375 - 379.
Retrieved from: https://ieeexplore.ieee.org/abstract/document/1008480
Retrieved on: Sep. 10, 2019 - V. Drndaravic, “A very low-cost alpha-particle spectrometer,’’ Meas. Sci. Technol., vol. 19, no. 5, Apr. 2008.
DOI: 10.1088/0957-0233/19/5/057001 - S. Srivastava, R. Henry, A. Topkar, ’’Characterization Of Pin Diode Silicon Radiation Detector,’’ J. Intel. Electron. Syst., vol. 1, no. 1, pp. 47 - 51, Nov. 2007.
Retrieved from: https://scholar.google.com.tr/scholar?hl=tr&as_sdt=0%2C5&q=Characterization+Of+Pin+Diode+Silicon+Radiation+Detector& btnG=
Retrieved on: Sep. 1, 2019 - K. Yamamoto, Y. Fuji, Y. Kotooka, T. Katayama, “Highly stable silicon pin photodiode,’’ Nucl. Instrum. Methods Phys. Res., vol. 253, no. 3, pp. 542 - 547, Jan. 1987.
DOI: 10.1016/0168-9002(87)90545-6 - N. V. Loukianova et al., “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,’’ IEEE Trans. Electron Devices, vol. 50, no. 1, pp. 77 - 83, Jan. 2003.
DOI: 10.1109/Ted.2002.807249 - M. Suzuki et al., “Electrical characterization of diamond PiN diodes for high voltage applications,’’ Phys. Status Solidi A, vol. 210, no. 10, pp. 2035 – 2039, Jul. 2013.
DOI: 10.1002/pssa.201300051 - A. O. Goushcha, R. A. Metzler, C. Hicks, V. N. Kharkyanen, N. M. Berezetska, “Determination of the carrier collection efficiency function of Si photodiode using spectral sensitivity measurements,’’ in Book of Abstr. Integr. Optoelectron. Devices 2004, San Jose (CA), US, 2004.
DOI: 10.1117/12.528361
CADMIUM ZINC TELLURIDE SOLID-STATE DETECTOR CHARACTERISATION FOR ITS USE AS A SPECTRO-DOSEMETER
Nikola Kržanović, Annette Röttger, Viacheslav Morosh, Maksym Luchkov, Stefan Neumaier
Pages: 148–151
Abstract | References | Full Text (PDF)
- S. Neumaier, H. Dombrowski, “EURADOS intercomparisons and the harmonisation of environmental radiation monitoring,” Radiat. Prot. Dosim, vol. 160, no. 4, pp. 297 – 305, Aug. 2014.
DOI: 10.1093/rpd/ncu002
PMid: 24497552 - Radiological maps, Real-time monitoring, European Commission Joint Research Centre (EC JRC), Brussels, Belgium.
Retrieved from: https://remap.jrc.ec.europa.eu/
Retrieved on: Jul. 12, 2019. - N. Kržanović, K. Stanković, M. Živanović, M. Đaletić, O. Ciraj-Bjelac, “Development and testing of a low cost radiation protection instrument based on an energy compensated Geiger-Müller tube,” Radiat. Phys. Chem., vol. 164, Nov. 2019.
DOI: 10.1016/j.radphyschem.2019.108358 - GR1 CZT gamma-ray detector spectrometer, Kromek Group plc, Zelienople (PA), USA.
Retrieved from: https://www.kromek.com/product/gamma-ray-detector-spectrometers-czt-based-gr-range/
Retrieved on: Jul. 10, 2019. - C. Szeles, “CdZnTe and CdTe materials for X‐ray and gamma ray radiation detector applications,” Phys. Status Solidi, vol. 241, no. 3, pp. 783 – 790, Mar. 2004.
DOI: 10.1002/pssb.200304296 - M. M. Be et al., Table of Radionuclides (Vol. 8 – A = 41-198), BIPM, Paris, France, 2016.
Retrieved from: https://www.bipm.org/utils/common/pdf/monographieRI/Monographie_BIPM-5_Tables_Vol8.pdf
Retrieved on: Jun. 15, 2019 - H. Dombrowski, “Area dose rate values derived from NaI or LaBr3 spectra,” Radiat. Prot. Dosim., vol. 160, no. 4, pp. 269 – 276, Aug. 2014.
DOI: 10.1093/rpd/nct349
PMid: 24478307 - P. Kessler, B. Behnke, H. Dombrowski, S. Neumaier, “Characterization of detector-systems based on CeBr3, LaBr3, SrI2 and CdZnTe for the use as dosemeters,” Radiat. Phys. Chem., vol. 140, pp. 309 – 313, Nov. 2017.
DOI: 10.1016/j.radphyschem.2016.12.015 - P. Kessler et al., “Novel spectrometers for environmental dose rate monitoring,” J. Environ. Radioact., vol. 187, pp. 115 – 121, Jul. 2018.
DOI: 10.1016/j.jenvrad.2018.01.020
PMid: 29455914 - A. Röttger, P. Kessler, “Uncertainties and characteristic limits of counting and spectrometric dosimetry systems,” J. Environ. Radioact., vol. 205 – 206, pp. 48 – 54, Sep. 2019.
DOI: 10.1016/j.jenvrad.2019.04.012 PMid: 31102905
Radiation Effects
IRRADIATION EFFECT ON Er2O3/n-Si STRUCTURE UNDER HIGH GAMMA-RAY DOSE
Aysegul Kahraman, Berk Morkoc, Alex Mutale, Umutcan Gurer, Ercan Yilmaz
Pages: 152–155
Abstract | References | Full Text (PDF)
- J. O. Goldsten et al., “The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission,” Space Sci. Rev., vol. 179, no. 1 – 4, pp. 485 – 502, Nov. 2013.
DOI: 10.1007/s11214-012-9917-x - M. M. Pejovic, M. M. Pejovic, A. B. Jaksic, “Contribution of fixed oxide traps to sensitivity of pMOS dosimeters during gamma ray irradiation and annealing at room and elevated temperature,” Sens. Actuator A-Phys., vol. 174, no. 1, pp. 85 – 90, Feb. 2012.
DOI: 10.1016/j.sna.2011.12.011 - E. Yilmaz et al., “Investigation of RadFET response to X-ray and electron beams,” Appl. Radiat. Isot., vol. 127, pp. 156 – 160, Sep. 2017.
DOI: 10.1016/j.apradiso.2017.06.004
PMid: 28622597 - S. J. Rhee, J. C. Lee, “Threshold voltage instability characteristics of HfO2 dielectrics n-MOSFETs,” Microelectron. Reliab., vol. 45, no. 7 – 8, pp. 1051 – 1060, Jul.-Aug. 2005.
DOI: 10.1016/j.microrel.2005.01.006 - G. Thriveni, K. Ghosh, “Performance analysis of nanoscale double gate strained silicon MOSFET with high k dielectric layers,” Mater. Res. Express, vol. 6, no. 8, May 2019.
DOI: 10.1088/2053-1591/ab1fca - A. Kahraman, E. Yilmaz, “Proposal of alternative sensitive region for MOS based radiation sensors: Yb2O3,” J. Vac. Sci. Technol., vol. 35, no. 6, p. 061511, Nov. 2017.
DOI: 10.1116/1.4993545 - A. Kahraman, E. Yilmaz, A. Aktag, S. Kaya, “Evaluation of Radiation Sensor Aspects of Er2O3 MOS Capacitors under Zero Gate Bias,” IEEE Trans. Nucl. Sci., vol. 63, no. 2, pp. 1284 – 1293, Apr. 2016.
DOI: 10.1109/TNS.2016.2524625 - E. Yilmaz, B. Kaleli, R. Turan, “A systematic study on MOS type radiation sensors,” Nucl. Instrum. Methods Phys. Res., vol. 264, no. 2, pp. 287 – 292, Nov. 2007.
DOI: 10.1016/j.nimb.2007.08.081 - E. Yilmaz, S. Kaya, “A Detailed Study on Zero-Bias Irradiation Responses of La2O3 MOS Capacitors,” IEEE Trans. Nucl. Sci., vol. 63, no. 2, pp. 1301 – 1305, Apr. 2016.
DOI: 10.1109/TNS.2016.2530782 - J. I. Langford, A. J. C. Wilson, “Scherrer after sixty years: A survey and some new results in the determination of crystallite size,” J. Appl. Crystallogr., vol. 11, pp. 102 – 113, Apr. 1978.
DOI: 10.1107/S0021889878012844 - S. Gokhale et al., “Photoemission and x-ray diffraction study of the ErSi(111) interface,” Surf. Sci., vol. 237, no. 1 – 3, pp. 127 – 134, Nov. 1990.
DOI: 10.1016/0039-6028(90)90525-D - R. Xu, Q. Tao, Y. Yang, C. G. Takoudis, “Atomic layer deposition and characterization of stoichiometric erbium oxide thin dielectrics on Si(100) using (CpMe)3Er precursor and ozone,” Appl. Surf. Sci., vol. 258, no. 22, pp. 8514 – 8520, Sep. 2012.
DOI: 10.1016/j.apsusc.2012.05.019 - J. Zhang, H. Wong, D. Yu, K. Kakushima, H. Iwai, “X-ray photoelectron spectroscopy study of high-k CeO2/La2O3 stacked dielectrics,” AIP Adv., vol. 4, no. 11, Nov. 2014.
DOI: 10.1063/1.4902017 - Z. Guo et al., “Solution-processed ytterbium oxide dielectrics for low-voltage thin-film transistors and inverters,” Ceram. Int., vol. 43, no. 17, pp. 15194 – 15200, Dec. 2017.
DOI: 10.1016/j.ceramint.2017.08.052 - C. H. Kao, H. Chen, Y. T. Pan, J. S. Chiu, T. C. Lu, “The characteristics of the high-K Er2O3 (erbium oxide) dielectrics deposited on polycrystalline silicon,” Solid State Commun., vol. 152, no. 6, pp. 504 – 508, Mar. 2012.
DOI: 10.1016/J.SSC.2011.12.042 - G. S. Ristić, M. M. Pejović, A. B. Jakšić, “Physico-chemical processes in metal–oxide–semiconductor transistors with thick gate oxide during high electric field stress,” J. Non.-Cryst. Solids, vol. 353, no. 2, pp. 170 – 179, Feb. 2007.
DOI: 10.1016/J.JNONCRYSOL.2006.09.020
Co-60 GAMMA RADIATION INFLUENCES ON THE ELECTROCHEMICAL, PHYSICAL AND ELECTRICAL CHARACTERISTICS OF RARE-EARTH DYSPROSIUM OXIDE (Dy2O3)
Umutcan Gürer, Ercan Yilmaz
Pages: 156–161
This paper has been withdrawn at the request of the authors.
Material Science
RECYCLING OF HAZELNUT SHELL: SYNTHESIS OF BORON CARBIDE BY CARBOTHERMIC REACTION
Erhan Budak, Serdar Hizarci, Ercan Yilmaz
Pages: 162–166
Abstract | References | Full Text (PDF)
- F. Thévenot, “Boron carbide-A comprehensive review,” J. Eur. Ceram. Soc., vol. 6, no. 4, pp. 205 – 225, 1990.
DOI: 10.1016/0955-2219(90)90048-K - K. A. Schwetz, L. S. Sigl, L. Pfau, “Mechanical Properties of Injection Molded B4C-C Ceramics,” J. Solid State Chem., vol. 103, no. 1, pp. 68 – 76, Oct. 1997.
DOI: 10.1006/jssc.1997.7316 - D. K. Bose, K. U. Nair, C. K. Gupta, “Production of High Purity Boron Carbide,” High Temp. Mater. Process., vol. 7, no. 2 – 3, pp. 133 – 140, 1986.
DOI: 10.1515/HTMP.1986.7.2-3.133 - C. F. Bilsby, A. M. T. Bell, F. W. Morris, “Swelling of boron carbide under fast neutron irradiation,” in EMAG-MICRO 89, vol. 1, P. J. Goodhew, H. Y. Elder, Eds., Bristol, UK: Institute of Physics, 1990.
Retrieved from: http://inis.iaea.org/search/search.aspx?orig_q=RN:23057613
Retrieved on: Apr. 11, 2019 - A. Alizadeh, E. Taheri-Nassaj, N. Ehsani, “Synthesis of boron carbide powder by a carbothermic reduction method,” J. Eur. Ceram. Soc., vol. 24, no. 10 – 11, pp. 3227 – 3234, Sep. 2004.
DOI: 10.1016/j.jeurceramsoc.2003.11.012 - Dj. Kosanović, Lj. Milovanović, S. Milovanović, A. Šaponjić, “Low-Temperature Synthetic Route for Boron Carbide Powder from Boric Acid-Citric Acid Gel Precursor,” Mater. Sci. Forum., vol. 555, pp. 255 – 260, Sep. 2007.
DOI: 10.4028/www.scientific.net/msf.555.255 - A. Sinha, T. Mahata, B. P. Sharma, “Carbothermal route for preparation of boron carbide powder from boric acid-citric acid gel precursor,” J. Nucl. Mater., vol. 301, no. 2 – 3, pp. 165 – 169, Mar. 2002.
DOI: 10.1016/S0022-3115(02)00704-3 - A. M. Hadian, J. A. Bigdeloo, “The effect of time, temperature and composition on boron carbide synthesis by sol-gel method,” J. Mater. Eng. Perform., vol. 17, no. 1, pp. 44 – 49, Feb. 2008.
DOI: 10.1007/s11665-007-9125-0 - A. K. Khanra, “Production of boron carbide powder by carbothermal synthesis of gel material,” Bull. Mater. Sci., vol. 30, no. 2, pp. 93 – 96, Apr. 2007.
DOI: 10.1007/s12034-007-0016-7 - T. R. Pilladi, K. Ananthansivan, S. Anthonysamy, “Synthesis of boron carbide from boric oxide-sucrose gel precursor,” Powder Technol., vol. 246, pp. 247 – 251, Sep. 2013.
DOI: 10.1016/j.powtec.2013.04.055 - E. Çakır, C. Ergun, F. Ç. Şahin, İ. Erden, “In Situ Synthesis of B4C / TiB2 Composites from Low Cost Sugar Based Precursor,” Defect Diffus. Forum, vol. 297 – 301, pp. 52 – 56, Apr. 2010.
DOI: 10.4028/www.scientific.net/DDF.297-301.52 - H. Konno, A. Sudoh, Y. Aoki, H. Habazaki, “Synthesis of C/B 4 C composites from sugar-boric acid mixed solutions,” Mol. Cryst. Liq. Cryst., vol. 386, no. 1, pp. 15 – 20, 2002.
DOI: 10.1080/713738826 - M. G. Rodríguez, O. V. Kharissova, U. Ortiz-Méndez, “Formation of boron carbide nanofibers and nanobelts from heated by microwave,” Rev. Adv. Mater. Sci., vol. 7, no. 1, pp. 55 – 60, Jul. 2004.
Retrieved from: http://www.ipme.nw.ru/e-journals/RAMS/no_1704/rodriguez/rodriguez.pdf
Retrieved on: Jun. 18, 2019 - S. Mondal, A. K. Banthia, “Low-temperature synthetic route for boron carbide,” J. Eur. Ceram. Soc., vol. 25, no. 2 – 3, pp. 287 – 291, Dec. 2005.
DOI: 10.1016/j.jeurceramsoc.2004.08.011 - M. Antadze et al., “Metal-ceramics based on nanostructured boron carbide,” Solid State Sci., vol. 14, no. 11 – 12, pp. 1725 – 1728, Nov. 2012.
DOI: 10.1016/j.solidstatesciences.2012.08.004 - A. Demirbaş, “Relationships between lignin contents and fixed carbon contents of biomass samples,” Energy Convers. Manag., vol. 44, no. 9, pp. 1481 – 1486, Jun. 2003.
DOI: 10.1016/S0196-8904(02)00168-1 - A. Aygün, S. Yenisoy-Karakaş, I. Duman, “Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties,” Microporous Mesoporous Mater., vol. 66, no. 2 – 3, pp. 189 – 195, Dec. 2003.
DOI: 10.1016/j.micromeso.2003.08.028 - H. Uzun, E. G. Kaynak, E. Ibanoglu, S. Ibanoglu, “Chemical and structural variations in hazelnut and soybean oils after ozone treatments,” Grasas y Aceites, vol. 69, no. 2, Jun. 2018.
DOI: 10.3989/gya.1098171 - S. Li, X. Chen, A. Liu, L. Wang, G. Yu, “Co-pyrolysis characteristic of biomass and bituminous coal,” Bioresour. Technol., vol. 179, pp. 414 – 420, Mar. 2015.
DOI: 10.1016/j.biortech.2014.12.025 - A. O. Odeh, “Oualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks,” J. Fuel Chem. Technol., vol. 43, no. 2, pp. 129 – 137, Feb. 2015.
DOI: 10.1016/s1872-5813(15)30001-3 - E. Aracri, C. D. Blanco, T. Tzanov, “An enzymatic approach to develop a lignin-based adhesive for wool floor coverings,” Green Chem., vol. 6, no. 5, Feb. 2014.
DOI: 10.1039/c4gc00063c - E. Pehlivan, “Production and Characterization of Activated Carbon From Pomegranate Pulp by Phosphoric Acid,” J. Turk. Chem. Soc. Sect. A: Chem., vol. 5, no. 2, pp. 1 – 8, 2018.
DOI: 10.18596/jotcsa.370738 - J. Shu et al., “Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue,” RSC Adv., vol. 7, no. 24, pp. 14395 – 14405, Mar. 2017.
DOI: 10.1039/c7ra00287d - I. A. W. Tan, M. O. Abdullah, L. L. P. Lim, T. H. C. Yeo, “Surface Modification and Characterization of Coconut Shell-Based Activated Carbon Subjected to Acidic and Alkaline Treatments,” J. Appl. Sci. Process Eng., vol. 4, no. 2, pp. 186 – 194, 2017.
DOI: 10.33736/jaspe.435.2017 - S. Wang, G. Q. Lu, “Effects of Oxide Promoters on Metal Dispersion and Metal-Support Interactions in Ni Catalysts Supported on Activated Carbon,” Ind. Eng. Chem. Res., vol. 36, no. 12, pp. 5103 – 5109, Dec. 1997.
DOI: 10.1021/ie9703604 - Z. Xie, W. Guan, F. Ji, Z. Song, Y. Zhao, “Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology,” J. Chem., vol. 2014, Jun. 2014.
DOI: 10.1155/2014/491912 - B. S. Girgis, Y. M. Temerk, M. M. Gadelrab, I. D. Abdullah, “X-ray Diffraction Patterns of Activated Carbons Prepared under Various Conditions,” Carbon Lett., vol. 8, no. 2, pp. 95 – 100, Jun. 2012.
DOI: 10.5714/cl.2007.8.2.095 - T. K. Roy, C. Subramanian, A. K. Suri, “Pressureless sintering of boron carbide,” Ceram. Int., vol. 32, no. 3, pp. 227 – 233, Dec. 2006.
DOI: 10.1016/j.ceramint.2005.02.008 - R. K. Dash, A. Nikitin, Y. Gogotsi, “Microporous carbon derived from boron carbide,” Microporous Mesoporous Mater., vol. 72, no. 1 – 3, pp. 203 – 208, Jul. 2004.
DOI: 10.1016/j.micromeso.2004.05.001
CdZnTe BULK-CRYSTAL GROWTH AND SURFACE PROCESSING TECHNOLOGY AT METU-CGL
Yasin Ergunt, Merve Pinar Kabukcuoglu, Ozden Basar Balbasi, Bengisu Yasar, Yunus Eren Kalay, Mehmet Parlak, Rasit Turan
Pages: 167–171
Abstract | References | Full Text (PDF)
- C. Szeles, “CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications,” Phys. Status Solidi, vol. 241, no. 3, pp. 783 – 790, Mar. 2004.
DOI: 10.1002/pssb.200304296 - O. Limousine, “New trends in CdTe and CdZnTe detectors for X- and gamma-ray applications,” Nucl. Instrum. Methods Phys. Res. Sec. A, vol. 504, no. 1 – 3, pp. 24 – 37, May 2003.
DOI: 10.1016/S0168-9002(03)00745-9 - Y. Eisen, A. Shor, “CdTe and CdZnTe materials for room-temperature X-ray and gamma ray detectors,” J. Cryst. Growth, vol. 184 - 185, pp. 1302 - 1312, Feb. 1998.
DOI: 10.1016/S0022-0248(98)80270-4 - P. Capper, A. W. Brinkman, “Growth of CdTe, CdZnTe and CdTeSe by bulk methods,” in Properties of narrow Gap Cadmium-Based Compounds, P. Capper, Eds., London, UK: INSPEC, 1994., ch. B1.1, pp. 369 - 379.
Retrieved from: http://bookfi.net/dl/1507963/37a1c1
Retrieved on: Jul. 15, 2019 - J. MacKenzie, F. J. Kumar, H. Chen, “Advancements in THM-Grown CdZnTe for Use as substrates for HgCdTe,” J. Electron. Mater., vol.42, no. 11, pp. 3129 – 3132, Nov. 2013.
DOI: 10.1007/s11664-013-2681-1 - A. Noda, H. Kurita, R. Hirano, “Bulk Growth of CdZnTe/CdTe Crystals,” in Mercury Cadmium Telluride: Growth, Properties, and Applications, P. Capper, J. W. Garland, Eds., 1st ed., Chichester, UK: Wiley, 2011., ch. 2, pp. 21 - 50.
Retrieved from: http://bookfi.net/dl/1134035/734ccb
Retrieved on: Jul. 15, 2019 - B. Yasar et al., “HRTEM Analysis of Crystallographic Defects in CdZnTe Single Crystal,” J. Electron. Mater., vol. 47, no. 1, pp. 778 – 784, Jan. 2018.
DOI: 10.1007/s11664-017-5836-7
SENSING CHARACTERISTICS OF SnO2 THIN FILM GAS SENSORS
Sinan Oztel, Zeynel Abidin Sezer, Erhan Budak, Ercan Yilmaz
Pages: 172–175
Abstract | References | Full Text (PDF)
- T. Oyabu, “Sensing characteristics of SnO2 thin film gas sensor”, J. Appl. Phys., vol. 53, no. 4, pp. 2785 – 2787, Apr. 1982.
DOI: 10.1063/1.331079 - H. Gu, Z. Wang, Y. Hu, "Hydrogen gas sensors based on semiconductor oxide nanostructures," Sensors (Basel), vol. 12, no. 5, pp. 5517 – 5550, Apr. 2012.
DOI: 10.3390/s120505517
PMid: 22778599
PMCid: PMC3386698 - W. K. Choi et al., "H2 gas-sensing characteristics of SnOx sensors fabricated by a reactive ion-assisted deposition with/without an activator layer,” Sens. Actuators B-Chem., vol. 40, no. 1, pp. 21 – 27, May 1997.
DOI: 10.1016/S0925-4005(97)80194-3 - C. Ling et al., "Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction," Nanoscale, vol. 9, no. 25, pp. 8848 – 8857, Jun 2017.
DOI: 10.1039/c7nr03437g
PMid: 28632267 - M. L. Olvera, R. Asomoza " SnO2 and SnO2:Pt thin films used as gas sensors," Sens. Actuators B-Chem., vol. 45, no. 1, pp. 49 – 53, Nov. 1997.
DOI: 10.1016/S0925-4005(97)00269-4 - V. E. Bochenkov, G. B. Sergeev, "Sensitivity, Selectivity, and Stability of Gas-Sensitive Metal-Oxide Nanostructures", in Metal Oxide Nanostructures and their applications, vol. 3, Valencia (CA), USA: Amer. Sci. Publ., 2010., ch. 2, pp. 31 - 52.
Retrieved from: http://www.chem.msu.ru/rus/books/2011/sergeev/all.pdf - M. C. Cakir, "Investigation of Gas Sensing Application of Metal Oxide Thin Films", M.Sc. thesis, Hacettepe University, Graduate School of Science and Engineering, Ankara, Turkey, 2014.
- Y. Sun, X. Huang, F. Meng, J. Liu, "Study of inluencing factors of dynamic measurements based on SnO2 gas sensor," Sensors (Basel), vol. 4, no. 6, pp. 95 – 104, Aug. 2004.
PMCid: PMC3954074 - S. Oztel, S. Kaya, E. Budak, E. Yilmaz, "Influences of platinum doping concentrations and operation temperatures on oxygen sensitivity of Pt/SnO2/Pt resistive gas sensors," J. Mater. Sci.: Mater. Electron., vol. 30, no. 15,pp. 14813 – 14821, Aug. 2019.
DOI: 10.1007/s10854-019-01854-4
Medical Physics
INFLUENCE OF THE DISTANCE BETWEEN IMPLANTED SOURCES ON THE TUMOUR CONTROL PROBABILITY
Evgeniia S. Sukhikh, Andrey V. Vertinskiy, Leonid G. Sukhikh, Alexandr V. Taletsky, Mariya A. Tatarchenko
Pages: 176–180
Abstract | References | Full Text (PDF)
- J. L. Guinot y col., “Braquiterapia de alta tasa en el carcinoma escamoso de labio en estadios iniciales,” Acta Otorrinolaringol. Esp., t. 67, núm. 5, págs. 282 – 287, Sep-Oct., 2016. (J. L. Guinot et al., “High dose rate brachytherapy in early stage squamous-cell carcinoma of the lip”, Acta Otorrinolaringol. Esp., vol. 67, no. 5, pp. 282 – 287, Sep-Oct., 2016.)
DOI: 10.1016/j.otorri.2015.12.003
PMid: 27063585 - A. R. Casino et al., “Brachytherapy in lip cancer,” Med. Oral Patol. Oral Cir. Bucal, vol. 11, no. 3, pp. 223 – 229, May. 2006.
PMid: 16648757 - J. J. Mazeron et al., “GEC-ESTRO recommendations for brachytherapy for head and neck squamous cell carcinomas,” Radiother. Oncol., vol. 91, no. 2, pp. 150 – 156, Mar. 2009.
DOI: 10.1016/j.radonc.2009.01.005
PMid: 19329209 - Z. T. Nagy et al., “American Brachytherapy Society Task Group Report: Combined external beam irradiation and interstitial brachytherapy for base of tongue tumors and other head and neck sites in the era of new technologies,” Brachytherapy, vol. 16, no. 1, pp. 44 – 58, Aug. 2016.
DOI: 10.1016/j.brachy.2016.07.005
PMid: 27592129 - V. Tombolini et al., “Brachytherapy for squamous cell carcinoma of the lip. The experience of the Institute of Radiology of the University of Rome ‘La Sapienza’,” Tumori, vol. 84, no. 4, pp. 478 – 482, Jul-Aug. 1998.
Retrieved from: https://www.ncbi.nlm.nih.gov/pubmed/9825000 - J. L. Guinot et al., “From low-dose-rate to high-dose-rate brachytherapy in lip carcinoma: Equivalent results but fewer complications,” Brachytherapy, vol. 12, no. 6, pp. 528 – 534, Jul. 2013.
DOI: 10.1016/j.brachy.2013.05.007
PMid: 23850275 - R. Bhalavat et al, “High-dose-rate interstitial brachytherapy in head and neck cancer: do we need a look back into a forgotten art - a single institute experience,” J. Contemp. Brachytherapy, vol. 9, no.2, pp. 124 – 131, Apr. 2017.
DOI: 10.5114/jcb.2017.67147
PMid: 28533800
PMCid: PMC5437083 - G. Kovács, “Modern head and neck brachytherapy: from radium towards intensity modulated interventional brachytherapy,” J. Contemp. Brachytherapy, vol. 6, no. 4, pp. 404 – 416, Dec. 2014.
DOI: 10.5114/jcb.2014.47813
PMid: 25834586
PMCid: PMC4300360 - Dose and Volume Specification for Reporting Interstitial Therapy, vol. 30, ICRU REPORT 58, ICRU
DOI: 10.1093/jicru/os30.1.Report58 - D. J. Brenner, “The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction,” Semin. Radiat. Oncol., vol. 18, no. 4, pp. 234 – 239, Oct. 2008.
DOI: 10.1016/j.semradonc.2008.04.004
PMid: 18725109
PMCid: PMC2750078 - M. Joiner, A. van der Kogel, Basic Clinical Radiobiology, 4th ed., London, UK: Hoder Arnold, 2009.
Retraived from: http://en.bookfi.net/book/1206779 - MultiSource HDR User Guide. Eckert&Ziegler BEBIG GMbH, Germany,2006
- H. A. Azhari, F. Hensley, W. Schütte, G. A. Zakaria, “Dosimetric verification of source strength for HDR afterloading units with Ir-192 and Co-60 photon sources: Comparison of three different international protocols,” J. Med. Phys., vol. 37, no. 4, pp. 183 – 192, Oct. 2012.
DOI: 10.4103/0971-6203.103603
PMid: 23293449
PMCid: PMC3532746 - Cases: Head and Neck: Oral Cavity: Tongue, eContour, USA, 2019.
Retrieved from: https://econtour.org/cases/3;
Retrieved on: Aug. 20, 2019 - MultiSource HDRplus User Giude, sonoTECH GmbH.
- Wolfram Mathematica, Wolfram Research, Champaign (IL), USA, 2019.
Retrieved from: https://www.wolfram.com/mathematica/;
Retrieved on: Aug. 20, 2019 - A. Niemierko, “Reporting and analyzing dose distributions: a concept of equivalent uniform dose,” Med. Phys., vol. 24, no. 1, pp. 103 – 110, Jan. 1997.
DOI: 10.1118/1.598063
PMid: 9029544 - A. Niemierko, “A unified model of tissue response to radiation,” in Proc. 41th annual meeting (AAPM), Nashville, Tennessee, USA, Jul. 1999.: Med Phys, 1999. p. 1100.
Retraived from: https://www.aapm.org/meetings/99AM/pdf/2695-43467.pdf
FIRST RESULTS AND ASPECTS OF IN VIVO DOSIMETRY SYSTEM IMPLEMENTATION OF EXTERNAL RADIATION THERAPY IN TOMSK REGIONAL ONCOLOGY CENTER
Andrey V. Vertinskiy, Leonid G. Sukhikh, Evgeniia S. Sukhikh, Yana N. Sutygina
Pages: 181–186
Abstract | References | Full Text (PDF)
- H. Zhen, B. E. Nelms, W. A. Tome, “Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA,” Med. Phys., vol. 38, no. 10, pp. 5477 – 5489, Oct. 2011.
DOI: 10.1118/1.3633904
PMid: 21992366 - B. Mijnheer, S. Beddar, J. Izewska, C. Reft, “In vivo dosimetry in external beam radiotherapy,” Med. Phys., vol. 40, no. 7, Jul. 2013.
DOI: 10.1118/1.4811216
PMid: 23822404 - M. Sabet, F. W. Menk, P. B. Greer, “Evaluation of an a-Si EPID in direct detection configuration as a water-equivalent dosimeter for transit dosimetry,” Med. Phys., vol. 37, no. 4, pp. 1459 – 1467, Apr. 2010.
DOI: 10.1118/1.3327456
PMid: 20443467 - A. Mans et al., “Catching errors with in vivo EPID dosimetry,” Med. Phys., vol. 37, no. 6, pp. 2638 – 2644, Jun. 2010.
DOI: 10.1118/1.3397807
PMid: 20632575 - A. H. Zhuang, A. J. Olch, “Sensitivity study of an automated system for daily patient QA using EPID exit dose images,” J. Appl. Clin. Med. Phys., vol. 19, no. 3, pp. 114 – 124, May 2018.
DOI: 10.1002/acm2.12303
PMid: 29508529
PMCid: PMC5978566 - C. Bojechko, M. Phillps, A. Kalet, E. C. Ford, “A quantification of the effectiveness of EPID dosimetry and software-based plan verification systems in detecting incidents in radiotherapy,” Med. Phys., vol. 42, no. 9, pp. 5363 – 5369, Sep. 2015.
DOI: 10.1118/1.4928601
PMid: 26328985 - I. Olaciregui-Ruiz, R. Rozendaal, B. Mijnheer, A. Mans, “Site-specific alert criteria to detect patient-related errors with 3D EPID transit dosimetry,” Med. Phys., vol. 46, no. 1, pp. 45 – 55, Jan. 2019.
DOI: 10.1002/mp.13265
PMid: 30372521 - S. Bresciani, L. Botez, A. Miranti, M. Stasi, “In Vivo dosimetry using CBCT and EPID device: analysis of sources of errors in VMAT treatments”, Radiother. Oncol., vol. 133, suppl. 1, pp. 249 – 250, Apr. 2019.
DOI: 10.1016/S0167-8140(19)30904-1 - R. Jacques, J. Wong, R. Taylor, T. McNutt, ”Real-time dose computation: GPU-accelerated source modeling and superposition/convolution,” Med. Phys., vol. 38, no. 1, pp. 294 – 305, Jan. 2011.
DOI: 10.1118/1.3483785
PMid: 21361198 - S. Ahmed et al., “Validation of a GPU-Based 3D dose calculator for modulated beams,” J. Appl. Clin. Med. Phys., vol. 18, no. 3, pp. 73 – 82,May 2017.
DOI: 10.1002/acm2.12074
PMid: 28371377
PMCid: PMC5689856 - EPID Dosimetry in SunCHECK™ Patient: EPID Calibration, Pre-Treatment QA and In-Vivo Monitoring, Sun Nucl. Corp., Melbourne (FL), USA.
Retrieved from: https://www.sunnuclear.com/documents/whitepapers/EPID-Dosimetry_in-SC_Patient_021519.pdf
Retrieved on: Dec. 12, 2018
RADIATION-INDUCED SKIN PIGMENTATION AFTER ACCELERATED PARTIAL BREAST IRRADIATION: DOSE-VOLUME HISTOGRAM ANALYSIS
Alena Demianovich, Dmitriy Sanin, Natalia Borysheva, Valeriya Martynova, Sergey Ivanov, Andrey Kaprin
Pages: 187–190
Abstract | References | Full Text (PDF)
- Breast, IARC, Lyon, France, 2018.
Retrieved from: https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf
Retrieved on: Nov. 15, 2018 - J. A. Latorre et al., “Accelerated partial breast irradiation in a single 18 Gy fraction with high-dose-rate brachytherapy: preliminary results,” J. Contemp. Brachytherapy, vol. 10, no. 1, pp. 58 - 63, Feb. 2018.
DOI: 10.5114/jcb.2018.73994
PMid: 29619057
PMCid: PMC5881592 - S. Ahmad et al., “Comparison of tumor and normal tissue dose for accelerated partial breast irradiation using an electronic brachytherapy eBx source and an Iridium‐192 source,” J. Appl. Clin. Med. Phys., vol. 11, no. 4, pp. 155 - 161, Sep. 2010.
DOI: 10.1120/jacmp.v11i4.3301
PMid: 21081891
PMCid: PMC5720398 - M. Sinnatamby, V. Nagarajan, R. K. Sathyanarayana, G. Karunanidhi, V. Singhavajala, “Study of the dosimetric differences between 192Ir and 60Co sources of high dose rate brachytherapy for breast interstitial implant,” Rep. Pract. Oncol. Radiother., vol. 21, no. 5, pp. 453 - 459, Sep.-Oct. 2016.
DOI: 10.1016/j.rpor.2016.03.005
PMid: 27489516
PMCid: PMC4949742 - M. Oshaghi, M. Sadeghi, S. R. Mahdavi, A. R. Shirazi, “A Comparison of Skin Dose Delivered with MammoSite and Multicatheter Breast Brachytherapy,” J. Biomed. Phys. Eng., vol. 3, no. 4, pp. 133 - 138, Dec. 2013.
PMid: 25505759
PMCid: PMC4204506 - J. Lasota, R. Kabacińska, R. Makarewicz, “Dose estimation for different skin models in interstitial breast brachytherapy,” J. Contemp. Brachytherapy, vol. 6, no. 2, pp. 200 - 207, Jun. 2014.
DOI: 10.5114/jcb.2014.43167
PMid: 25097562
PMCid: PMC4105640 - K. Yoshida et al., “Case report of a dose-volume histogram analysis of rib fracture after accelerated partial breast irradiation: interim analysis of a Japanese prospective multi-institutional feasibility study,” J. Contemp. Brachytherapy, vol. 10, no. 3, pp. 274 - 278, Jun. 2018.
DOI: 10.5114/jcb.2018.76983
PMid: 30038649
PMCid: PMC6052388 - G. L. Smith et al., “Association between treatment with brachytherapy vs whole-breast irradiation and subsequent mastectomy, complications, and survival among older women with invasive breast cancer,” JAMA Oncol., vol. 307, no. 17, pp. 1827 – 1837, May 2012.
DOI: 10.1001/jama.2012.3481
PMid: 22550197
PMCid: PMC3397792 - J. Huo, S. H. Giordano, B. D. Smith, S. F. Shaitelman, G. L. Smith, “Contemporary Toxicity Profile of Breast Brachytherapy Versus External Beam Radiation After Lumpectomy for Breast Cancer,” Int. J. Radiat. Oncol. Biol. Phys., vol. 94, no. 4, pp. 709 - 718, Mar. 2016.
DOI: 10.1016/j.ijrobp.2015.12.013
PMid: 26972643 - J. W. Snider et al., “Projected Improvements in Accelerated Partial Breast Irradiation Using a Novel Breast Stereotactic Radiotherapy Device: A Dosimetric Analysis,” Technol. Cancer Res. Treat., vol. 16, no. 6, pp. 1031 - 1037, Jan. 2017.
DOI: 10.1177/1533034617718961
PMid: 28705082
PMCid: PMC5762064 - M. Akhtari et al., “Clinical outcomes, toxicity, and cosmesis in breast cancer patients with close skin spacing treated with accelerated partial breast irradiation (APBI) using multi-lumen/catheter applicators,” J. Contemp. Brachytherapy, vol. 8, no. 6, pp. 497 - 504, Dec. 2016.
DOI: 10.5114/jcb.2016.64830
PMid: 28115955
PMCid: PMC5241383 - V. Strnad et al., “ESTRO-ACROP guideline: Interstitial multi-catheter breast brachytherapy as Accelerated Partial Breast Irradiation alone or as boost - GEC-ESTRO Breast Cancer Working Group practical recommendations,” Radiother. Oncol., vol. 128, no. 3, pp. 411 - 420, Sep. 2018.
DOI: 10.1016/j.radonc.2018.04.009
PMid: 29691075 - C. Shah et al., “The American Brachytherapy Society consensus statement for accelerated partial-breast irradiation,” Brachytherapy, vol. 12, no. 4, pp. 267 - 277, Jul.-Aug. 2013.
DOI: 10.1016/j.brachy.2013.02.001
PMid: 23619524 - V. Strnad et al., “Recommendations from GEC ESTRO Breast Cancer Working Group (I): Target definition and target delineation for accelerated or boost Partial Breast Irradiation using multicatheter interstitial brachytherapy after breast conserving closed cavity surgery,” Radiother. Oncol., vol. 115, no. 3, pp. 342 - 348, Jun. 2015.
DOI: 10.1016/j.radonc.2015.06.010
PMid: 26104975 - T. Majora, et al, “Recommendations from GEC ESTRO Breast Cancer Working Group (II): Target definition and target delineation for accelerated or boost partial breast irradiation using multicatheter interstitial brachytherapy after breast conserving open cavity surgery,” Radiother. Oncol. vol. 118, no. 1, pp. 199 - 204, Jan. 2016.
DOI: 10.1016/j.radonc.2015.12.006
PMid: 26776444
Radiology
RECURRENT EXPOSURE OF PATIENTS WITH CHRONIC CONDITIONS IN A SMALL PRIVATE MEDICAL CENTER
Olga Girjoaba
Pages: 191–194
Abstract | References | Full Text (PDF)
- Summary of the IAEA Technical Meeting on Radiation Exposure of Patients from Recurrent Radiological Imaging Procedures, IAEA, Vienna, Austria, 2019.
Retrieved from: https://www.iaea.org/sites/default/files/19/04/rpop-tm_summary_final.pdf
Retrieved on: Jul. 7, 2019 - European Guidance on Estimating Population Doses from Medical X-Ray Procedures, Radiation Protection no. 154, European Commission, Luxembourg, Luxembourg, 2008, pp. 23 – 43.
Retrieved from: https://ec.europa.eu/energy/en/topics/nuclear-energy/radiation-protection/scientific-seminars-and-publications/radiation-protection-publications
Retrieved on: Jul. 10, 2019 - The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM. Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF
Retrieved on: Jul. 11, 2019
PRELIMINARY RISK ASSESSMENT STUDY – NEUROBIOLOGICAL EFFECTS IN EXPERIMENTAL LONG-TIME EXPOSURE TO LOW GSM RADIATION
Soimita Suciu, Dana Dabala, Adrian Florea, Alexandra Sevastre-Berghian, Emanoil Surducan, Vasile Surducan, Camelia Neamtu
Pages: 195–201
Abstract | References | Full Text (PDF)
- H. Lai, A. Horita, A. W. Guy, “Microwave irradiation affects radial-arm maze performance in the rat,” Bioelectromagnetics, vol. 15, no. 2, pp. 95 - 104, 1994.
DOI: 10.1002/bem.2250150202
PMid: 8024608 - B. Wang, H. Lai, ”Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats,” Bioelectromagnetics, vol. 21, no. 1, pp. 52 - 56, Jan. 2000.
DOI: 10.1002/(SICI)1521-186X(200001)21:1<52::AID-BEM8>3.0.CO;2-6
PMid: 10615092 - B. L. Cobb, J. R. Jauchem, E. R. Adair, “Radial arm maze performance of rats following repeated low level microwave radiation exposure,” Bioelectromagnetics, vol. 25, no. 1, pp. 49 - 57, Jan. 2004.
DOI: 10.1002/bem.10148
PMid: 14696053 - Z. J. Sienkiewicz, R. P. Blackwell, R. G. Haylock, R. D. Saunders, B. L. Cobb, “Low-level exposure to pulsed 900 MHz microwave radiation does not cause deficits in the performance of a spatial learning task in mice,” Bioelectromagnetics, vol. 21, no. 3, pp. 151 – 158, Apr. 2000.
DOI: 10.1002/(sici)1521-186x(200004)21:3<151::aid-bem1>3.0.co;2-q
PMid: 10723014 - D. Dubreuil, T. Jay, J. M. Edeline, “Does head-only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks?,” Behav. Brain Res., vol. 129, no. 1 – 2, pp. 203 - 210, Feb. 2002.
DOI: 10.1016/s0166-4328(01)00344-8
PMid: 11809512 - H. Yamaguchi et al., “1439 MHz pulsed TDMA fields affect performance of rats in a T-maze task only when body temperature is elevated,” Bioelectromagnetics, vol. 24, no. 4, pp. 223 – 230, May 2003.
DOI: 10.1002/bem.10099
PMid: 12696082 - M. P. Ntzouni, A. Stamatakis, F. Stylianopoulou, L. H. Margaritis, “Short-term memory in mice is affected by mobile phone radiation,” Pathophysiology, vol. 18, no. 3, pp. 193 – 199, Jun. 2011.
DOI: 10.1016/j.pathophys.2010.11.001
PMid: 21112192 - J. C. Cassel, B. Cosquer, R. Galani, N. Kuster, “Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats,” Behav. Brain Res., vol. 155, no. 1, pp. 37 - 43, Nov. 2004.
DOI: 10.1016/j.bbr.2004.03.031
PMid: 15325777 - ICNIRP guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), ICNIRP, Oberschleissheim, Germany, 1988.
Retrieved from: https://www.icnirp.org/cms/upload/publications/ICNIRPemfgdl.pdf
Retrieved on: Jan 27, 2019 - ICNIRP Statement on the ”Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”, ICNIRP, Oberschleissheim, Germany, 2009.
Retrieved from: https://www.icnirp.org/cms/upload/publications/ICNIRPStatementEMF.pdf
Retrieved on: Aug. 1, 2019 - Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz–300 GHz), ICNIRP 16/2009, ICNIRP, Oberschleissheim, Germany, 2009.
Retrieved from: http://ocpm.qc.ca/sites/ocpm.qc.ca/files/pdf/P52/5z.pdf
Retrieved on: May 8, 2019 - M. T. Gamberini, D. S. Rodrigues, D. Rodrigues, V. B. Pontes, “Effects of the aqueous extract of Pimpinella anisum L. seeds on exploratory activity and emotional behavior in rats using the open field and elevated plus maze tests,” J. Ethnopharmacol., vol. 168, pp. 45 – 49, Jun. 2015.
DOI: 10.1016/j.jep.2015.03.053
PMid: 25839118 - A. A. Walf, C. A. Frye, “Antianxiety and antidepressive behavior produced by physiological estradiol regimen may be modulated by hypothalamic–pituitary–adrenal axis activity,” Neuropsychopharmacology, vol. 30, no. 7, pp. 1288 – 1301, Jul. 2005.
DOI: 10.1038/sj.npp.1300708
PMid: 15756306 - A. A. Walf, C. A. Frye, “The use of the elevated plus maze as an assay of anxiety-related behavior in rodents,” Nat. Protoc., vol. 2, no. 2, pp. 322 – 328, Mar. 2007.
DOI: 10.1038/nprot.2007.44
PMid: 17406592
PMCid: PMC3623971 - M. A Hayat, Principles and Techniques of Electron Microscopy: Biological Applications, 4th ed., Cambridge, UK: Cambridge Univ. Press, 2000.
Retrieved from: https://archive.org/stream/PrinciplesTechniquesOfElectronMicroscopyVolume2/Hayat-PrinciplesTechniquesOfElectronM icroscopyVol2_djvu.txt
Retrieved on: Mar. 29, 2019 - W. Bloom, D. W. Fawcet, “The nervous tissue” in A textbook of Histology, 10th ed., Philadelphia (PA), USA: W. B. Saunders Co., 1975, ch. 12, pp. 333 – 363.
Retrieved from: https://trove.nla.gov.au/work/11587217?q&sort=holdings+desc&_=1574538277129&versionId=45416250
Retrieved on: Dec. 29, 2018 - I. M. Watt, The Principles and Practice of Electron Microscop, 2nd ed., Cambridge, UK: Cambridge Univ. Press, 1997.
Retrieved from: https://www.scribd.com/document/337211592/The-Principles-and-Practice-of-Electron-Microscopy
Retrieved on: Sep. 13, 2019 - A. İkinci et al., “The Effects of Prenatal Exposure to a 900 Megahertz Electromagnetic Field on Hippocampus Morphology and Learning Behavior in Rat Pups,” NeuroQuantology, vol. 11, no. 4, pp. 582 – 590, Dec. 2003.
DOI: 10.14704/nq.2013.11.4.699 - H. S. Aboul Ezz, Y. A. Khadrawy, N. A. Ahmed, N. M. Radwan, N. M. El Bakry, “The effect of pulsed electromagnetic radiation from mobile phone on the levels of monoamine neurotransmitters in four different areas of rat brain,” Eur. Rev. Med. Pharmacol. Sci., vol. 17, no. 13, pp. 1782 - 1788, Jul. 2013.
PMid: 23852905 - K. Maaroufi et al., “Spatial learning, monoamines and oxidative stress in rats exposed to 900 MHz electromagnetic field in combination with iron overload,” Behav. Brain Res., vol. 258, pp. 80 – 89, Jan. 2014.
DOI: 10.1016/j.bbr.2013.10.016
PMid: 24144546 - I. Pavacic, I. Trosic, “In vitro testing of cellular response to ultra high frequency electromagnetic field radiation,” Toxicol. In Vitro., vol. 22, no. 5, pp. 1344 - 1348, Aug. 2008.
DOI: 10.1016/j.tiv.2008.04.014
PMid: 18513921 - V. S. S. S. Sajja, N. Hlavac, P. J. VandeVord, “Role of Glia in Memory Deficits Following Traumatic Brain Injury: Biomarkers of Glia Dysfunction,” Front. Integr. Neurosci., vol. 10, article no. 7, Feb. 2016.
DOI: 10.3389/fnint.2016.00007
PMid: 26973475
PMCid: PMC4770450 - L. G. Salford, A. E. Brun, J. L. Eberhardt, L. Malmgren, B. R. Persson, “Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones,” Environ. Health Perspect., vol. 111, no. 7, pp. 881 – 883, Jun. 2003.
DOI: 10.1289/ehp.6039
PMid: 12782486
PMCid: PMC1241519 - J. Tang et al., “Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats,”Brain Res., vol. 1601, pp. 92 - 101, Mar. 2015.
DOI: 10.1016/j.brainres.2015.01.019
PMid: 25598203
Radiotherapy
USING SILICONE BASED RUBBERS AS BOLUS MATERIALS IN RADIOTHERAPY
Bogdan Ile, Iosif Malaescu, Marius Spunei, Catalin Nicolae Marin, Serban Negru
Pages: 202–205
Abstract | References | Full Text (PDF)
- E. C. Halperin, D. E. Wazer, C. A. Perez, L. W. Brady, Perez & Brady’s Principles and Practice of Radiation Oncology, 7th ed., Philadelphia (PA), USA: LWW/Wolters Kluwer, 2018, p. 47.
Retrieved from: https://libgen.is/book/index.php?md5=5F6C5B8314A3DDC60EF2535DE1B3BC13
Retrieved on: Jun. 15, 2019 - E. C. Halperin, D. E. Wazer, C. A. Perez, L. W. Brady, Perez & Brady’s Principles and Practice of Radiation Oncology, 7th ed., Philadelphia (PA), USA: LWW/Wolters Kluwer, 2018, p. 91.
Retrieved from: https://libgen.is/book/index.php?md5=5F6C5B8314A3DDC60EF2535DE1B3BC13
Retrieved on: Jun. 15, 2019 - Criteria for radiation oncology in multidisciplinary cancer management: report to the director of the National Cancer Institute, National Institutes of Health, American College of Radiology, Philadelphia (PA), USA, 1986.
- G. H. Perkins et al., “A custom three-dimensional electron bolus technique for optimization of postmastectomy irradiation,” Int. J. Radiat. Oncol. Biol. Phys., vol. 51, no. 4, pp. 1142 – 1151, Nov. 2001.
DOI: 10.1016/s0360-3016(01)01744-8
PMid: 11704339 - R. J. Kudchadker et al., “Electron conformal radiotherapy using bolus and intensity modulation,” Int. J. Radiat. Oncol. Biol. Phys., vol. 53, no. 4, pp. 1023 – 1037, Jul. 2002.
DOI: 10.1016/s0360-3016(02)02811-0
PMid: 12095572 - E. B. Podgorsak, “Treatment machines for external beam radiotherapy,” in Radiation oncology physics: a handbook for teachers and students, Vienna, Austria: IAEA, 2005, ch. 5, sec. 5.5, p. 136.Retrieved from: http://93.174.95.29/_ads/C0D2950299A6707E21F71739ACC27EEF
Retrieved on: Apr. 2, 2019 - E. B. Podgorsak, “External photon beams: physical aspects,” in Radiation oncology physics: a handbook for teachers and students, Vienna, Austria: IAEA, 2005, ch. 6, sec. 6.5, p. 170.
Retrieved from: http://93.174.95.29/_ads/C0D2950299A6707E21F71739ACC27EEF
Retrieved on: Apr. 2, 2019 - F. M. Khan, J. P. Gibbons, Khan`s The Physics of Radiation Therapy, 5th ed., Philadelphia (PA), USA: LWW/Wolters Kluwer, 2014, p. 223.
Retrieved from: http://93.174.95.29/_ads/14C0219ED869FF8DCC7428F524007F0C
Retrieved on: Apr. 2, 2019 - RTV-530 Gomma siliconica in pasta, Prochima, Colli al Metauro, Italia. (RTV-530 Paste silicone rubber, Prochima, Colli al Metauro, Italy.)
Retrieved from: http://www.prochima.it/files/Gomma-siliconica-RTV-530_versione-5.pdf
Retrieved on: May 5, 2019 - Cauciuc Cristal. (Crystal rubber.)
Retrieved from: https://d5cafn4nbz2pc.cloudfront.net/documents/69be4bbd9cec70099706dc7a7d8e736d.pdf
Retrieved on: Apr. 2, 2019 - Gomme siliconiche per stampi, Prochima, Colli al Metauro, Italia. (Silicone rubbers for molds, Prochima, Colli al Metauro, Italy.)
Retrieved from: http://www.prochima.it/gomme-siliconiche-per-stampi.html
Retrieved on: May 5, 2019 - ArcCHECK®& 3DVH®, Sun Nuclear Corporation, Melbourne (FL), USA.
Retrieved from: https://www.sunnuclear.com/solutions/patientqa/arccheck3dvh
Retrieved on: Mar. 10, 2019
Microwave, Laser, RF and UV radiations
PREVENTIVE TREATMENT OF DRYING CHAMBER WITH UV RADIATION AND OZONIZATION FOR PROTECTION AGAINST SPOILAGE OF RAW SMOKED SAUSAGES
A.M. Abdullaeva, L.P. Blinkova, I.G. Seryogin, D.I. Udavliev, S.S. Shikhov, Yu.D. Pakhomov
Pages: 206–211
Abstract | References | Full Text (PDF)
- И. Г. Серегин, Д. В. Никитченко, А. М. Абдуллаева, “О болезнях пищевого происхождения,” Вестник Российского университета дружбы народов. Серия: Aгрономия и животноводство, но. 4, стр. 101 – 107, 2015. (I. G. Seryogin, D. V. Nikitchenko, A. M. Abdullaeva, “About illness of foodborne diseases,” Bull. Peoples` Friendship University of Russia. Series: Agronomy and animal industries, no. 4, pp. 101 - 107, 2015.)
DOI: 10.22363/2312-797X-2015-4-101-107 - Н. А. Соколова, А. М. Абдуллаева, М. Н. Лощинин, Возбудители зооантропонозов, пищевых отравлений, порчи сырья и продуктов животного происхождения, Москва, Россия: ДеЛи плюс, 2015. (N. A. Sokolova, A. M. Abdullaeva, M. N. Loshchinin, Pathogens of zooanthroponosis, food poisoning, spoilage of raw materials and products of animal origin, Moscow, Russia: DeLi plus, 2015.)
Retrieved from: https://elibrary.ru/item.asp?id=24804630
Retrieved on: May 18, 2019 - Ю. Г. Костенко, Руководство по санитарно-микробиологическим основам и предупреждению рисков при производстве и хранении мясной продукции, Москва, Россия: Tехносфера, 2015. (Yu. G. Kostenko “Guidance on the sanitary-microbiological basis and risk prevention in the production and storage of meat products,” Moscow, Russia: Technosphere, 2015.)
Retrieved from: http://www.vniimp.ru/files/news/kostenko.pdf
Retrieved on: Aug. 22, 2019 - А. М. Абдуллаева, И. Г. Серегин, Л. Б. Леонтьев, Н. А. Соколова, М. Н. Лощинин, “О бактериальной безопасности мяса птицы,” Ветеринария сельскохозяйственных животных, но. 11, стр. 41 – 49, 2017. (A. M. Abdullaeva, I. G. Seryogin, L. B. Leontyev, N. A. Sokolova, M. N. Loshchinin, “About bacterial safety of poultry meat,” Vet. farm anim., no 11, pp. 41 - 49, 2017.)
Retrieved from: https://elibrary.ru/item.asp?id=36855580
Retrieved on: Feb. 10, 2019 - J. D. Greig, A. Ravel, “Analysis of foodborne outbreak data reported internationally for source attribution,” Int. J. Food Microbiol., vol. 130, no. 2, pp. 77 – 87, Mar. 2009.
DOI: 10.1016/j.ijfoodmicro.2008.12.031
PMid: 19178974 - Л. С. Кузнецова, “Мицелиальные грибы – инициаторы микробной порчи мясной продукции,” Мясные технологии, но. 4, стр. 20 – 22, Апр. 2005. (L. S. Kuznetsova, “Mycelial fungi - initiators of microbial spoilage of meat products,” Meat technol., no. 4, pp. 20 - 22, Apr. 2005.)
Retrieved from: http://www.meatbranch.com/magazine/archive/viewdoc/2005/4/50.html
Retrieved on: Feb. 12, 2019 - А. Г. Снежко, М. И. Губанова, К. Г. Разумовского, “Эффективные составы для антимикробной обработки колбас,” Мясная индустрия, но. 3, стр. 19 – 21, 1999. (A. G. Snezhko, M. I. Gubanova, K. G. Razumovsky, “Antimicrobial protection of raw smoked sausages,” Meat Ind., no 3, pp. 19 - 21, 1999.)
Retrieved from: http://meatind.ru/articles/1113/
Retrieved on: Mar. 12, 2019 - А. М. Абдуллаева, И. Р. Смирнова, E. В. Tрохимец, A. A. Губанкова, “Микробиологический контроль полуфабрикатов из мяса индеек при холодильном хранении,” Ветеринария, но. 8, стр. 49 – 53, 2017. (A. M. Abdullaeva, I. R. Smirnova, E. V. Trochimetz, A. A. Gubankova, “Microbiological control of semi-finished products from meat turkeys in the modified gas medium and shrink-stretch film during refrigerated storage,” Vet. Sci., no. 8, pp. 49 - 53, 2017.)
Retrieved from: https://elibrary.ru/item.asp?id=29800757
Retrieved on: Sep. 24, 2019 - А. А. Прокопенко, Л. Ю. Юферев, “Эффективность применения уф облучателей – озонаторов "ОЗУФ" на объектах ветеринарного надзора,” материалы Экология и сельскохозяйственная техника, Санкт Петербург, Россия, 2005, стр. 262 – 266. (A. A. Prokopenko, L. Yu. Yuferev, “Ultra-violet installations performance on the objects of veterinary inspection,” in Proc. 4th Int. Sci. Pract. Conf., Saint Petersburg, Russia, 2005, pp. 262 – 266.)
Retrieved from: https://elibrary.ru/item.asp?id=21434608
Retrieved on: Jan. 1, 2019 - Общая и санитарная микробиология с техникой микробиологических исследований: Учебное пособие, А. С. Лабинской, Л. П. Блинковой, А. С. Ещиной, Под. Ред., 3-е изд., Санкт Петербург, Россия: Издательство Лань, 2019. (General and sanitary microbiology with the technique of microbiological research. Tutorial, A. S. Labinskaya, L. P. Blinkova, A. S. Eshchina, Eds., 3rd ed., Saint Petersburg, Russia: Lan publishers, 2019.)
Retrieved from: https://rus.logobook.ru/prod_show.php?object_uid=2254526
Retrieved on: Oct. 27, 2019
Pharmaceutical Sciences
METHODS FOR MANAGING TEXTURAL PROPERTIES OF NANOPOWDERS TO CREATE A DRUG DELIVERY SYSTEM BASED ON SiO2, SiO2-MnO2
O. A. Zlygosteva, S. Yu. Sokovnin, V. G. Ilves
Pages: 212–215
Abstract | References | Full Text (PDF)
- Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, J. I. Zink, “Mesoporous silica nanoparticles in biomedical applications,” Chem. Soc. Rev., vol. 41, no. 7, pp. 2590 - 2605, Apr. 2012.
DOI: 10.1039/c1cs15246g
PMid: 22216418 - Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J. Phys. D, vol. 36, no. 13, pp. 167 - 181, Jun. 2003.
DOI: 10.1088/0022-3727/36/13/201 - S. Horikoshi, N. Serpone, “Introduction to Nanoparticles,” in Microwaves in nanoparticle synthesis: Fundamentals and applications, 1st ed., Berlin, Germany: Wiley-VCH, 2013, ch. 1, pp. 1 - 24.
DOI: 10.1002/9783527648122 - M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra, J. Santamaría, “Magnetic nanoparticles for drug delivery,” Nano Today, vol. 2, no. 3, pp. 22 - 32, Jun. 2007.
DOI: 10.1016/S1748-0132(07)70084-1 - O. A. Zlygosteva, S. Y. Sokovnin, V. G. Ilves, “The use of manganese-doped mesoporous silica nanopowder for targeted drug delivery,” J. Phys. Conf. Ser., vol. 1115, 2018.
DOI: 10.1088/1742-6596/1115/4/042067 - Y. Li et al., “Hollow Mesoporous Silica Nanoparticles with Tunable Structures for Controlled Drug Delivery,” ACS Appl. Mater. Interfaces, vol. 9, no. 3, pp. 2123 - 2129, Jan. 2017.
DOI: 10.1021/acsami.6b13876
PMid: 28004570 - S. Iravani, H. Korbekandi, S. V. Mirmohammadi, B. Zolfaghari, “Synthesis of silver nanoparticles: chemical, physical and biological methods,” Res. Pharm. Sci., vol. 9, no. 6, pp. 385 - 406, Nov.-Dec. 2014.
PMid: 26339255
PMCid: PMC4326978 - S. Y. Sokovnin, V. G. Il`ves, M. G. Zuev, “Production of complex metal oxide nanopowders using pulsed electron beam in low-pressure gas for biomaterials application,” in Engineering of Nanobiomaterials: Applications of Nanobiomaterials, vol. 2, A. M. Grumezescu, Eds., 1st ed., Amsterdam, Netherlands: Elsevier Inc., 2016, ch. 2, pp. 29 - 75.
DOI: 10.1016/C2015-0-00356-2 - О. А. Злыгостева, С. Ю. Соковнин, В. Г. Ильвес, “Оценка свойств мезопористого диоксида кремния, допированного диоксидом марганца, полученного импульсным электронным испарением, для применения в биомедицине,” Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов: межвуз. сб. науч. тр., т. 9, стр. 199 - 204, 2017. (O. A. Zlygosteva, S. Yu. Sokovnin, V. G Il’vec, “Properties evaluation of mesoporous silica nanopowders doped with manganese dioxide produced by a pulsed electron beam evaporation for biomedical applications,” Phys. Chem. Asp. Study of Clust., Nanostruct. Nanomater.: Collect. Pap., vol. 9, pp. 199 - 204, 2017.)
DOI: 10.26456/pcascnn/2017.9.199 - V. G. Il’ves, M. G. Zuev, S. Y. Sokovnin, “Properties of Silicon Dioxide Amorphous Nanopowder Produced by Pulsed Electron Beam Evaporation,” J. Nanotechnol., vol. 2015, no. 18, pp. 1 - 8, Oct. 2015.
DOI: 10.1155/2015/417817 - P. Tian et al., “TiO2/CaF2 composite coating on titanium for biomedical application,” Mater. Lett., vol. 117, pp. 98 - 100, Feb. 2014.
DOI: 10.1016/j.matlet.2013.12.006 - S. Y. Sokovnin, M. E. Balezin, “Repetitive nanosecond electron accelerators type URT-1 for radiation technology,” Radiat. Phys. Chem., vol. 144, pp. 265 - 270, Mar. 2018.
DOI: 10.1016/j.radphyschem.2017.08.023
Biochemistry
INTERRELATIONSHIP OF PREFRONTAL BRAIN-DERIVED NEUROTROPHIC FACTOR AND NEUROENDOCRINE SYSTEM DURING CHRONIC RESTRAINT STRESS
Nataša Popović, Vesna Stojiljković, Snežana Pejić, Ana Todorović, Ivan Pavlović, Snežana B. Pajović and Ljubica Gavrilović
Pages: 216–219
Abstract | References | Full Text (PDF)
- J. P. Herman et al., “Regulation of the hypothalamic-pituitary-adrenocortical stress response,” Compr. Physiol., vol. 6, no. 2, pp. 603 – 621, Mar. 2016.
DOI: 10.1002/cphy.c150015
PMid: 27065163
PMCid: PMC4867107 - B. S. McEwen, “Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators,” Eur. J. Pharmacol., vol. 583, no. 2 - 3, pp. 174 - 185, Apr. 2008.
DOI: 10.1016/j.ejphar.2007.11.071
PMid: 18282566
PMCid: PMC2474765 - G. Naert, G. Ixart, T. Maurice, L. Tapia-Arancibia, L. Givalois, “Brain-derived neurotrophic factor and hypothalamic–pituitary–adrenal axis adaptation processes in a depressive-like state induced by chronic restraint stress,” Mol. Cell. Neurosci., vol. 46, no. 1, pp. 55 - 66, Jan. 2011.
DOI: 10.1016/j.mcn.2010.08.006
PMid: 20708081 - S. Chiba et al., “Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex,” Prog. Neuro-Psychopharmacol. Biol. Psychiatry., vol. 39, no. 1, pp. 112 - 119, Oct. 2012.
DOI: 10.1016/j.pnpbp.2012.05.018
PMid: 22664354 - J. Klein et al.,“Lesion of the medial prefrontal cortex and the subthalamic nucleus selectively affect depression-like behavior in rats,” Behav. Brain Res., vol. 213, no. 1, pp. 73 - 81, Nov. 2010.
DOI: 10.1016/j.bbr.2010.04.036
PMid: 20434489 - R. M. Sullivan, A. Gratton, “Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats,” J. Neurosci., vol. 19, no. 7, pp. 2834 - 2840, Apr. 1999.
DOI: 10.1523/JNEUROSCI.19-07-02834.1999
PMid: 10087094
PMCid: PMC6786056 - M. Ivković et al., “Predictive value of sICAM-1 and sVCAM-1 as biomarkers of affective temperaments in healthy young adults,” J. Affect. Disord., vol. 207, pp. 47 – 52, Jan. 2017.
DOI: 10.1016/j.jad.2016.09.017
PMid: 27693464 - N. Popović et al., “Relationship between behaviors and catecholamine content in prefrontal cortex and hippocampus of chronically stressed rats,” in Proc. 5th Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2017), Budva, Montenegro, 2017, pp. 255 - 259.
DOI: 10.21175/RadProc.2017.52 - N. Popović et al., “Modulation of Hippocampal Antioxidant Defense System in Chronically Stressed Rats by Lithium,” Oxid. Med. Cell. Longev., vol. 2019, Feb. 2019.
DOI: 10.1155/2019/8745376
PMid: 30911352
PMCid: PMC6398005 - C. Phillips, “Brain-derived neurotrophic factor, depression, and physical activity: Making the neuroplastic connection,”Neural Plast., vol. 2017, Aug. 2017.
DOI: 10.1155/2017/7260130
PMid: 28928987
PMCid: PMC5591905 - J. S. Dunham, J. F. W. Deakin, F. Miyajima, A. Payton, C. T. Toro, “Expression of hippocampal brain-derived neurotrophic factor and its receptors in Stanley consortium brains,” J. Psychiatr. Res., vol. 43, no. 14, pp. 1175 - 1184, Sep. 2009.
DOI: 10.1016/j.jpsychires.2009.03.008
PMid: 19376528 - T. Numakawa et al., “Production of BDNF by stimulation with antidepressant-related substances,” J. Biol. Med., vol. 1, no. 3, pp. 1 - 10, Jan. 2011.
Retrieved from: https://www.researchgate.net/profile/Shuichi_Chiba/publication/249315928_Production_of_BDNF_by_Stimulation_with_ Antidepressant-related_Substances/links/0deec51e4a3240a9af000000/Production-of-BDNF-by-Stimulation-with-Antidepressant-related-Substances.pdf
Retrieved on: Jan. 1, 2019 - L. Gavrilovic, N. Spasojevic, S. Dronjak, “Subsequent stress increases gene expression of catecholamine synthetic enzymes in cardiac ventricles of chronic-stressed rats,” Endocrine, vol. 37, no. 3, pp. 425 - 429, Jun. 2010.
DOI: 10.1007/s12020-010-9325-5
PMid: 20960163 - N. Popović et al., “Prefrontal catecholaminergic turnover and antioxidant defense system of chronically stressed rats,” Folia Biol., vol. 65, no. 1, pp. 43 - 54, Apr. 2017.
DOI: 10.3409/fb65_1.43 - E. J. Whitworth, O. Kosti, D. Renshaw, J. P. Hinson, “Adrenal neuropeptides: regulation and interaction with ACTH and other adrenal regulators,” Microsc. Res. Tech., vol. 61, no. 3, pp. 259 – 267, Jun. 2003.
DOI: 10.1002/jemt.10335
PMid: 12768541 - K. Pacak, M. Palkovits, I. J. Kopin, D. S. Goldstein, “Stress-induced norepinephrine release in the hypothalamic paraventricular nucleus and pituitary-adrenocortical and sympathoadrenal activity: in vivo microdialysis studies,” Front. Neuroendocrinol., vol. 16, no. 2, pp. 89 – 150, Apr. 1995.
DOI: 10.1006/frne.1995.1004
PMid: 7621982 - E. Grazzini et al., “Vasopressin regulates adrenal functions by acting through different vasopressin receptor subtypes,” Adv. Exp. Med. Biol., vol. 449, pp. 325 - 334, 1998.
DOI: 10.1007/978-1-4615-4871-3_41
PMid: 10026821 - D. García-López et al., “Effects of strength and endurance training on antioxidant enzyme gene expression and activity in middle-aged men,” Scand. J. Med. Sci. Sports, vol. 17, no. 5, pp. 595 - 604, Oct. 2007.
DOI: 10.1111/j.1600-0838.2006.00620.x
PMid: 17316373 - G. Naert, G. Ixart, L. Tapia-Arancibia, L. Givalois, “Continuous i.c.v. infusion of brain-derived neurotrophic factor modifies hypothalamic-pituitary-adrenal axis activity, locomotor activity and body temperature rhythms in adult male rats,” Neuroscience, vol. 139, no. 2, pp. 779 - 789, May 2006.
DOI: 10.1016/j.neuroscience.2005.12.028
PMid: 16457953
Biophysics
BLUE LIGHT REDUCING SOFTWARE APPLICATIONS FOR MOBILE PHONE SCREENS: MEASUREMENT OF SPECTRAL CHARACTERISTICS AND BIOLOGICAL PARAMETERS
S. Mitropoulos, V. Tsiantos, A. Americanos, I. Sianoudis, A. Skouroliakou
Pages: 220–224
Abstract | References | Full Text (PDF)
- M. S. Rea, M. G. Figueiro, A. Bierman, J. D. Bullough, “Circadian light,” J. Circadian Rhythms., vol. 8, no. 2, pp. 1 – 10, Feb. 2010.
DOI: 10.1186/1740-3391-8-2
PMid: 20377841
PMCid: PMC2851666 - M. G. Figueiro, R. Hamner, A. Bierman, M. S. Rea, “Comparisons of three practical field devices used to measure personal light exposures and activity levels,” Ligh. Res. Technol., vol. 45, no. 4, pp. 421 - 434, Aug. 2013.
DOI: 10.1177/1477153512450453
PMid: 24443644
PMCid: PMC3892948 - Opinion on Potential risks to human health of Light Emitting Diodes (LEDs), SCHEER, Brussels, Belgium, 2018.
Retrieved from: https://ec.europa.eu/health/sites/health/files/scientific_committees/scheer/docs/scheer_o_011.pdf
Retrieved on: Jul. 14, 2019. - J. F. Duffy, C. A. Czeisler, “Effect of Light on Human Circadian Physiology,” Sleep Med. Clin., vol. 4, no. 2, pp. 165 - 177, Jun. 2009.
DOI: 10.1016/j.jsmc.2009.01.004
PMid: 20161220
PMCid: PMC2717723 - G. Glickman, R. Levin, G. C. Brainard, “Ocular input for human melatonin regulation: relevance to breast cancer,” Neuro Endocrinol. Lett., vol. 23, suppl 2: pp. 17 - 22, Jul. 2002.
PMid: 12163843 - G. C. Brainard et al., “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci., vol. 21, no. 16, pp. 6405 – 6412, Aug. 2001.
PMid: 11487664
PMCid: PMC6763155 - K. Thapan, J. Arendt, D. J. Skene, “An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans,” J. Physiol., vol. 535, no. 1, pp. 261 – 267, Aug. 2001.
DOI: 10.1111/j.1469-7793.2001.t01-1-00261.x
PMid: 11507175
PMCid: PMC2278766 - M. Aubé, J. Roby, M. Kocifaj, “Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility,” PloS One, vol. 8, no. 7, pp. 1 - 15, Jul. 2013.
DOI: 10.1371/journal.pone.0067798
PMid: 23861808
PMCid: PMC3702543 - F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage., vol. 92, no. 10, pp. 2714 – 2722, Oct. 2011.
DOI: 10.1016/j.jenvman.2011.06.029
PMid: 21745709 - M. S. Rea, M. G. Figueiro, “Light as a circadian stimulus for architectural lighting,” Light. Res. Technol., vol. 50, no. 4, Dec. 2016.
DOI: 10.1177/1477153516682368 - Circadian stimulus calculator, Rensselaer Polytechnic Institute, Troy (NY), USA, 2018.
Retrieved from: https://www.lrc.rpi.edu/cscalculator/
Retrieved on: Feb. 12, 2019 - D. Gall, K. Bieske, “Definition and measurement of circadian radiometric quantities,” in Proc. CIE Symp. `04: Light and Health, Vienna, Austria, 2004, pp. 129 – 132.
Retrieved from: http://www.cie.co.at/publications/cie-symposium-2004-light-and-health-non-visual-effects-30-september-2-october-2004
Retrieved on: Apr. 11, 2019 - J. Escofet, S. Bara, “Reducing the circadian input from self-luminous devices using hardware filters and software applications,” Light. Res. Technol., vol. 49, no. 4, Dec. 2015.
DOI: 10.1177/1477153515621946 - L. T. Sharpe, A. Stockman, W. Jagla, H. Jägle, “A luminous efficiency function, V*(lambda), for daylight adaptation,” J. Vis., vol. 5, no. 11, pp. 948 – 968, Dec. 2005.
DOI: 10.1167/5.11.3
PMid: 16441195