Vol. 6, 2021
Radiobiology
Primary DNA damage in brain of mice exposed to anaesthetic isoflurane and ionizing irradiation in dose of 1 or 2 Gy
Vesna Benković, Anica Horvat Knežević, Mirta Milić
Pages: 1-5
Abstract | References | Full Text (PDF)
-
P. Jaloszyński, et al., "Genotoxicity of inhalation anesthetics
halothane and isoflurane in human lymphocytes studied in vitro using the
comet assay," Mutat. Res., vol. 439, no. 2, pp. 199-206, Feb.
1999.
DOI: 10.1016/s1383-5718(98)00195-8
PMid: 10023059 -
L. Karabiyik, et al., "Comparison of genotoxicity of sevoflurane and
isoflurane in human lymphocytes studied in vivo using the comet assay," Mutat. Res., vol. 492, no. 1-2, pp. 99-107. May 2001.
DOI: 10.1016/s1383-5718(01)00159-0
PMid: 11377249 -
M. G. Braz, et al., "Genotoxicity, cytotoxicity and gene expression in
patients undergoing elective surgery under isoflurane anesthesia," Mutagenesis, vol. 26, no. 3, pp. 415-420. May 2011.
DOI: 10.1093/mutage/geq109
PMid: 21257718
PMCid: PMC3081333 -
Radiation
, vol. 100 D, IARC Monographs on the Evaluation of Carcinogenic Risks to
Humans, IARC, Lyon, France, 2012.
Retrieved from: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Radiation-2012
Retrieved on: May 27, 2021 -
V. Benkovic, et al., "DNA damage assessment in peripheral blood of Swiss
albino mice after combined exposure to volatile anesthetics and 1 or 2 Gy
radiotherapy in vivo," Int. J. Radiat. Biol., vol. 97, no. 10, pp.
1425-1435. Aug. 2021.
PMid: 34328801
DOI: 10.1080/09553002.2021.1962565 -
Radiology dose fractionation
, 3rd ed., The Royal College of Radiologist, London, UK, 2019.
Retrieved from: https://www.rcr.ac.uk/publication/radiotherapy-dose-fractionation-third-edition
Retrieved on: May 1, 2021 -
J. A. Campagna, K. W. Miller, S. A. Forman, "Mechanisms of actions of
inhaled anesthetics," N. Engl. J. Med., vol. 348, no. 21, pp. 2110
- 2124, May 2003.
DOI: 10.1056/NEJMra021261
PMid: 12761368 -
J. M. Borras et al., "Estimating the number of fractions by tumour site for
European countries in 2012 and 2025: An ESTRO-HERO analysis," Radiother. Oncol., vol. 126, no. 2, pp. 198 - 204, Feb. 2018.
DOI: 10.1016/j.radonc.2017.11.009
PMid: 29198408 -
In vivo mammalian alkaline comet assay
, OECD guideline for the testing of chemicals TG 489, OECD, Paris, France,
2014.
Retrieved from: https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd-tg489-2014.pdf
Retrieved on: Apr. 11, 2021 -
M. Neri et al., "Worldwide interest in the comet assay: a bibliometric
study," Mutagenesis, vol. 30, no. 1, pp. 155 - 163, Jan. 2015.
DOI: 10.1093/mutage/geu061
PMid: 25527738 -
M. Milić et al., "The Influence of Individual Genome Sensitivity in
DNA Damage Repair Assessment in Chronic Professional Exposure to Low Doses
of Ionizing Radiation," in Selected Topics in DNA Repair, C. C.
Chen, Eds., Rijeka, Croatia: InTech, 2011, ch. 19, pp. 437 - 464.
DOI: 10.5772/20814 -
A. Collins, M. Milic, S. Bonassi, M. Dusinska, "The comet assay in human
biomonitoring: Technical and epidemiological perspectives," Mutat. Res., vol. 843, pp. 1 - 2, Jul. 2019.
DOI: 10.1016/j.mrgentox.2019.06.002
PMid: 31421730 -
M. Milić et al., "The hCOMET project: International database
comparison of results with the comet assay in human biomonitoring. Baseline
frequency of DNA damage and effect of main confounders," Mutat. Res. vol. 787, 108371, Jan.-Jun. 2021.
DOI: 10.1016/j.mrrev.2021.108371
PMid: 34083035 -
S. Chiao, Z. Zuo, "A double-edged sword: volatile anesthetic effects on the
neonatal brain," Brain Sci., vol. 4, no. 2, pp. 273 - 294, Apr.
2014.
DOI: 10.3390/brainsci4020273
PMid: 24961761
PMCid: PMC4101477 -
K. N. Loganovsky, K. L. Yuryev, "EEG patterns in persons exposed to
ionizing radiation as a result of the chernobyl accident. Part 2:
quantitative EEG analysis in patients who had acute radiation sickness," J. Neuropsychiatry Clin. Neurosci., vol. 16, no. 1, pp. 70 - 82,
Feb. 2004.
DOI: 10.1176/jnp.16.1.70
PMid: 14990762 -
S. Baluchamy et al., "Reactive oxygen species mediated tissue damage in
high energy proton irradiated mouse brain," Mol. Cell Biochem.,
vol. 360, no. 1 - 2, pp. 189 - 195, Jan. 2012.
DOI: 10.1007/s11010-011-1056-2
PMid: 21948272 -
Croatian Parliament. (Oct. 18, 2017). OG 102/2017. Animal Protection Act.
Retrieved from: http://www.mvep.hr/files/file/dokumenti/prevodenje/zakoni/25-Zakon-o-za%C5%A1titi-%C5%BEivotinja--NN-102-17-ENG.pdf
Retrieved on: May 21, 2021 -
Hrvatski sabor. (Maj 8, 2013). NN 55/13.
Pravilnik o zaštiti životinja koje se koriste u znanstvene
svrhe
.
(Croatian Parliament. (May 8, 2013). OG 55/13.
Ordinance on the protection of animals used for scientific purposes
.)
Retrieved from: http://www.veterinarstvo.hr/default.aspx?id=64
Retrieved on: May 21, 2021 -
The European Parliament and the Council of European Union. (Sep. 22, 2010).
Directive 2010/63/EU on the protection of animals used for scientific
purposes
.
Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF
Retrieved on: May 21, 2021 -
D. J. Gaertner, T. M. Hallman, F. C. Hankenson, M. A. Batchelder,
"Anesthesia and Analgesia for Laboratory Rodents," in Anesthesia and Analgesia in Laboratory Animals, R. E. Fish, M. J.
Brown, P. J. Danneman, A. Z. Karas, Eds., 2nd ed., London, UK: Academic
Press, 2008, ch. 10, pp. 240 - 261.
Retrieved from: http://library.lol/main/5C058EB5162F03311F861DE2A87DDAF4
Retrieved on: May 25, 2021 -
B.A. Siddiqui, P. Y. Kim, Anesthesia Stages, Treasure Island (FL),
USA: StatPearls Publishing, 2021.
PMid: 32491528 -
G. G. Nair, C. K. Nair, "Protection of cellular DNA and membrane from
γ-radiation-induced damages and enhancement in DNA repair by sesamol," Cancer Biother. Radiopharm., vol. 25, no. 6, pp. 629 - 635, Dec.
2010.
DOI: 10.1089/cbr.2010.0803
PMid: 21204756
Radiochemistry
APPLICATION OF ADSORBENTS IN RADIONUCLIDE SEPARATION FOR RADIO-CHRONOMETRY PURPOSES
Mykola Strilchuk, Igor Maliuk, Ivan Mironyuk, Hanna Vasylyeva, Volodymyr Tryshyn, Maryna Hryhorenko, Oleksandr Zhukov, Khrystyna Savka
Pages: 6-10
Abstract | References | Full Text (PDF)
-
K. Mayer, M. Wallenius, T. Fanghänel, “Nuclear forensic science — from
cradle to maturity,” J. Alloys Compd., vol. 444 – 445, pp. 50 –
56, Oct. 2007.
DOI: 10.1016/j.jallcom.2007.01.164 -
V. R. van Maris et al., “The behavior of parent and daughter nuclides in
aerosols released in radiological dispersion events: a study of a SrTiO3
source,” J. Raman Spectrosc., vol. 48 no. 4,
pp. 549 – 559, Apr. 2017.
DOI: 10.1002/jrs.5076 -
N. Kavasi, S. K. Sahoo, H. Arae, T. Aono, Z. Palacz, “Accurate and precise
determination of 90Sr at femtogram level in IAEA proficiency
test using Thermal Ionization Mass Spectrometry,” Sci. Rep., vol.
9, no. 1, 16532, Nov. 2019.
DOI: 10.1038/s41598-019-52890-3
PMid: 31712653
PMCid: PMC6848187 -
S. C. Wilschefski, M. R. Baxter, “Inductively Coupled Plasma Mass
Spectrometry: Introduction to Analytical Aspects,” Clin. Biochem. Rev., vol. 40, no. 3, pp. 115 – 133, Aug. 2019.
DOI: 10.33176/AACB-19-00024
PMid: 31530963
PMCid: PMC6719745 -
W. R. Hendee, E. R. Ritenour, Medical Imaging Physics, 4th ed.,
New York (NY), USA: J. Wiley and Sons, 2002, p. 353.
DOI: 10.1002/0471221155 - D. Mc Alister, “Options for Separation and Measurement of 89Sr/90Sr,” presented at the 63rd Conf. Radiobioassay and Radiochemical Measurements (RRMC), Portland (ME), USA, May 2018.
-
Principles and Applications of Liquid Scintillation Counting
, National Diagnostics, Atlanta (GA), USA, 2004.
Retrieved from: https://ehs.psu.edu/sites/ehs/files/lsc_theory_of_operation_part_1.pdf
Retrieved on: Jan. 10, 2021 -
P. Gaca, D. Reading, P. Warwick, “Application of multiple quench parameters
for confirmation of radionuclide identity in radioanalytical quality
control,” J. Radioanal. Nucl. Chem., vol. 322, no. 3, pp. 1383 –
1390, Dec. 2019.
DOI: 10.1007/s10967-019-06788-z -
H.Vasylyeva et al., “Adsorption of zirconium ions by X-type zeolite,” Biointerface Res. Appl. Chem., vol. 11, no. 5, pp. 13421 – 13431,
Feb. 2021.
DOI: 10.33263/BRIAC115.1342113431 -
H. V. Vasylyeva et al., “Radiochemical studies of state of lanthanum micro
amounts in water solution,” J. Mol. Liq., vol. 118, no. 1 – 3 pp.
41 – 44, Apr. 2005.
DOI: https://www.doi.org.10.1016/j.molliq.2004.07.008 -
S. Yang et al., “Crystal shape engineering of anatase TiO2
and its biomedical applications,” CrystEngComm, vol. 17, no. 35,
pp. 6617 – 6631, Sep. 2015.
DOI: https://www.doi.org.10.1039/C5CE00804B -
I.F. Mironyuk, I. M. Mykytyn, O. Ye. Kaglyan, D. I. Gudkov, H. V.
Vasylyeva, “90-Sr Adsorption From The Aquatic Environment Of Chornobyl
Exclusion Zone By Chemically Enhanced TiO2,” Nucl. Phys. At. Energy, vol. 21, no. 4, p. 347, 2020.
DOI: 10.15407/jnpae2020.04.347 -
H. Vasylyeva, I. Mironyuk, I. Mykytyn, K. Savka, “
Equilibrium studies of yttrium adsorption from aqueous solutions by
titanium dioxide,” Appl. Radiat. Isot., vol. 168, 109473, Feb.
2021.
DOI: 10.1016/j.apradiso.2020.109473
PMid: 33658128 -
H. Vasylyeva, I. Mironyuk, I. Mykytyn, “Аdsorption of Co 2+ and radioactive 60Со by mesoporous TiO2
,” Chem. Phys. Technol. Surf., vol. 10, no. 4, pp. 446 – 457, Dec.
2019.
DOI: 10.15407/hftp10.04.446 -
I. Mironyuk, I. Mykytyn, H. Vasylyeva, K. Savka, “Sodium-modified
mesoporous TiO2: Sol-gel synthesis, characterization and adsorption
activity toward heavy metal cations,” J. Mol. Liq., vol. 316,
113840, Oct. 2020.
DOI: 10.1016/j.molliq.2020.113840 -
H. Vasylyeva, I. Mironyuk, I. Mykytyn, N. Danyliuk, “Adsorption of Barium
and Zinc Ions by Mesoporous TiO2 with Chemosorbed Carbonate
Groups,” Phys. Chem. Solid State, vol. 20, no. 3, p. 282, Oct.
2019.
DOI: 10.15330/pcss.20.3.282-290 -
H. Vasylyeva et al., “Application of Titanium Dioxide for Zirconium Ions
Adsorption and Separation from a Multicomponent Mixture,”Phys. Chem. Solid State, vol. 22, no. 3, pp. 460 – 469, Aug. 2021.
DOI: 10.15330/pcss.22.3.460-469 -
M. M. S. Ali, E. A. Abdel-Galil, M. M. Hamed, “Removal of strontium
radionuclides from liquid scintillation waste and environmental water
samples,” Appl. Radiat. Isot., vol. 166, 109357, Dec. 2020.
DOI: 10.1016/j.apradiso.2020.109357
PMid: 32755756 -
A. Surrao et al., “Improving the separation of strontium and barium with Sr
Resin using chelating eluent solutions,” J. Radioanal. Nucl. Chem
., vol. 319, no. 3, pp. 1185 – 1192, Mar. 2019.
DOI: 10.1007/s10967-019-06432-w -
K. Kołacińska, Z. Samczyński, J. Dudek, A. Bojanowska-Czajka, M.
Trojanowicz, “A comparison study on the use of Dowex 1 and TEVA-resin in
determination of 99Tc in environmental and nuclear coolant
samples in a SIA system with ICP-MS detection,” Talanta, vol. 184,
pp. 527 – 536, Jul. 2018.
DOI: 10.1016/j.talanta.2018.03.034
PMid: 29674079 -
E. P. Horwitz, D. R. McAlister, A. H. Thakkar, “Synergistic enhancement of
the extraction of trivalent lanthanides and actinides by tetra-(n
-octyl) diglycolamide from chloride media,”Solvent Extr. Ion Exch., vol. 26, no. 1, pp. 12 – 24, 2008.
DOI: 10.1080/07366290701779423 - K. M. Mackay, R. A. Mackay, W. Henderson, Introduction to modern inorganic chemistry, 5th ed., London, UK: Blackie Academic & Professional an imprint of Chapman and Hall, 1996.
-
S. Agostinelli et al., “Geant4 — a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A vol. 506, no. 3, pp. 250 – 303,
Jul. 2003.
DOI: 10.1016/S0168-9002(03)01368-8
MODIFICATION OF 18F-FLUORODESOXY-GLUCOSE (18F-FDG) RADIOPHARMACEUTICAL BY OXIME CONJUGATION
Gergana Simeonova, Boyan Todorov, Valentina Lyubomirova
Pages: 11-15
Abstract | References | Full Text (PDF)
-
M. R. Kilbourn, Fluorine-18 labeling of radiopharmaceuticals,
Washington DC, USA: The National Academies Press, 1990.
Retrieved from: https://www.nap.edu/catalog/20467/fluorine-18-labeling-of-radiopharmaceuticals
Retrieved on: Jan. 30, 2021 -
A. O. Valdivia, J. L. López, Y. M. Vargas-Rodríguez, O. C. González,
“Producción de radiofármacos para tomografía por emisión de positrones
(PET) y su aplicación en el diagnóstico de diversas enfermedades,” Educación Química, vol. 27. núm. 4, páginas 292 – 299, Oct. 2016.
( A. O. Valdivia, J. L. López, Y. M. Vargas-Rodríguez, O. C. González,
“Production of radiopharmaceuticals for positron emission tomography (PET)
and their application in the diagnosis of various diseases,” Chem. Education, vol. 27, no. 4, pp. 292 – 299, Oct. 2016.)
Retrieved from: https://www.elsevier.es/es-revista-educacion-quimica-78-articulo-produccion-radiofarmacos-tomografia-por-emision-S0187893X16300076
Retrieved on: Jan. 30, 2021 -
Y. Chain, L. Illanes,
Radiofármacos en medicina nuclear: fundamentos y aplicación clínica
, La Plata, Argentina: EDULP, 2015.
(Y. Chain, L. Illanes,
Radiopharmaceuticals in nuclear medicine: fundamentals and clinical
application
, La Plata, Argentina: EDULP, 2015.)
Retrieved from: http://sedici.unlp.edu.ar/bitstream/handle/10915/46740/Documento_completo.pdf?sequence=1
Retrieved on: Aug. 13, 2021 -
D. L. De Guevara, “Utilidad clínica oncológica y no oncológica del PET/CT,” Rev. Med. Clin. Condes, vol. 24, núm. 1, páginas 78 – 87, Enero 2013. (D. L. De Guevara, “Clinical utility of oncological and no oncological
PET/CT,” Rev. Med. Clin. Condes, vol. 24, no. 1, pp. 78 – 87, Jan.
2013.)
Retrieved from: https://www.elsevier.es/es-revista-revista-medica-clinica-las-condes-202-articulo-utilidad-clinica-oncologica-no-oncologica-S0716864013701329?referer=coleccion
Retrieved on: Aug. 13, 2021 -
M. A. Áliva-Rodríguez, H. Alva-Sánchez, “Radiofármacos para PET, una nueva
perspectiva de la medicina nuclear molecular en México,” El Residente, vol. 5, núm. 3, páginas 103 – 110, Sep.-Dic. 2010.
(M. A. Áliva-Rodríguez, H. Alva-Sánchez, “Radiopharmaceuticals for PET, a
new perspective on molecular nuclear medicine in Mexico,”
The Resident
, vol. 5, no. 3, pp. 103 – 110, Sep.-Dec. 2010.)
Retrieved from: https://www.medigraphic.com/pdfs/residente/rr-2010/rr103c.pdf
Retrieved on: Aug. 13, 2021 -
M. Wagner, F. Wuest, “The Radiopharmaceutical Chemistry of Fluorine-18:
Electrophilic Fluorinations,” in Radiopharmaceutical Chemistry, J.
S. Lewis, A. D. Windhorst, B. M. Zeglis, Eds., 1st ed., Cham, Switzerland:
Springer, 2019, part II, pp. 285 – 295.
Retrieved from: http://library.lol/main/EDAC45121994C3798BB6B701AFD5F3F5
Retrieved on: Aug. 13, 2021 -
M. Reivich et al., “The [18F]fluorodeoxyglucose method for the measurement
of local cerebral glucose utilization in man,” Circ. Res., vol. 44, no. 1, pp. 127 – 137, Jan. 1979.
Retrieved from: https://www.ahajournals.org/doi/pdf/10.1161/01.RES.44.1.127
Retrieved on: Aug. 13, 2021 -
A. M. Rodríguez-Sánchez, “Establecimiento de controles de calidad para 18F-FDG sintetizada por hidrolisis básica y evaluación de dosis
de cristalino de POE de radiofarmacia PET con EPD, OSL y TLD,” Tesis de
maestría en ciencias, Instituto Balseiro, Física médica, San Carlos de
Bariloche, Argentina, 2016.
(A. M. Rodríguez-Sánchez, “Quality controls establishment for 18
F-FDG synthesidez by basic hydrolysis and evaluation of lens of the eyes
doses of POE of radiopharmacy PET with EPD, OSL and TLD,” M.Sc. thesis,
Balseiro Institute, Medical Physics, San Carlos de Bariloche, Argentina,
2016.)
Retrieved from: http://ricabib.cab.cnea.gov.ar/579/1/1Rodriguez_S%C3%A1nchez.pdf
Retrieved on: Jan. 30, 2021 -
K. Hamacher, H. H. Coenen, G. Stöcklin
, “Efficient stereospecific synthesis of no-carrier-added
2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported
nucleophilic substitution,” J. Nucl. Med., vol. 27, no. 2, pp. 235
– 238, Feb. 1986.
Retrieved from: https://jnm.snmjournals.org/content/jnumed/27/2/235.full.pdf
Retrieved on: Jan. 30, 2021 -
M. C. López, “Procedimiento de fluoración para la síntesis de 2-[ 18F]-fluoro-2-desoxi-D-glucosa,” Patente ES 2347165 T3, España,
Agosto 15, 2007.
(M. C. López, “Fluorination procedure for the synthesis of 2- [18F]
-fluoro-2-deoxy-D-glucose,” Patent ES 2347165 T3, Spain, Aug. 15, 2007.)
Retrieved from: https://patentimages.storage.googleapis.com/8a/59/46/493718a8dd6706/ES2347165T3.pdf
Retrieved on: Jan. 30, 2021 -
F. Wuest, C. Hultsch, M. Berndt, R. Bergmann, “Direct labelling of peptides
with 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG),” Bioorg. Med. Chem. Lett., vol. 19, no. 18, pp. 5426 – 5428, Sep.
2009.
Retrieved from: https://sci-hub.se/10.1016/j.bmcl.2009.07.108
Retrieved on: Mar. 20, 2021 -
Z. Li, P. S. Conti, “Radiopharmaceutical chemistry for positron emission
tomography,” Adv. Drug Deliv. Rev., vol. 62, no. 11, pp. 1031 –
1051, Aug. 2010.
Retrieved from: https://sci-hub.se/10.1016/j.addr.2010.09.007
Retrieved on: Mar. 20, 2021 -
O. Jacobson, X. Chen, “PET designated fluoride-18 production and
chemistry,” Curr. Top. Med. Chem., vol. 10, no. 11, pp. 1048 –
1059, 2010.
Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617500/pdf/nihms-454834.pdf
Retrieved on: Mar. 20, 2021 -
D. Larsen et al., “Exceptionally rapid oxime and hydrazone formation
promoted by catalytic amine buffers with low toxicity,” Chem. Sci
., vol. 9, no. 23, pp. 5252 – 5259, May 2018.
DOI: 10.1039/c8sc01082j
PMid: 29997880
PMCid: PMC6001384 -
D. K. Kölmel, E. T. Kool, “Oximes and Hydrazones in Bioconjugation:
Mechanism and Catalysis,” Chem. Rev., vol. 117, no. 15,
pp. 10358 – 10376, Aug. 2017.
Retrieved from: https://sci-hub.se/10.1021/acs.chemrev.7b00090
Retrieved on: Mar. 20, 2021 - X. G. Li, M. Haaparanta, O. Solin, “Oxime formation for fluorine-18 labeling of peptides and proteins for positron emission tomography (PET) imaging: A review,” J. Fluor. Chem., vol. 143, pp. 49 – 56, Nov. 2012.
Radiation Physics
MORPHOLOGY, EMISSION AND CRYSTAL STRUCTURE OF ZnO NANOCRYSTAL FILMS CO-DOPED WITH Ga AND In ELEMENTS
Brahim El Filali, Tetyana Torchynska, Georgiy Polupan, Erick Velázquez Lozada, José A. Andraca Adame, Jorge L. Ramirez Garcia
Pages: 16-20
Abstract | References | Full Text (PDF)
- A. Janotti, C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys., vol. 72, no. 12, 126501, Oct. 2009.
DOI: 10.1088/0034-4885/72/12/126501 - L. Schmidt-Mende, J. L. MacManus-Driscoll, “ZnO – nanostructures, defects, and devices,” Mater. Today, vol. 10, no. 5, pp. 40 - 48, May 2007.
DOI: 10.1016/S1369-7021(07)70078-0 - S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci., vol. 50, no. 3, pp. 293 - 340, May 2005.
DOI: 10.1016/j.pmatsci.2004.04.001 - N. H. Alvi, S. M. Usman Ali, S. Hussain, O. Nur, M. Willander, “Fabrication and comparative optical characterization of n-ZnO nanostructures (nanowalls, nanorods, nanoflowers and nanotubes)/p-GaN Light emitting diodes,” Scr. Mater., vol. 64, no. 8, pp. 697 - 700, Apr. 2011.
DOI: 10.1016/j.scriptamat.2010.11.046 - T. V. Torchynska, B. El Filali, “Size dependent emission stimulation in ZnO nanosheets,” J. Lumin., vol. 149, pp. 54 - 60, May 2014.
DOI: 10.1016/j.jlumin.2014.01.008 - N. Zebbar, et al., “UV and visible photoluminescence emission intensity of undoped and In-doped ZnO thin film and photoresponsivity of ZnO:In/Si hetero-junction,” Thin Solid Films, vol. 605, pp. 89 - 94, Apr. 2016.
DOI: 10.1016/j.tsf.2015.09.061 - J. Wienke, B. van der Zanden, M. Tijssen, M. Zeman, “Performance of spray-deposited ZnO:In layers as front electrodes in thin-film silicon solar cells,” vol. 92. no. 8, pp. 884 - 890, Aug. 2008.
DOI: 10.1016/j.solmat.2008.01.023 - M. A. Lucio-Lopez, M. A. Luna-Arias, A. Maldonado, M. de la L. Olvera, D. R. Acosta, “Preparation of conducting and transparent indium-doped ZnO thin films by chemical spray,” Sol. Energy Mater. Sol. Cells, vol. 90, no. 6, pp. 733 – 741, Apr. 2006.
DOI: 10.1016/j.solmat.2005.04.010 - D. C. Look, et al., “Evidence for Native-Defect Donors in n-Type ZnO,” Phys. Rev. Lett., vol. 95, no. 22, 225502, Nov. 2005.
DOI: 10.1103/PhysRevLett.95.225502 - G. A. Shi, M. Saboktakin, M. Stavola, ““Hidden hydrogen” in as-grown ZnO,” Appl. Phys. Lett., vol. 85, no. 23, 5601, Dec. 2004.
DOI: 10.1063/1.1832736 - K. Ellmer, A. Klein, B. Rech, Transparent Conductive Zinc Oxide, 1st ed., New York (NY), USA: Springer, 2008.
Retrieved from: 3540736123_lp.pdf (ciando.com)
Retrieved on: Jan. 13, 2021 - M. H. Mamat, et al., “Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications,” Opt. Mater., vol. 32, no. 6, pp. 696 - 699, Apr. 2010.
DOI: 10.1016/j.optmat.2009.12.005 - E. Arca, K. Fleischer, I. Shvets, “Tuning the crystallographic, morphological, optical and electrical properties of ZnO:Al grown by spray pyrolysis,” Thin Solid Films, vol. 555, pp. 9 - 12, Mar. 2014.
DOI: 10.1016/j.tsf.2013.08.110 - F. Chaabouni, B. Khalfallah, M. Abaab, “Doping Ga effect on ZnO radio frequency sputtered films from a powder target,” Thin Solid Films, vol. 617, no. B, pp. 95 - 102, Oct. 2016.
DOI: 10.1016/j.tsf.2015.12.047 - M. Yilmaz, “Investigation of characteristics of ZnO:Ga nanocrystalline thin films with varying dopant content,” Mater. Sci. Semicond. Process., vol. 40, pp. 99 - 106, Dec. 2015.
DOI: 10.1016/j.mssp.2015.06.031 - C. Yu et al., “Effect of Indium doping on the photoelectric properties of n-ZnO nanorods/p-GaN heterojunction light-emitting diodes,” Superlattices Microstruct . ,vol. 120, pp. 298 - 304, Aug. 2018.
DOI: 10.1016/j.spmi.2018.05.060 - R. K. Gupta, K. Ghosh, R. Patel, S. R. Mishra, P. K. Kahol, “Band gap engineering of ZnO thin films by In2O3 incorporation,” J. Cryst. Growth, vol. 310, no. 12, pp. 3019 - 3023, Jun. 2008.
DOI: 10.1016/j.jcrysgro.2008.03.004 - S. Edinger et al., “Highly transparent and conductive indium-doped zinc oxide films deposited at low substrate temperature by spray pyrolysis from water-based solutions,” J. Mater. Sci., vol. 52, pp. 8591 – 8602, Jul. 2017.
DOI: 10.1007/s10853-017-1084-8 - S. D. Ponja, S. Sathasivam, I. P. Parkin, C. J. Carmalt, “Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition,” Sci. Rep., vol. 10, 638, Jan. 2020.
DOI: 10.1038/s41598-020-57532-7 - T. P. Rao et al., “Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis,” Physica B Condens. Matter., vol. 405, no. 9, pp. 2226 - 2231, May 2010.
DOI: 10.1016/j.physb.2010.02.016 - H. Agura, A. Suzuki, T. Matsushita, T. Aoki, M. Okuda, “Low Resistivity Transparent Conducting Al-Doped ZnO Films Prepared by Pulsed Laser Deposition,” Thin Solid Films, vol. 445, no. 2, pp. 263 - 267, Dec.2003.
DOI: 10.1016/S0040-6090(03)01158-1 - J. G. Lu et al., “Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions,” J. Appl. Phys., vol. 100, no. 7, 073714, Oct. 2006.
DOI: 10.1063/1.2357638 - K. Mahmooda, A. Khalid, S. W. Ahmad, M. T. Mehran, “Indium-doped ZnO mesoporous nanofibers as efficient electron transporting materials for perovskite solar cells,” Surf. Coat. Technol., vol. 352, pp. 231 - 237, Oct. 2018.
DOI: 10.1016/j.surfcoat.2018.08.039 - J.-Y. Noh, H. Kim, Y.-S. Kim, C. H. Park, “Electron doping limit in Al-doped ZnO by donor-acceptor interactions,” J. Appl. Phys., vol. 113, no 15, 153703, Apr. 2013.
DOI: 10.1063/1.4801533 - D. C. Look et al., “Self-compensation in semiconductors: the Zn-vacancy in Ga-doped ZnO,” Phys. Rev. B, vol. 84, no. 11, 115202, Sep. 2011.
DOI: 10.1103/PhysRevB.84.115202 - R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A, vol. 32, no. 5, pp. 751 - 767, Sep. 1976.
DOI: 10.1107/S0567739476001551 - E. V. Lozada, T. V. Torchynska, J. L. Casas Espinola, B. P. Millan, “Emission of ZnO:Ag nanorods obtained by ultrasonic spray pyrolysis,” Physica B Condens. Matter., vol. 453, pp. 111 - 115, Nov. 2014.
DOI: 10.1016/j.physb.2014.04.083 - M. Dybiec et al., “Photoluminescence scanning on InAs/InGaAs quantum dot structures,” Appl. Surf. Sci., vol. 252, no. 15, pp. 5542 - 5545, May 2006.
DOI: 10.1016/j.apsusc.2005.12.125 - T. V. Torchynska, A. Stintz, “Some aspects of emission variation in InAs quantum dots coupled with symmetric quantum wells,” J. Appl. Phys., vol. 108, no. 2, 024316, Jul. 2010.
DOI: 10.1063/1.3455851 - Metallic, Covalent and Ionic Radii(r), Wired Chemist.
Retrieved from: 10.1016/j.optmat.2019.01.056 - T. V. Torchynska, B. El Filali, G. Polupan, “In-related complex defects and emission of in-doped ZnO nanocrystal films,” Physica E Low Dimens. Syst. Nanostruct., vol. 113, pp. 137 - 142, Sep. 2019.
DOI: 10.1016/j.physe.2019.05.014
COMPREHENSIVE STUDIES OF ORGANIC AND INORGANIC ADSORBENTS
S. Vuchkan, S. Trofymenko, V. Lazur, H.Vasylyeva, M. Hryhorenko, Yu. Kylivnik, O. Sych
Pages: 21-26
Abstract | References | Full Text (PDF)
- H. Vasylyeva et al.,“Adsorption of zirconium ions by X-type zeolite,” Biointerface Res. Appl. Chem., vol. 11, no. 5, pp. 13421 – 13431, Feb. 2021.
DOI: 10.33263/BRIAC115.1342113431 - N. V. Sych et al., “Porous structure and surface chemistry of phosphoric acid activated carbon from corncob,” Appl. Surf. Sci., vol. 261, pp. 75 – 82, Nov. 2012.
DOI: 10.1016/j.apsusc.2012.07.084 - Y. Takahatake, A. Shibata, K. Nomura, T. Sato, “Effect of Flowing Water on Sr Sorption. Changes of Hydrous Sodium Titanate,” Minerals, vol. 7, no. 12, 247, Dec. 2017.
DOI: 10.3390/min7120247 - I. Mironyuk, T. Tatarchuk, H. Vasylyeva, M. Naushad, I. Mykytyn, “Adsorption of Sr(II) cations onto phosphated mesoporous titanium dioxide: Mechanism, isotherm and kinetics studies,” J. Environ. Chem. Eng., vol. 7, no. 6, 103430, Dec. 2019.
DOI: 10.1016/j.jece.2019.103430 - I. F. Mironyuk, I. M. Mykytyn, O. Y. Kaglyan, D. I. Gudkov, H. V. Vasylyeva, “90Sr adsorption from the aquatic environment of Chornobylexclusion zone by chemically enhanced TiO2,” Nucl. Phys. At. Energy, vol. 21, no. 4, pp. 347 – 353, Dec. 2020.
DOI: 10.15407/jnpae2020.04.347 - H. Vasylyeva, I. Mironyuk, I. Mykytyn, K. Savka, “ Equilibrium studies of yttrium adsorption from aqueous solutions by titanium dioxide,” Appl. Radiat. Isot., vol. 168, 109473, Feb. 2021.
DOI: 10.1016/j.apradiso.2020.109473
PMid: 33658128 - E. A. Abdel-Galil, H. Moloukhia, M. Abdel-Khalik, S. S. Mahrous, “Synthesisand physico-chemical characterization of cellulose/HO7Sb 3 nanocomposite as adsorbent for the removal of some radionuclides from aqueous solutions,” Appl. Radiat. Isot., vol. 140, pp. 363 – 373, Oct. 2018.
DOI: 10.1016/j.apradiso.2018.07.022
PMid: 30142577 - I. F. Mironyuk et al., “Effects of enhanced clusterization of water at a surface of partially silylated nanosilica on adsorption of cations and anions from aqueous media,” Microporous Mesoporous Mater., vol. 277, pp. 95 – 104, Mar. 2019.
DOI: 10.1016/j.micromeso.2018.10.016 - I. F. Mironyuk, H. V. Vasylyeva, V. I. Mandzyuk, N. A. Bezruka, T. V. Dmytrotsa, “The kinetics of adsorption binding of Ba2+ ions by trimethylsilylated silica,” Phys. Chem. Solid State, vol. 19, no. 1, pp. 66 - 73, Mar. 2018.
DOI: 10.15330/pcss.19.1.66-73 - H. V. Vasylyeva et al., “Radiochemical studies of state of lanthanum microamounts in water solution,” J. Mol. Liq., vol. 118, no. 1 - 2, pp. 41 – 44, Apr. 2005.
DOI: 10.1016/j.molliq.2004.07.008 - V. V. Strelko, “New sol–gel processes in the synthesis of inorganic sorbents and ion exchangers based on nanoporous oxides and phosphates of polyvalent metals,” J. Solgel Sci. Technol., vol. 68, no. 3, pp. 438 - 446, Mar. 2013.
DOI: 10.1007/s10971-013-2990-0 - J. J. Surman, J. M. Pates, H. Zhang, S. Happel, “Development andcharacterization of a new Sr selective resin for the rapid determination of 90Sr in environmental water samples,” Talanta, vol. 129, pp. 623 – 628, Nov. 2014.
DOI: 10.1016/j.talanta.2014.06.041
PMid: 25127642 - H. Tazoe, “Novel method for low level Sr-90 activity detection in seawaterby combining oxalate precipitation and chelating resin extraction,” Geochem. J., vol. 51, no. 2, pp. 193 – 197, Mar. 2017.
DOI: 10.2343/geochemj.2.0441 - M. M. S. Ali, E. A. Abdel-Galil, M. M. Hamed, “Removal of strontium radionuclides from liquid scintillation waste and environmental water samples,” Appl. Radiat. Isot., vol. 166, 109357, Dec. 2020.
DOI: 10.1016/j.apradiso.2020.109357
PMid: 32755756 - A. Surrao et al., “Improving the separation of strontium and barium with SrResin using chelating eluent solutions,” J. Radioanal. Nucl. Chem., vol. 319, no. 3, pp. 1185 – 1192, Jan. 2019.
DOI: 10.1007/s10967-019-06432-w - V. J. Angadi et al., “Mechanism of γ-irradiation-induced phase transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics,” J. Solid State Chem., vol. 246, pp. 119 – 124, Feb. 2017.
DOI: 10.1016/j.jssc.2016.11.017 - H. M. Khalid, M. T. Rahman, M. K. Basher, M. J. Afzal, M. S. Bashar, “Impact of ionizing radiation doses on nanocrystalline TiO2 layer in DSSC’s photoanode film,” Results Phys., vol. 11, pp. 1172 - 1181, Dec. 2018.
DOI: 10.1016/j.rinp.2018.10.006 - I. Mironyuk, I. Mykytyn, H. Vasylyeva, K. Savka, “Sodium-modified mesoporous TiO2: Sol-gel synthesis, characterization and adsorption activity toward heavy metal cations,” J. Mol. Liq., vol. 316, 113840, Oct. 2020.
DOI: 10.1016/j.molliq.2020.113840 - Г. Васильєва, В. Яковлев, Ю. Килівник, М. Циба, “Вплив модифікування поверхні фосфату титану на його здатність поглинати йони стронцію із водних розчинів,” Фізика і хімія твердого тіла, т. 17, но. 4, с. 548 – 551, Грудень 2016. (H. Vasylyeva, M. Tsyba, Yu. Kylivnyk, V. Yakovlev, “The Influence of Chemical Modificate of Surface of Titanium Phosphate on its Ability to Sorb Strontium Ions from Aqueous Solutions,” Phys. Chem. Solid State, vol. 17, no. 4, pp. 548 – 551, Dec. 2016.)
DOI: 10.15330/pcss.17.4.548-551 - А. Е. Каглян та інші, “Radionuklidy v aborigennykh vidakh ryb Chernobyl`skoj zony otchuzhdeniya,” Ядерна фізика та енергетика, т. 13, но. 3, с. 306 – 315, 2012.(Ye. Kaglyan et al., “Radionuclides in the indigenous fish species of the Chernobyl exclusion zone,” Nucl. Phys. At. Energy, vol. 13, no. 3, pp. 306 – 315, 2012.)
Retrieved from: http://jnpae.kinr.kiev.ua/13.3/Articles_PDF/jnpae-2012-13-0306-Kaglyan.pdf
Retrieved on: Dec. 15, 2020 - Yu. Kilivnik, S. Vuchkan, I. Syika, H. Vasylyeva, O. Sych, “Purification of aqueous solutions from strontium ions by natural and synthetic sorbents under increased radiation background,” in Book of Abstr. 9th Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2021) , Herceg Novi, Montenegro, 2021, p. 62.
DOI: 10.21175/rad.abstr.book.2021.11.4 - S. Agostinelli et al., “Geant4 — a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A, vol. 506, no. 3, pp. 250 – 303, Jul. 2003.
DOI: 10.1016/S0168-9002(03)01368-8
Radiation Measurements
On muon energy group structure based on deflection angle for application in muon scattering tomography: A Monte Carlo study through GEANT4 simulations
A. Ilker Topuz, Madis Kiisk, Andrea Giammanco, Märt Mägi
Pages: 27-31
Abstract | References | Full Text (PDF)
- L. Bonechi, R. D’Alessandro, A. Giammanco, “Atmospheric muons as an imaging tool,” Rev. Phys., vol. 5, 100038, Nov. 2020.
DOI: 10.1016/j.revip.2020.100038 - K. N. Borozdin et al., “Radiographic imaging with cosmic-ray muons,” Nature, vol. 422, p. 277, Mar. 2003.
DOI: 10.1038/422277a - E. T. Rand, O. Kamaev, A. Valente, A. Bhullar, “Nonparametric dense-object detection algorithm for applications of cosmic-ray muon tomography,” Phys. Rev. Applied, vol. 14, no. 6, 064032, Dec. 2020.
DOI: 10.1103/PhysRevApplied.14.064032 - V. Anghel et al., “A plastic scintillator-based muon tomography system with an integrated muon spectrometer,” Nucl. Instrum. Methods Phys. Res. A, vol. 798, pp. 12 – 23, Oct. 2015.
DOI: 10.1016/j.nima.2015.06.054 - P. Checchia et al., “INFN muon tomography demonstrator: past and recent results with an eye to near-future activities,” Philos. Trans. R. Soc. A, vol. 377, no. 2137, 20180065, Dec. 2018.
DOI: 10.1098/rsta.2018.0065
PMid: 30530541
PMCid: PMC6335308 - L. J. Schultz et al., “Statistical reconstruction for cosmic ray muon tomography,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 1985 – 1993, Aug. 2007.
DOI: 10.1109/TIP.2007.901239
PMid: 17688203 - J. Burns et al., “Portable muon scattering tomography detectors for security imaging applications,” in Proc. 2016 IEEE Nucl. Sci. Symp., Med. Imaging Conf. Room-Temp. Semicond. Detector Workshop (NSS/MIC/RTSD), Strasbourg, France, 2016.
DOI: 10.1109/NSSMIC.2016.8069919 - C. Jewett, V. N. P. Anghel, G. Jonkmans, M. Thompson, “Simulations of the use of cosmic-rays to image nuclear waste and verify the contents of spent fuel containers,” in Proc. 7th Annual Waste Manag. Conf. (WM2011), Phoenix (AZ), USA, 2011.
Retrieved from: http://archive.wmsym.org/2011/papers/11341.pdf
Retrieved on: Jul. 18, 2021 - A. Georgadze, M. Kiisk, M. Magi, E. Avots, G. Anbarjafari, “Method and apparatus for detection and/or identification of materials and of articles using charged particles,” US Patent 16/977,293, USA, Jan. 7, 2021.
Retrieved from: https://patents.google.com/patent/US20210003735A1/en
Retrieved on: Jul. 18, 2021 - S. Agostinelli et al., “Geant4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A, vol. 506, no. 3, pp. 250 – 303, Jul. 2003.
DOI: 10.1016/S0168-9002(03)01368-8 - T. Carlisle, J. Cobb, D. Neuffer. “Multiple Scattering Measurements in the MICE Experiment,” in Proc. 3rd Int. Part. Accel. Conf. (IPAC 2012), New Orleans (LA), USA, 2012, pp. 1419 – 1421.
Retrieved from: https://www.osti.gov/servlets/purl/1042408
Retrieved on: Jul. 18, 2021 - D. Poulson et al., “Application of muon tomography to fuel cask monitoring,” Philos. Trans. Royal Soc. A, vol. 377, no. 2137, 20180052, Jan. 2019.
DOI: 10.1098/rsta.2018.0052
PMid: 30530532
PMCid: PMC6335304 - B. O. Yanez, A. A. Aguilar-Arevalo, “A method to measure the integral vertical intensity and angular distribution of atmospheric muons with a stationary plastic scintillator bar detector,” Nucl. Instrum. Methods Phys. Res. A, vol. 987, 164870, Jan. 2021.
DOI: 10.1016/j.nima.2020.164870
Safecast - Citizen Science for ambient dose rate monitoring
P. Kuča, J. Helebrant, P. Bossew
Pages: 32-38
Abstract | References | Full Text (PDF)
- S. Bonner, J. Ito, P. Franken, Safecast, Tokyo, Japan, 2011.
Retrieved from: https://safecast.org/
Retrieved on: Aug. 11, 2021 - A. Brown, P. Franken, S. Bonner, N. Dolezal, J. Moross, "Safecast: successful citizen-science for radiation measurement and communication after Fukushima," J. Radiol. Prot., vol. 36, no. 2, pp. S82 - S101, Jun. 2016.
DOI: 10.1088/0952-4746/36/2/s82
PMid: 27270965 - Citizen science , Wikipedia, the free encyclopedia, San Francisco (CA), USA.
Retrieved from: https://en.wikipedia.org/wiki/Citizen_science Retrieved on: Aug. 13, 2021 - The Science of Citizen Science , К. Vohland et al., Eds., 1st ed., Cham, Switzerland: Springer, 2021.
DOI: 10.1007/978-3-030-58278-4 - J. Hůlka, P. Kuča, J. Helebrant, Z. Rozlívka, "Citizen Measurements in Radiation Protection and Emergency Preparedness and Response - its role, pros and cons," in Proc. EUROSAFE Forum 2017, Paris, France, 2017.
Retrieved from: https://www.eurosafe-forum.org/sites/default/files/Eurosafe2017/Seminars/4_08_Presentation_Kuca_final_ppt
Retrieved on: Aug. 13, 2021 - J. Helebrant, P. Kuča, J. Hůlka, "RAMESIS: Radiační Měřicí Síť Pro Instituce a Školy K Zajištění Včasné Informovanosti a Zvýšení Bezpečnosti Občanů Měst a Obcí," prezentováno na Seminář: Otázky dopadu jaderné havárie do zemědělství a připravenost ČR , Praha, Česká Republika, Říjen, 2018. (J. Helebrant, P. Kuča, J. Hůlka, "RAMESIS: Radiation Measuring Network for Institutions and Schools to Ensure Timely Awareness and Increase Safety of Citizens of Towns and Municipalit," presented at the Seminar: Issues of the impact of a nuclear accident on agriculture and preparedness of the Czech Republicies , Prague, Czech Republic, Oct. 2018.)
Retrieved from: https://www.suro.cz/cz/vyzkum/vysledky/safecast/09Hulka.pdf
Retrieved on: Aug. 13, 2021 - P. Kuča, J. Helebrant, J. Hůlka, "Role of citizens measurements in radiation protection, emergency preparedness and response - its pros and cons," presented at the ICRP 4th Int. Symp. System of Radiological Protection & 2nd European Radiological Protection Week , Paris, France, Oct. 2017.
Retrieved from: http://www.icrp-erpw2017.com/upload/presentations/ERPW%20Communication/Session_02/Session%2002_5_KUCA_ Presentation.pdf
Retrieved on: Jan. 10, 2021 - Radiační měřicí síť pro instituce a školy k zajištění včasné informovanosti a zvýšení bezpečnosti občanů měst a obcí (RAMESIS) , Ministerstvem vnitra České republiky, Praha, Česká republika, 2015. ( Radiation measuring network for institutions and schools to ensure timely information and increase the safety of citizens of towns and municipalities (RAMESIS) , Ministry of the Interior of the Czech Republic, Prague, Czech Republic, 2015.)
Retrieved from: https://www.suro.cz/aplikace/ramesis/#/safecast
Retrieved on: Aug. 26, 2021 - Radiační měřicí síť pro instituce a školy k zajištění včasné informovanosti a zvýšení bezpečnosti občanů měst a obcí (RAMESIS) , Wikipedia, bezplatná encyklopedie, San Francisco (CA), USA. ( Radiation measuring network for institutions and schools to ensure timely information and increase the safety of citizens of towns and municipalities (RAMESIS) , Wikipedia, the free encyclopedia, San Francisco (CA), USA.)
Retrieved from: https://www.suro.cz/aplikace/ramesis-wiki
Retrieved on: Aug. 26, 2021 - P. Bossew, P. Kuča, J. Helebrant, "Mean ambient dose rate in various cities, inferred from Safecast data," J. Environ. Radioact., vol. 225, 106363, Dec. 2020.
DOI: 10.1016/j.jenvrad.2020.106363
PMid: 33120027 - Mapový software QGIS , Státní ústav radiační ochrany (SURO), Praha, Česká republika. (QGIS map software, National Radiation Protection Institute (SURO), Prague, Czech Republic.)
Retrieved from: https://www.suro.cz/aplikace/ramesis-wiki/index.php/Safecast_-_software_pro_zobrazen%C3%AD_v_map%C4%9B
Retrieved on: Aug. 17, 2021 - M. Zähringer, J. Sempau, Kalibrierfaktoren für Dosisleistungssonden in Umweltmessnetzen aus Monte-Carlo-Simulationen , Prüfbericht BfS-IAR-2/97, Bundesamt für Strahlenschutz (BfS), Salzgitter, Deutschland, 1997. (M. Zähringer, J. Sempau, Calibration factors for dose rate probes in environmental monitoring networks obtained from Monte Carlo simulations , Rep. BfS-IAR-2/97, Federal Office for Radiation Protection (BfS), Salzgitter, Germany, 1997.)
- A. Allisy, W. A. Jennings, A. M. Kellerer, J. W. Müller, Quantities and Units in Radiation Protection Dosimetry, Rep. 51, ICRU, Bethesda (MD), USA, 1993.
DOI: 10.1093/jicru/os26.2.Report51 - P. Bossew et al., "Estimating the terrestrial gamma dose rate by decomposition of the ambient dose equivalent rate," J. Environ. Radioact., vol. 166, pp. 296 - 308, Jan. 2017.
DOI: 10.1016/j.jenvrad.2016.02.013
PMid: 26926960 - European Atlas of Natural Radiation , G. Cinelli, M. De Cort, T. Tollefsen, Eds., 1st ed., Luxembourg, Luxembourg: Publication Office of the European Union, 2019.
Retrieved from: https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiation/Download-page
Retrieved on: Jul. 31, 2021
Monitoring of critical parameters of radiation sterilization process at an industrial electron accelerator
R.I. Pomatsalyuk, V.Yu. Titov, D.V. Titov, V.L. Uvarov, V.A. Shevchenko, A.A. Zakharchenko
Pages: 39-43
Abstract | References | Full Text (PDF)
- D. Adlienė, R. Adlytė, “Dosimetry principles, dose measurements and radiation protection,” in Applications of Ionizing Radiation in Materials Processing, vol. 1, Y. Sun, A. G. Chmielewski, Eds., Warszawa, Poland: INCT, 2017, ch. 3, p. 66.
Retrieved from: http://www.ichtj.waw.pl/ichtj/publ/monogr/sun2017/sun-chapter3.pdf
Retrieved on: Jan. 10, 2019 - R. I. Pomatsalyuk et al., “Development of a method of absorbed dose on-line monitoring at product processing by scanned electron beam,” Probl. Atom. Sci. Technol., no. 3, pp. 149 – 153, 2016.
Retrieved from: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/115370/47-Pomatsalyuk.pdf?sequence=1
Retrieved on: Jan. 10, 2019 - Experimental Physics and Industrial Control System (EPICS) , Argonne National Laboratory, Lemont (IL), USA.
Retrieved from: http://www.aps.anl.gov/epics/
Retrieved on: Jan. 10, 2019 - R. I. Pomatsalyuk, V. L. Uvarov, V. A. Shevchenko, I. N. Shlyakov, “Modernization of Control System of the Beam Critical Parameters at a LU-10 Industrial Electron Accelerator,” Probl. Atom. Sci. Technol., no. 6, pp. 175 - 180, 2017.
Retrieved from: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/136195/41-Pomatsalyuk.pdf?sequence=1
Retrieved on: Jan. 10, 2019 - The EPICS Archiver Appliance , AccelUtils collaboration.
Retrieved from: https://slacmshankar.github.io/epicsarchiver_docs/index.html
Retrieved on: Jan. 10, 2019 - R. I. Pomatsalyuk et al., “Measurement of Electron Beam Energy Characteristics at an Industrial Accelerator,” Probl. Atom. Sci. Technol., no. 6, pp. 3 – 7, 2017.
Retrieved from: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/136210/01-Pomatsalyuk.pdf?sequence=1
Retrieved on: Jan. 10, 2019 - Practice for dosimetry in an electron beam facility for radiation processing at energies between 300 keV and 25 MeV , ISO/ASTM 51649:2015, Mar. 15, 2015.
- Risø High Dose Reference Laboratory (Risø HDLR), Calorimeters, DTU Nutech Center for Nuclear Technologies, Copenhagen, Denmark.
Retrieved from: https://www.nutech.dtu.dk/english/Products-and-Services/Industrial-Dosimetry/HDRL/calorimeters
Retrieved on: May. 20, 2021. - Practice for use of calorimetric dosimetry systems for dose measurements and dosimetry system calibration in electron beams, ISO/ASTM 51631:2020, Feb. 25, 2020.
Characteristics of natural background radiation at BSUIN and EUL Underground Laboratories
Katarzyna Szkliniarz
Pages: 44-47
Abstract | References | Full Text (PDF)
- A. Bettini, “The world deep underground laboratories,” Eur. Phys. J. Plus., vol. 127, no. 9, p. 114, Sep. 2012.
DOI: 10.1140/epjp/i2012-12114-y - Baltic Sea Underground Innovation Network (BSUIN) , European Union, Brussels, Belgium.
Retrieved from: https://bsuin.eu
Retrieved on: Jul. 25, 2021 - European Underground Laboratories (EUL) , European Union, Brussels, Belgium.
Retrieved from: https://undergroundlabs.network/
Retrieved on: Jul. 25, 2021 - K. Polaczek-Grelik et al., “Characterization of the radiation environment at TU Bergakademie in Freiberg, Saxony, Germany,” Nucl. Instrum. Methods Phys. Res. A, vol. 946, no. 8, 162652, Dec. 2019.
DOI: 10.1016/j.nima.2019.162652 - K. Polaczek-Grelik et al., “Natural background radiation at Lab 2 of Callio Lab, Pyhäsalmi mine in Finland,” Nucl. Instrum. Methods Phys. Res. A, vol. 969, no. 9, 164015, Jul. 2020.
DOI: 10.1016/j.nima.2020.164015 - K. Szkliniarz et al., “Characteristics of Natural Background Radiation in the Polkowice‐Sieroszowice Mine, Poland,” Energies, vol. 14, no. 14, 4261, Jul. 2021.
DOI: 10.3390/en14144261 - A. Walencik-Łata, B. Kozłowska, T. A. Przylibski, “Hydrochemical behaviour of dissolved uranium in selected groundwaters of the Kłodzko Valley (SW Poland) and its application possibilities as an environmental tracer,” Chemosphere, vol. 267, no. 1, 128911, Mar. 2021.
DOI: 10.1016/j.chemosphere.2020.128911
PMid: 33218734 - J. Suomela, Method for Determination of U-Isotopes in Water, SSI report 93-14, Swedish Radiation Institute, Stockholm, Sweden, 1993.
- Oznaczanie izotopów radu w wodzie metodą LSC , Polska Norma PN-89/ZN-70072, 1989. (Radium Isotopes Determination in Water with LSC Method, Polish Norm PN-89/ZN-70072, 1989.)
EVALUATION OF ENVIRONMENTAL NEUTRON DOSE AT GROUND LEVEL
N. Marchese, A. Parlato, E.A.G. Tomarchio
Pages: 48-51
Abstract | References | Full Text (PDF)
- F. Cannizzaro, G. Greco, M. Raneli, M. C. Spitale, E. Tomarchio, “Behaviour of 7Be Air Concentration observed during a period of 13 years and Comparison with Sun Activity,” Nucl. Geophys., vol. 9, no. 6, pp. 597 – 607, 1995.
DOI: 10.1016/0969-8086(95)00043-7 - F. Cannizzaro, G. Greco, M. Raneli, M. C. Spitale, E. Tomarchio, “Concentration measurements of 7Be at ground level air at Palermo, Italy – Comparison with solar activity over a period of 21 years,” J. Environ. Radioact., vol. 72, no. 3, pp. 259 – 271, 2004.
DOI: 10.1016/S0265-931X(03)00177-2
PMid: 14972409 - S. Basile, R. Burlon, E. Tomarchio, “Analysis of 7Be and 210Pb concentration and 7Be/210Pb activity ratio in ground level air at Palermo (Italy),” Radiat. Eff. Defects Solids, vol. 174, no. 11 – 12, pp. 998 – 1007, 2019.
DOI: 10.1080/10420150.2019.1683838 - Neutron Monitor DataBase (NMDB), European Commission, Brussels, Belgium.
Retrieved from: http://www01.nmdb.eu
Retrieved on: Aug. 20, 2021 - Sunspot Index and Long-term Solar Observations (SILSO) , on-line Sunspot Number catalogue: years: 2012 and 2020, Royal Observatory of Belgium, Brussels, Belgium.
Retrieved from: http://www.sidc.be/silso/
Retrieved on: Aug. 20, 2021. - T. Nunomiya, S. Abe, N. Hirabayashi, T. Nakamura, “Sequential Measurements of Cosmic-Ray Neutron Energy Spectrum and Ambient Dose Equivalent on the Ground,” J. Nucl. Sci. Technol., vol. 41, suppl. 4, pp. 466 – 469, Mar. 2004.
DOI: 10.1080/00223131.2004.10875748 - T. Nakamura et al., “Sequential Measurements of Cosmic-Ray Neutron Energy Spectrum and Ambient Dose Equivalent on the Ground,” presented at the 11th Int. Conf. International Radiation Protection Association (IRPA 11) , Madrid, Spain, May 2004.
- T. Nakamura, T. Nunomiya, S. Abe, K. Terunuma, H. Suzuki, “Sequential Measurements of Cosmic-Ray Neutron Spectrum and Dose Rate at Sea Level in Sendai, Japan,” J. Nucl. Sci. Technol., vol. 42, no. 10, pp. 843 – 853, Oct. 2005.
DOI: 10.1080/18811248.2005.9711035 - T. Nakamura, “Cosmic-ray Neutron Spectrometry and Dosimetry,” J. Nucl. Sci. Technol., vol. 45, suppl. 5, pp. 1 – 7, Jun. 2008.
DOI: 10.1080/00223131.2008.10875772 - M. Kowatari et al., “Evaluation of Geomagnetic Latitude Dependence of the Cosmic-ray Induced Environmental Neutrons in Japan,” J. Nucl. Sci. Technol., vol. 44, no. 2, pp. 114 – 120, 2007.
DOI: 10.1080/18811248.2007.9711264 - K. Lee, R. Sheu, “Comparing two Measurements of the same Cosmic-ray neutron spectrum using standard Bonner Spheres and high-sensitivity Bonner cylinders,” Radiat. Prot. Dosimetry, vol. 177, no. 4, pp. 450 – 457, Dec. 2017.
DOI: 10.1093/rpd/ncx063
PMid: 29272885 - D. A. H. Rasolonjatovo et al., “Measurement for the Dose-rates of the Cosmic-ray Components on the Ground,” J. Radiat. Res., vol. 43, no. Suppl, pp. S27 – S33, Dec. 2002.
DOI: 10.1269/jrr.43.S27
PMid: 12793726 - G. F. Krymsky, V. G. Grigor’ev, S. A. Starodubtsev, “New method for estimating the absolute flux and energy spectrum of solar cosmic rays based on neutron-monitor data,” JETP Lett., vol. 88, no. 7, pp. 411 – 413, Dec. 2008.
DOI: 10.1134/S0021364008190016
Radiation Protection
Estimation of Diagnostic Reference Levels for Complete Myocardial Scintigraphy Protocol in South of Brazil
Daniela Cristina Panciera, Daiane Cristini Barbosa de Souza, Jéssica Soares Machado, Julio Cesar de Souza Ribeiro
Pages: 52-55
Abstract | References | Full Text (PDF)
13.5. The typical values, based on the median of administered activity (MBq) distribution of 99mTc, on myocardial scintigraphy in the stress phase was 1,221.0 MBq and for the rest 407.0 MBq. Based on the results of the present study, we expect to encourage the establishment of an efficient routine for recording and organizing data in Santa Catarina. In addition, we would like to emphasize the benefit of optimizing the administered activities and radiation protection practices for population and individuals. Through studies like this one, we hope to contribute to the estimation of DRLs in NM in Brazil and to stimulate the creation of a culture of recording doses and activities; to help optimize the administered activities and the practices involved; as well as to contribute with the provision of data for the estimation of collective effective dose from NM examinations.
- Sources, Effects and Risks of Ionizing Radiation, Annexes A and B, UNSCEAR 2017 Report, UNSCEAR, Vienna, Austria, 2017.
Retrieved from: https://www.unscear.org/docs/publications/2017/UNSCEAR_2017_Report.pdf
Retrieved on: Aug. 20, 2021. - Medical Radiation Exposure of the European Population Part 1/2, Radiation Protection no. 180, European Commission, Luxembourg, Luxembourg, 2014.
Retrieved from: https://ec.europa.eu/energy/sites/default/files/documents/RP180.pdf
Retrieved on: Aug. 20, 2021. - D. M. Seraphim, A. C. F. da S. Fischer, “Definição de Níveis de Referência em Diagnóstico do Serviço de Medicina Nuclear do Hospital de Clínicas de Porto Alegre,” Revista Brasileira de Ciências da Radiação, vol. 8, não. 3, pp. 1 – 13, Set. 2020. (D. M. Seraphim, A. C. F. da S. Fischer, “Definition of Diagnostic Reference Levels at the Nuclear Medicine Service of the Hospital de Clínicas de Porto Alegre,” Braz. J. Radiat. Sci., vol. 8, no. 3, pp. 1 – 13, Sep. 2020.)
DOI: 10.15392/bjrs.v8i3.1208 - J. Willegaignon et al., “Diagnostic reference level: an important tool for reducing radiation doses in adult and pediatric nuclear medicine procedures in Brazil,” Nucl. Med. Commun., vol. 37, no. 5, pp. 525 – 533, May 2016.
DOI: 10.1097/MNM.0000000000000462
PMid: 26657219 - M. Lassmann, G. Pedroli, “Dose optimization in nuclear medicine,” Clin. Transl. Imaging, vol. 4, no. 1, pp. 3 – 4, Feb. 2016.
DOI: 10.1007/s40336-015-0154-7 - Diagnostic Reference Levels (DRLs) in medical imaging, IAEA, Vienna, Austria, 2021.
Retrieved from: https://www.iaea.org/resources/rpop/health-professionals/nuclear-medicine/diagnostic-nuclear-medicine/diagnostic-reference-levels-in-medical-imaging#7
Retrieved on: Aug. 14, 2021. - Radiological Protection and Safety in Medicine, vol. 26, ICRP Publication no. 73, ICRP, Ottawa, Canada, 1996.
Retrieved from: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_26_2
Retrieved on: Aug. 14, 2021. - The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM on laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF
Retrieved on: Nov. 22, 2021. - T. S. Jornada, D. C. Panciera, R. B. Doro, “Method to determine a regional diagnostic reference level for intraoral radiographs in the state of Santa Catarina, Brazil,” Med. Phys. Int. J., vol. 7, no. 1, pp. 38 – 43, May 2019.
Retrieved from: http://www.mpijournal.org/MPI-v07i01.aspx
Retrieved on: Aug. 19, 2021. - E. M. Alkhybari et al., “An Australian local diagnostic reference level for paediatric whole-body 18F-FDG PET/CT,” Br. J. Radiol., vol. 92, no. 1096, Apr. 2019.
DOI: 10.1259/bjr.20180879
PMid: 30653334
PMCid: PMC6540867 - E. de Geest, F. Jacobs, R. A. Dierckx, “A multicenter study of the administered activity in nuclear medicine departments in Belgium,” presented at the 11th Int. Conf. International Radiation Protection Association (IRPA 11), Madrid, Spain, May 2004.
- Niveaux de référence diagnostiques en radiologie et en médecine nucléaire, Institute de Radioprotection et de Sûreté Nucléaire (IRSN), Paris, France, 2012. (Diagnostic Reference Levels in Radiology and Nuclear Medicine, Institute of Radiation Protection and Nuclear Safety (IRSN), Paris, France, 2012.)
Retrieved from: http://nrd.irsn.fr/document/site_49/fckfiles/File/Arrete-NRD-24102011.pdf
Retrieved on: Aug. 18, 2021. - C. M. Oliveira, L. V. de Sá, T. C. Alonso, T. A. da Silva, “Suggestion of a national diagnostic reference level for 18F-FDG/PET scans in adult cancer patients in Brazil,” Radiol. Bras., vol. 46, no. 5, pp. 284 – 289, Sep-Oct. 2013.
DOI: 10.1590/S0100-39842013000500004 - Diagnostic reference levels in medical imaging, vol. 46, ICRP Publication no. 135, ICRP, Ottawa, Canada, 2017.
Retrieved from: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_46_1
Retrieved on: Nov. 22, 2021.
Radioecology
Dose rate assessment of 137Cs to pelagic fish using an innovative method combining field measurements, CMEMS data and ERICA Assessment Tool
G. Mavrokefalou, M. Sotiropoulou, O. Sykioti, H. (E) Florou, G. Kitis
Pages: 56-61
Abstract | References | Full Text (PDF)
- C. Tsabaris et al., “Vertical distribution and temporal trends of 137Cs at Lemnos and Cretan deep basins of the Aegean Sea, Greece,” Deep Sea Res. Part II Top. Stud. Oceanogr., vol. 171, 104603, Jan. 2020.
DOI: 10.1016/j.dsr2.2019.06.011 - N. Evangeliou, H. Florou, P. Bokoros, M. Scoullos, “Temporal and spatial distribution of 137Cs in Eastern Mediterranean Sea. Horizontal and vertical dispersion in two regions,” J. Environ. Radioact., vol. 100, no. 8, pp. 626 - 636, Aug. 2009.
DOI: 10.1016/j.jenvrad.2009.04.014
PMid: 19523726 - H. Florou, G. Nicolaou, N. Evangeliou, “The concentration of 137Cs in the surface of the Greek marine environment,” J. Environ. Radioact., vol. 101, no. 8, pp. 654 - 657, Aug. 2010.
DOI: 10.1016/j.jenvrad.2010.03.016
PMid: 20462674 - P. P. Povinec, P. B. du Bois, P. J. Kershaw, H. Nies, P. Scotto, “Temporal and spatial trends in the distribution of 137Cs in surface waters of Northern European Seas-a record of 40 years of investigations,” Deep Sea Res. Part II Top. Stud. Oceanogr., vol. 50, no. 17 - 21, pp. 2785 - 2801, Sep. 2003.
DOI: 10.1016/S0967-0645(03)00148-6 - J V. i Battle, “Radioactivity in the Marine Environment,” in Encyclopedia of Sustainability Science and Technology, R. A. Meyers, Ed., 1st ed., New York (NY), USA: Springer, 2012, pp. 8387 – 8425.
DOI: 10.1007/978-1-4419-0851-3_880 - B. Salbu, “Fractionation of radionuclide species in the environment,” J. Environ. Radioact., vol. 100, no. 4, pp. 283 - 289, Apr. 2009.
DOI: 10.1016/j.jenvrad.2008.12.013
PMid: 19176267 - B. Salbu, “Speciation of Radionuclides in the Environment,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, R. J. Rosenberg, Eds., Hoboken (NJ), USA: John Wiley & Sons, 2006.
DOI: 10.1002/9780470027318 - S. S. I. Kyvelou, D. G. Ierapetritis, “Fisheries sustainability through soft multi-use maritime spatial planning and local development co-management: Potentials and challenges in Greece,” Sustainability, vol. 12, no. 5, 2026, Mar. 2020.
DOI: 10.3390/su12052026 - K. Tsagarakis et al., “Food-web traits of the North Aegean Sea ecosystem (Eastern Mediterranean) and comparison with other Mediterranean ecosystems,” Estuar. Coast. Shelf Sci., vol. 88, no. 2, pp. 233 - 248, Jun. 2010.
DOI: 10.1016/j.ecss.2010.04.007 - K. Stergiou et al., “The Hellenic seas: physics, chemistry, biology and fisheries.”, Oceanogr. Lit. Rev., vol. 101, no. 8, pp. 654 - 657, Aug. 2010.
- K. Nittis, L. Perivoliotis, “Circulation and hydrological characteristics of the North Aegean Sea: a contribution from real-time buoy measurements,” Mediterr. Mar. Sci., vol. 3, no. 1, pp. 21 - 31, 2002.
DOI: 10.12681/mms.255 - V. Zervakis, D. Georgopoulos, “Hydrology and circulation in the North Aegean (eastern Mediterranean) throughout 1997 and 1998,” Mediterr. Mar. Sci., vol. 3, no. 1, pp. 05 - 19, 2002.
DOI: 10.12681/mms.254 - N. Skliris, A. Mantziafou, S. Sofianos, A. Gkanasos, “Satellite-derived variability of the Aegean Sea ecohydrodynamics,” Cont. Shelf Res., vol. 30, no. 5, pp. 403 - 418, Mar. 2010.
DOI: 10.1016/j.csr.2009.12.012 - D. Velaoras et al., “Temperature and salinity variability in the Greek Seas based on POSEIDON stations time series: preliminary results,” Mediterr. Mar. Sci., vol. 14, no. 3, pp. 5 - 18, 2013.
DOI: 10.12681/mms.446 - OpenStreetMap (OSM) contributors: Planet dump , 2015.
Retrieved from: https://planet.openstreetmap.org
Retrieved on: Jan. 10, 2020 - J. Lento, R. Harjula, “Separation of cesium from nuclear waste solutions with hexacyanoferrate (II) s and ammonium phosphomolybdate,” Solvent Extr. Ion Exch., vol. 5, no. 2, pp. 343 - 352, 1987.
DOI: 10.1080/07366298708918571 - Reference Methods for Marine Radioactive Studies , IAEA Technical Report Series No. 118, IAEA, Vienna, Austria, 1970, pp. 129 - 149.
- Copernicus Marine Service Information: The Copernicus Marine Environment Monitoring Service (CMEMS) , Mercator Ocean Int., Toulouse, France, 2020.
Retrieved from: https://marine.copernicus.eu/
Retrieved on: Jan. 05, 2017 - The ERICA Assessment Tool: Environmental Risk from Ionizing Contaminants: assessment and management Version 1.3 , 2019.
Retrieved from: http://www.erica-tool.com/
Retrieved on: Jun. 01, 2021 - QGIS Development team, QGIS Geographic Information System v. 3.18.3 with GRASS 7.8.5, Open Source Geospatian Foundation Project, 2021.
Retrieved from: http://qgis.osgeo.org
Retrieved on: Jan. 10, 2020 - C. Camera, A. Bruggeman, P. Hadjinicolaou, S. Pashiardis, M. A. Lange, “Evaluation of interpolation techniques for the creation of gridded daily precipitation (1 × 1 km2); Cyprus, 1980–2010,” J. Geophys. Res. Atmos., vol. 119, no. 2, pp. 693 - 712, Jan. 2014.
DOI: 10.1002/2013JD020611 - M. Szymanowski, M. Kryza, “Application of geographically weighted regression for modelling the spatial structure of urban heat island in the city of Wroclaw (SW Poland),” Procedia Environ. Sci., vol. 3, pp. 87 - 92, 2011.
DOI: 10.1016/j.proenv.2011.02.016 - R. Delfanti et al., “Evolution and fluxes of 137Cs in the black sea/turkish straits system/north aegean sea,” J. Mar. Syst., vol. 135, pp. 117 - 123, Jul. 2014.
DOI: 10.1016/j.jmarsys.2013.01.006
Study of the Chernobyl hot particles' destruction by soil micromycetes' influence
V. Zheltonozhsky, M. Zheltonozhskaya, T. Tugay, N. Kuzmenkova
Pages: 62-65
Abstract | References | Full Text (PDF)
-
V.A. Kashparov et al., “Formation of hot particles during the Chernobyl
nuclear power plant accident”, Nucl. Technol., vol. 114, no. 2,
pp. 246–253, 1996.
DOI: 10.13182/NT96-A35253 -
B. Salbu et al., “Challenges associated with the behaviour of radioactive
particles in the environment”, J. of Env. Radioact., vol. 186, pp.
101-115, Jun. 2018.
DOI: 10.1016/j.jenvrad.2017.09.001 -
T. Imanaka, G. Hayashi, S. Endo, “Comparison of the accident process,
radioactivity release and ground contamination between Chernobyl and
Fukushima-1,”
J. Radiat. Res., vol. 56, suppl. 1, pp. i56 - i61, Dec. 2015.
DOI: 10.1093/jrr/rrv074
PMid: 26568603
PMCid: PMC4732534 - Radioactive particles in the environment: sources, particle characterization and analytical techniques , IAEA-TECDOC-1663, Vienna, Austria: IAEA, 2011.
- Ю.А. Израэль и др., “Радиоактивное загрязнение природных сред в зоне аварии на Чернобыльской АЭС”, Метеорология и гидрология, но. 2, с. 5-18, 1987. (Izrael et al., “Radioactive contamination of the environment in the zone of Chernobyl atomic station,” Meteorol. Hydrol., vol. 2, pp. 5 - 18, 1987.)
- The Chernobyl Accident: Updating of INSAG-1, A Report by the International Nuclear Safety Group, Safety series no. 75-INSAG-7, Vienna, Austria: IAEA, 1992.
-
M. D. Bondarkov et al., “Vertical migration of radionuclides in the
vicinity of the Chernobyl Confinement Shelter,” Health Phys., vol.
101, no. 4,
pp. 362 - 367, Oct. 2011.
DOI: 10.1097/HP.0b013e3182166472
PMid: 21878761 -
Д. М. Бондарьков, И. Н. Вишневский,
В. А. Желтоножский, М. В. Желтоножская, П. Н. Музалев, “Изучение поведения
радионуклидов на сильнозагрязненных полигонах 5-километровой зоны чаэс,” Ядерна фізика та енергетика, т. 17,
но. 4, с. 381 – 387, 2016.
(D. M. Bondarkov, I. M. Vyshnevskyi,
V. O. Zheltonozhskyi, M. V. Zheltonozhskaya, P. M. Muzalev, “Studies of
radionuclides behavior on heavily contaminated 5-km zone of ChNPP,” Nucl. Phys. At. Energy, vol. 17, no. 4, pp. 381 - 387, 2016.)
DOI: 10.15407/jnpae2016.04.381 -
M. P. Neu, G. A. Icopini, H. Boukhalfa, “Plutonium speciation affected by
environmental bacteria,” Radiochim. Acta, vol. 93, no. 11, pp. 705
- 714, Nov. 2005.
DOI: 10.1524/ract.2005.93.11.705 -
J. Dighton, T. Tugay, N. Zhdanova, “Fungi and ionizing radiation from
radionuclides,” FEMS Microbiol. Lett., vol. 281, no. 2, pp. 109 -
120, Apr. 2008.
DOI: 10.1111/j.1574-6968.2008.01076.x
PMid: 18279333 -
E. A. Lukyanova, E. V. Zakharova, L. I. Konstantinova, T. N. Nazina,
“Sorption of radionuclides by microorganisms from a deep repository of
liquid low-level waste,” Radiochemistry, vol. 50, no. 1,
pp. 85 - 90, Feb. 2008.
DOI: 10.1134/S1066362208010141 -
A. J. Francis, C. J. Dodge, “Microbial mobilization of plutonium and other
actinides from contaminated soil,” J. Environ. Radioact., vol.
150, pp. 277 - 285, Dec. 2015.
DOI: 10.1016/j.jenvrad.2015.08.019
PMid: 26406590 -
Н. Н. Жданова, Т. И. Редчиц, В. А. Желтоножский, М. В. Желтоножская, Л. В.
Садовников, “Способность ряда почвенных микроскопических грибов
взаимодействовать с редкоземельными и транcурановыми элементами Eu-152 и
Pu-239,” Иммунопатология, аллергол., инфектол.:
Экология грибов и человека. Грибы экстремальных местообитаний и
биодеструкторы
, но. 1, с. 60, 2010.
(N. N. Zhdanova, T. I. Redchits, V. A. Zheltonozhsky, M. V.
Zheltonozhskaya, L. V. Sadovnikov, “The ability of some soil microscopic
fungi to interact with rare-earth and transuranic elements of Eu-152 and
Pu-239,”
Immunopathol. Allergol. Infectol.: Ecol. fungi and hum. Mushrooms of
extreme habitats and destructors,
no.1, p. 60, 2010.)
Retrieved from: http://www.immunopathology.com/ru/article.php?carticle=181
Retrieved on: Jan. 18, 2021 -
V. A. Zheltonozhsky, M. V. Zheltonozhskaya, M. D. Bondarkov, E. B. Farfán, “Spectroscopy of Radiostrontium in Fuel
Materials Retrieved from the Chernobyl Nuclear Power Plant,” Health Phys., vol. 120, no. 4, pp. 378 – 386, Apr. 2021.
DOI: 10.1097/hp.0000000000001349
PMid: 33350713
Radon and Thoron
Open problems in radon research
P. Bossew, E. Petermann
Pages: 66-71
Abstract | References | Full Text (PDF)
- WHO handbook on indoor radon: a public health perspective , WHO, Geneva, Switzerland, 2009.
Retrieved from: www.who.int/publications/i/item/9789241547673
Retrieved on: Jun. 21, 2021 - The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom .
Retrieved from: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2014:013:FULL&from=EN
Retrieved on: Aug. 10, 2021 - Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards , GSR Part 3, 2014.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1578_web-57265295.pdf
Retrieved on: Aug. 10, 2021 - MetroRADON: Metrology for radon monitoring , EURAMET, Braunschweig, Germany, 2017 – 2020.
Retrieved from: http://metroradon.eu/
Retrieved on: Aug. 10, 2021 - H. Haanes, H. K. Skjerdal, R. Mishra, A. L. Rudjord, “Outdoor measurements of thoron progeny in a 232Th-rich area with deposition-based alpha track detectors and corrections for wind bias,” J. Eur. Radon Association, vol. 2, Jun. 2021.
DOI: 10.35815/radon.v2.6130 - Progetto Ribibui - Sviluppo di un protocollo standard per la misurazione della concentrazione di radon in grandi edifice , SUPSI: Dipartimento ambiente costruzioni e design, Lugano, Svizzera, 2017. ( Ribibui project - Development of a standard protocol for the measurement of radon concentration in large buildings , SUPSI: Department of Environment, Construction and Design, Lugano, Switzerland, 2017.)
Retrieved from: www.supsi.ch/ist/eventi-comunicazioni/news/2017/2017-02-09.html
Retrieved on: Aug. 10, 2021 - R. Trevisi et al., “Are radon priority areas, identified on survey in dwellings, representative of radon levels in workplaces?,” deposited at J. Eur. Radon Association, 2021.
- A. Tsapalov, K. Kovler, “Indoor radon regulation using tabulated values of temporal radon variation,” J. Environ. Radioact., vol. 183, pp. 59 – 72, Mar. 2018.
DOI: 10.1016/j.jenvrad.2017.12.003
PMid: 29306093 - European Atlas of Natural Radiation , 1st ed., European Commission, Luxembourg, Luxembourg, 2019.
Retrieved from: https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiation/Download-page
Retrieved on: Aug. 10, 2021 - Fundamental Safety Principles, SF-1, 2006.
Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1273_web.pdf
Retrieved on: Aug. 10, 2021 - E. Petermann, P. Bossew, “On the effectiveness of radon priority areas – a critical evaluation,” deposited at Sci. Total Environ., 2021.
- P. Bossew, E. Petermann, “What is the objective of radon abatement policy? - Revisiting the concept of radon priority areas,” in Proc. 15th Int. Workshop on the Geological Aspects of Radon Risk Mapping (GARRM-15) , Prague, Czech Republic, 2021.
- Radon Test Online , RadonTest Group, 2017.
Retrieved from: https://radontest.online/
Retrieved on: Aug. 11, 2021 - A. Tsapalov et al., “Involving schoolchildren in radon surveys by means of the “RadonTest” online system,” J. Environ. Radioact., vol. 217, 106215, Jun. 2020.
DOI: 10.1016/j.jenvrad.2020.106215
PMid: 32217247 - RadoNORM - Towards effective radiation protection based on improved scientific evidence and social considerations – focus on Radon and NORM , European Commission, Luxembourg, Luxembourg, 2020.
Retrieved from: https://www.radonorm.eu/
Retrieved on: Aug. 11, 2021 - M. Martell et al., “Evaluation of citizen science contributions to radon research,” J. Environ. Radioact., vol. 237, 106685, Oct. 2021.
DOI: 10.1016/j.jenvrad.2021.106685
PMid: 34265518 - S. Bonner, J. Ito, P. Franken, Safecast, Tokyo, Japan, 2011.
Retrieved from: https://safecast.org/about/
Retrieved on: Aug. 11, 2021 - M. Baskaran, Radon: A Tracer for Geological, Geophysical and Geochemical Studies , 1st ed., Cham, Switzerland: Springer, 2016.
DOI: 10.1007/978-3-319-21329-3 - P. Bossew, M. Janik, “(2021): Seismic signals in radon time series,” presented at the 7th Int. Conf. Time Series and Forecasting (ITISE 2021), Gran Canaria, Spain, Jul. 2021.
- E. Petermann, H. Meyer, M. Nussbaum, P. Bossew, “Mapping the geogenic radon potential for Germany by machine learning,” Sci. Total Environ., vol. 754, 142291, Feb. 2021.
DOI: 10.1016/j.scitotenv.2020.142291
PMid: 33254926 - E. Petermann, P. Bossew, “Mapping indoor radon hazard in Germany: The geogenic component,” Sci. Total Environ., vol. 780, 146601, Aug. 2021.
DOI: 10.1016/j.scitotenv.2021.146601
PMid: 33774294 - P. Bossew, “Mapping the Geogenic Radon Potential and Estimation of Radon Prone Areas in Germany,” Radiat. Emerg. Med., vol. 4, no. 2, pp. 13 – 20, Aug. 2015.
Retrieved from: http://crss.hirosaki-u.ac.jp/rem_archive/rem4-2
Retrieved on: Aug. 10, 2021 - P. Bossew, “Local probability of indoor radon concentration to exceed a threshold, estimated from the geogenic radon potential,” Nucl. Technol. Radiat. Prot., vol. 32, no. 1, pp. 70 – 76, 2017.
DOI: 10.2298/NTRP1701070B - P. Bossew, “Stochastic dependence of Rn-related quantities,” in Proc. First East European Radon Symposium (FERAS 2012), Cluj-Napoca, Romania, 2012, pp. S44 – S55.
Retrieved from: www.nipne.ro/rjp/2013_58_Suppl.html
Retrieved on: Aug. 10, 2021 - P. Bossew, “Determination of radon prone areas by optimized binary classification,” J. Environ. Radioact., vol. 129, pp. 121 – 132, Mar. 2014.
DOI: 10.1016/j.jenvrad.2013.12.015
PMid: 24412776
DETERMINATION OF Ra-226 AND Rn-222 IN NATURAL DRINKING WATER IN THE PROVINCE OF GRANADA (SPAIN)
Pablo Vacas Arquero, Víctor Manuel Expósito Suárez, Abel Milena Pérez, Francisco Piñero García, Mari Ángeles Ferro García
Pages: 72–76
Abstract | References | Full Text (PDF)
- Naciones Unidas. (27 de junio a 1 de julio de, 2016). A/71/46. Informe del Comité Científico de las Naciones Unidas para el Estudio de los Efectos de las Radiaciones Atómicas . (United Nations. (27 Jun.-1 Jul. 2016). A/71/46. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation .)
Retrieved from: https://www.unscear.org/docs/GAreports/2016/A-71-46_s_V1604699.pdf
Retrieved on: Dec. 15, 2020 - Radiaciones ionizantes: utilización y riesgos II , X. O. Aramburu, J. J. Bisbal, Eds., 2da ed., Barcelona, España: Edicions UPC, 1996. (Ionizing radiation: use and risks II, X. O. Aramburu, J. J. Bisbal, Eds., 2nd ed., Barcelona, Spain: UPC Editions, 1996.)
- C. S. Fernández, “Análisis de la influencia in vitro de bajas dosis de radiación producidas por 222Rn sobre proliferación celular, apoptosis y respuesta a agentes citotóxicos,” Doctor. tesis, Universidad de Cantabria, Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Santander, España, 2002. (C. S. Fernández, “Analysis of the in vitro influence of low radiation doses produced by 222Rn on cell proliferation, apoptosis and response to cytotoxic agents,” Ph.D. thesis, University of Cantabria, Dept. of Earth Sciences and Physics of Condensed Matter, Santander, Spain, 2002.)
Retrieved from: http://hdl.handle.net/10803/10609
Retrieved on: Dec. 15, 2020 - Dosis de radiación , Consejo de Seguridad Nuclear (CSN), Madrid, España, 2019. (Radiation dose, Nuclear Safety Council (CSN), Madrid, Spain, 2019.)
Retrieved from: https://www.csn.es/documents/10182/914805/Protecci%C3%B3n%20radiol%C3%B3gica
Retrieved on: Dec. 15, 2020 - WHO handbook on indoor radon: a public health perspective , WHO, Geneva, Switzerland, 2009.
Retrieved from: https://apps.who.int/iris/bitstream/handle/10665/44149/9789241547673_eng.pdf
Retrieved on: Dec. 15, 2020 - IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans: Man-made Mineral Fibres and Radon , vol. 43, IARC, Lyon, France, 1988.
Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK316364/pdf/Bookshelf_NBK316364.pdf
Retrieved on: Dec. 15, 2020 - D. Vienneau et al., “Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland,” Environ. Health Perspect., vol. 125, no. 6, 067009, Jun. 2017.
DOI: 10.1289/EHP825
PMid: 28686556
PMCid: PMC5744747 - V. Rericha, M. Kulich, R. Rericha, D. L. Shore, D. P. Sandler, “Incidence of leukemia, lymphoma, and multiple myeloma in Czech uranium miners: a case-cohort study,” Environ. Health Perspect., vol. 114, no. 6, pp. 818 – 822, Jun. 2006.
DOI: 10.1289/ehp.8476
PMid: 16759978
PMCid: PMC1480508 - S. C. González, “Estudio del comportamiento del 222Rn en los procesos de recarga-descarga en acuíferos: simulación en laboratorio y aplicación a un caso real,” Doctor. tesis, Universidad de Cantabria, Departamento de Ciencias Médicas y Quirúrgicas, Santander, España, 2017. (S. C. González, “Study of the behavior of 222Rn in aquifer recharge-discharge processes: laboratory simulation and application to a real case,” Ph.D. thesis, University of Cantabria, Dept. of Medical and Surgical Sciences, Santander, Spain, 2017.)
Retrieved from: https://repositorio.unican.es/xmlui/bitstream/handle/10902/13308/Tesis%20SCG.pdf?sequence=1&isAllowed=y
Retrieved on: Dec. 15, 2020 - Boletín oficial de Estado del gobierno de España. (Feb. 21, 2003). BOE-A-2003-3596. Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano . (State official bulletin of Spain government. (Feb. 21, 2003). BOE-A-2003-3596. Royal Decree 140/2003, of February 7, which establishes the sanitary criteria for the quality of water for human consumption.
Retrieved from: https://www.boe.es/eli/es/rd/2003/02/07/140/con
Retrieved on: Aug. 10, 2021 - Boletín oficial de Estado del gobierno de España. (Jul. 30, 2016). BOE-A-2016-7340. Real Decreto 314/2016, de 29 de julio, por el que se modifican el Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano, el Real Decreto 1798/2010, de 30 de diciembre, por el que se regula la explotación y comercialización de aguas minerales naturales y aguas de manantial envasadas para consumo humano, y el Real Decreto 1799/2010, de 30 de diciembre, por el que se regula el proceso de elaboración y comercialización de aguas preparadas envasadas para el consumo humano . (State official bulletin of Spain government. (Jul. 30, 2016). BOE-A-2016-7340. Royal Decree 314/2016, of July 29, which modifies Royal Decree 140/2003, of February 7, which establishes the sanitary criteria for the quality of water for human consumption, Royal Decree 1798 / 2010, of December 30, which regulates the exploitation and commercialization of natural mineral waters and spring waters packaged for human consumption, and Royal Decree 1799/2010, of December 30, which regulates the process of elaboration and commercialization of prepared waters packaged for human consumption. )
Retrieved from: https://www.boe.es/eli/es/rd/2016/07/29/314
Retrieved on: Aug. 10, 2021 - The Council of European Union. (Oct. 22, 2013). Council Directive 2013/51/EURATOM laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption .
Retrieved from: https://eur-lex.europa.eu/eli/dir/2013/51/oj
Retrieved on: Aug. 10, 2021 - A. C. García, “Factores condicionantes de la radiactividad medioambiental en áreas del S.E. peninsular,” Doctor. tesis, Universidad de Granada, Departamento de Química Inorgánica, Granada, España, 2000. (A. C. García, “Conditioning factors of environmental radioactivity in areas of the peninsula,” Ph.D. thesis, University of Granada, Dept. of Inorganic Chemistry, Granada, Spain, 2000.)
Retrieved from: https://digibug.ugr.es/handle/10481/28637
Retrieved on: Jan. 20, 2021 - A. Milena-Pérez et al., “Uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes,” J. Environ. Radioact., vol. 227, 106503, Feb. 2021.
DOI: 10.1016/j.jenvrad.2020.106503
PMid: 33296862 - P. B. Hahn, S. H. Pia, Determination of Radon in Drinking Water by Liquid Scintillation Counting , EPA Method 913.0, U.S. Enviromental Protection Agency (EPA), Las Vegas (NV), USA, 1991.
- S. Y. F. Chu, L. P. Ekström, R. B. Firestone, The Lund/LBNL Nuclear Data Search: Nuclide Search, LBNL, Berkeley (CA), USA, 1999.
Retrieved from: http://nucleardata.nuclear.lu.se/toi/nucSearch.asp
Retrieved on: Jan. 20, 2021 - J. Michael, “Relationship of Radium and Radon with Geological Formations,” in Radon, Radium and Uranium in Drinking Water, C. R. Cothern, P. A. Rebers, Eds., 1st ed., Chelsea (MI), USA: Lewis Publishers, 1990, ch. 7, pp. 83 – 95.
Retrieved from: http://library.lol/main/2AC433245734EA9F9685548A0214417A
Retrieved on: Feb. 12, 2021
Radiation detectors
Development of techniques for clearance of spent sealed nuclear medicine calibration sources
Dimitrios Mavrikis, Alexandra Ioannidou, Anastasia Savidou
Pages: 77–81
Abstract | References | Full Text (PDF)
- T. Siarafera et al., “Development of techniques based on Monte Carlo simulations for clearance of Co-57 and Ge-68/Ga-68 sealed radioactive sources,” in Proc. 27th Annu. Symp. Hellenic Nuclear Physics Society (HNPS 2018) , Athens, Greece, 2018.
DOI: 10.12681/hnps.1819 - GenieTM 2000 Gamma Analysis Spectroscopy Software , Canberra Industries, Inc., Meriden (CT), USA.
- G. Gilmore, Practical Gamma-Ray Spectrometry, 2nd ed., Chichester, England: Wiley & Sons, 2008.
Retrieved from: http://library.lol/main/1903C10635634147A560B5F107E0D42E
Retrieved on:: Jan. 5, 2021 - R. B. Firestone, Table of Isotopes, 8th ed., Hoboken (NJ), USA: Wiley Interscience, 1996.
Retrieved from: http://library.lol/main/ACC5F0C59EA8E3E1FE349EFEB1487E01
Retrieved on:: Nov. 20, 2020 - L. Done, M-R. Ioan, “Minimum Detectable Activity in gamma spectrometry and its use in low level activity measurements,” Appl. Rad. Isot., vol. 114, pp. 28 – 32, Aug. 2016.
DOI: 10.1016/j.apradiso.2016.05.004 - C. A. Kalfas, M. Axiotis, C. Tsabaris, “SPECTRW: A software package for nuclear and atomic spectroscopy,” Nucl. Instrum. Methods Phys. Res. A, vol. 830, pp. 265 – 274, Sep. 2016.
DOI: 10.1016/j.nima.2016.05.098 - ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΙΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ. (Μαρ. 6, 2001). Υ.Α. 1014 (ΦΟΡ) 94/2001 (ΦΕΚ 216/Β` 6.3.2001). Έγκριση Κανονισμών Ακτινοπροστασίας . (Gazette of the government of the Hellenic Republic. (Mar. 6, 2001). WILL. 1014 (FOR) 94/2001 (Government Gazette 216 / B` 6.3.2001). Approval of Radiation Protection Regulations .)
Retrieved from: https://www.elinyae.gr/sites/default/files/2019-07/b216_01.1127808638026.pdf
Retrieved on:: Dec. 22, 2020 - Der Schweizerische Bundesrat. (Apr. 26, 2017).Strahlenschutzverordnung (StSV) 814.501 , Anhang 2 (Art. 2 Abs. 1 Bst. j, l und m sowie 194 Abs. 3.) (The Swiss Federal Council. (Apr. 26, 2017). Radiological Protection Ordinance (RPO) 814.501, Appendix 2 (Art. 2 Paragraph 1 Letters j, l and m as well as 194 Paragraph 3. )
Retrieved from: https://www.fedlex.admin.ch/eli/cc/2017/502/de
Retrieved on:: Jan. 22, 2021
VOXES: a new HAPG mosaic crystal based Von Hamos spectrometer for millimetric sources
A. Scordo, V. De Leo, C. Curceanu, M. Miliucci, F. Sirghi
Pages: 82–86
Abstract | References | Full Text (PDF)
- H. Legall, et al., “A new generation of X-ray optics based on pyrolitic graphite,” in Proc. 28th Int. Conf. Free Electron Laser (FEL 2006), Berlin, Germany, 2006, pp. 798 – 801.
Retrieved from: https://accelconf.web.cern.ch/f06/PAPERS/FRAAU04.PDF
Retrieved on: Jan. 12, 2021 - R. Barnsley et al., “Versatile high resolution crystal spectrometer with X-ray charge coupled device detector,” Rev. Sci. Instrum., vol. 74, no. 4, pp. 2388 - 2408, Apr. 2003.
DOI: 10.1063/1.1533105 - A. A. Antonov et al., “First results on application of short-focus monochromators from formed pyrolytic graphite for X-ray fluorescent analysis using synchrotron radiation,” Rev. Sci. Instrum., vol. 60, no. 7, pp. 2462 – 2463, Jul. 1989.
DOI: 10.1063/1.1140699 - Optigraph: Optigraph References, Berlin, Germany.
Retrieved from: http://www.optigraph.eu/references.html#ref_07
Retrieved on: Jan. 12, 2021 - M. S. del Rio et al., “Focusing properties of mosaic crystals,” inProc.Int. Symp. Optical Science, Engineering, and Instrumentation (SPIE 1998), San Diego (CA), USA, 1998, pp. 246 – 255.
DOI: 10.1117/12.332512 - M. Gerlach et al., “Characterization of HAPG mosaic crystals using synchrotron radiation,” J. Appl. Crystallogr., vol. 48, no. 5, pp. 1381 – 1390, Oct. 2015.
DOI: 10.1107/S160057671501287X - A. Scordo, C. Curceanu, M. Miliucci, F. Sirghi, J. Zmeskal, “Pyrolitic Graphite Mosaic Crystal Thickness and Mosaicity Optimization for an Extended Source von Hamos X-ray Spectrometer,” Condens. Matter, vol. 4, no. 2, 38, Jun. 2019.
DOI: 10.3390/condmat4020038 - G. E. Ice, C. J. Sparks Jr., “Mosaic crystal X-ray spectrometer to resolve inelastic background from anomalous scattering experiments,” Nucl. Instrum. Methods Phys. Res. A, vol. 291, no. 1 - 2, pp. 110 – 116, May 1990.
DOI: 10.1016/0168-9002(90)90043-6 - H. Legall, H. Stiel, V. Arkadiev, A. A. Bjeoumikhov, “High spectral resolution X-ray optics with highly oriented pyrolytic graphite,” Opt. Express, vol. 14, no. 10, pp. 4570 – 4576, May 2006.
DOI: 10.1364/oe.14.004570
PMid: 19516609 - U. Zastrau et al., “Focal aberrations of large-aperture HOPG von-Hamos X-ray spectrometers,” J. Inst., vol. 7, no. 9, P09015, Sep. 2012.
DOI: 10.1088/1748-0221/7/09/P09015 - U. Zastrau et al., “Characterization of strongly-bent HAPG crystals for von-Hámos X-ray spectrographs,” J. Inst., vol. 8, no. 10, P10006, Oct. 2013.
DOI: 10.1088/1748-0221/8/10/P10006 - L. V. Von Hamos, “Röentgenspektroskopie und Abbildung mittels gekrümmter Kristallreflektoren. I. Geometrisch-optische Betrachtungen,” Ann. Phys. (Berl.), vol. 409, no. 6, pp. 716 – 724, Jan. 1933. (L. V. Von Hamos, “X-ray spectroscopy and imaging using curved crystal reflectors. I. Geometric-optical considerations,” Ann. Phys. (Berl.), vol. 409, no. 6, pp. 716 – 724, Jan. 1933.)
DOI: 10.1002/andp.19334090608 - A. P. Shevelko, Yu. S. Kasyanov, O. F. Yakushev, L. V. Knight, “Compact focusing von Hamos spectrometer for quantitative X-ray spectroscopy,” Rev. Sci. Instrum., vol. 73, no. 10, pp. 3458 - 3463, Oct. 2002.
DOI: 10.1063/1.1502013 - L. Anklamm et al., “A novel von Hamos spectrometer for efficient X-ray emission spectroscopy in the laboratory,” Rev. Sci. Instrum., vol. 85, no. 5, 053110, May 2014.
DOI: 10.1063/1.4875986 - A. Scordo et al., “High resolution multielement XRF spectroscopy of extended and diffused sources with a graphite mosaic crystal based Von Hamos spectrometer,” J. Anal. At. Spectrom., vol. 35, no. 1, pp. 155 – 168, Jan. 2020.
DOI: 10.1039/C9JA00269C
High precision kaonic atoms X-ray spectroscopy at the DAФNE collider: The SIDDHARTA-2 experiment
M. Miliucci et al.
Pages: 87–90
Abstract | References | Full Text (PDF)
- C. Curceanu et al., “The modern era of light kaonic atom experiments,” Rev. Mod. Phys., vol. 91, no. 2, 025006, Jun. 2019.
DOI: 10.1103/RevModPhys.91.025006 - R. De Pietri et al., “Merger of compact stars in the two-families scenario,” Astrophys. J., vol. 881, no. 2, 122, Aug. 2019.
DOI: 10.3847/1538-4357/ab2fd0 - C. Curceanu et al., “Kaonic atoms to investigate global symmetry breaking,” Symmetry, vol. 12, no. 4, 547, Apr. 2020.
DOI: 10.3390/sym12040547 - M. Merafina, F. G. Saturni, C. Curceanu, R. Del Grande, K. Piscicchia, “Self-gravitating strange dark matter halos around galaxies,” Phys. Rev. D, vol. 102, no. 8, 083015, Oct. 2020.
DOI: 10.1103/PhysRevD.102.083015 - M. Bazzi et. al., “A new measurement of kaonic hydrogen X-rays,” Phys. Lett. B, vol. 704, no. 3, pp. 113 – 117, Oct. 2011.
DOI: 10.1016/j.physletb.2011.09.011 - M. Bazzi et al., “Kaonic hydrogen X-ray measurement in SIDDHARTA,” Nucl. Phys. A, vol. 881, pp. 88 – 97, May 2012.
DOI: 10.1016/j.nuclphysa.2011.12.008 - U. G. Meißner, U. Raha, A. Rusetsky, “Spectrum and decays of kaonic hydrogen,” Eur. Phys. J. C, vol. 35, no. 3, pp. 349 – 357, Jun. 2004.
DOI: 10.1140/epjc/s2004-01859-4 - M. Doring, U. G. Meißner, “Kaon–nucleon scattering lengths from kaonic deuterium experiments revisited,” Phys. Lett. B, vol. 704, no. 5, pp. 663 – 666, Oct. 2011.
DOI: 10.1016/j.physletb.2011.09.099 - C. Milardi et al., “Preparation Activity for the SIDDHARTA-2 Run at DAΦNE,” in Proc. 9th Int. Particle Accelerator Conf. (IPAC 2018), Vancouver, Canada, 2018, pp. 334 – 337.
DOI: 10.18429/JACoW-IPAC2018-MOPMF088 - M. Zobov et al., “Test of “Crab-Waist” Collisions at the DAΦNE Φ Factory,” Phys. Rev. Lett., vol. 104, no. 17, 174801, Apr. 2010.
DOI: 10.1103/PhysRevLett.104.174801
PMid: 20482112 - M. Miliucci et al., “Energy Response of Silicon Drift Detectors for Kaonic Atom Precision Measurements,” Condens. Matter, vol. 4, no. 1, 31, Mar. 2019.
DOI: 10.3390/condmat4010031 - M. A. Iliescu et al., “Reducing the MIPs Charge-Sharing Background in X-Ray Spectroscopic SDD Arrays,” IEEE Trans. Instrum. Meas., vol. 70, 9507807, Mar. 2021.
DOI: 10.1109/TIM.2021.3068149 - M. Miliucci et al., “Silicon drift detectors system for high-precision light kaonic atoms spectroscopy,” Meas. Sci. Technol., vol. 32, no. 9, 095501, Sep. 2021.
DOI: 10.1088/1361-6501/abeea9 - M. Bazzi et al., “Characterization of the SIDDHARTA-2 second level trigger detector prototype based on scintillators coupled to a prism reflector light guide,” J. Inst., vol. 8, no. 11, T11003, Nov. 2013.
DOI: 10.1088/1748-0221/8/11/t11003 - N. V. Shevchenko, “Near-threshold K-d scattering and properties of kaonic deuterium,” Nucl. Phys. A, vol. 890 - 891, pp. 50 – 61, Oct. 2012.
DOI: 10.1016/j.nuclphysa.2012.07.010 - M. Skurzok et al., “Characterization of the SIDDHARTA-2 luminosity monitor,” J. Inst., vol. 15, no. 10, P10010, Oct. 2020.
DOI: 10.1088/1748-0221/15/10/p10010
Material Science
Frequency Dependent Electrical Characteristics of Al/SiO2/SiNWs/n-Si MOS Capacitors
Alex Mutale, Ercan Yilmaz
Pages: 91–96
Abstract | References | Full Text (PDF)
- A. R. Wazzan, “MOS (Metal Oxide Semiconductor) Physics and Technology,” Nucl. Technol., vol. 74, no. 2, pp. 235 – 237, Aug. 1986.
DOI: 10.13182/nt86-a33811 - D. A. Neamen, Semiconductor Physics and Devices, 3rd ed., New York (NY), USA: McGraw-Hill, 2003.
Retrieved from: http://www.fulviofrisone.com/attachments/article/403/Semiconductor%20Physics%20And%20Devices%20-%20Donald%20Neamen.pdf
Retrieved on: Nov. 25, 2020 - I. Leontis, M. A. Botzakaki, S. N. Georga, A. G. Nassiopoulou, “Study of Si Nanowires Produced by Metal-Assisted Chemical Etching as a Light-Trapping Material in n-type c-Si Solar Cells,” ACS Omega, vol. 3, no. 9, pp. 10898 – 10906, Sep. 2018.
DOI: 10.1021/acsomega.8b01049
PMid: 31459200
PMCid: PMC6645058 - R. Nezasa, Y. Kurokawa, N. Usami, “Evaluation of Si Nanowire MOS Capacitor Using High-k Dielectric Materials,” in Proc. IEEE 18th Int. Conf. Nanotechnol. (IEEE-NANO), Cork, Ireland, 2018, pp. 2018 – 2021.
DOI: 10.1109/NANO.2018.8626356 - E. Hourdakis, A. Casanova, G. Larrieu, A. G. Nassiopoulou, “Three-dimensional vertical Si nanowire MOS capacitor model structure for the study of electrical versus geometrical Si nanowire characteristics,” Solid State Electron., vol. 143, pp. 77 – 82, May 2018.
DOI: 10.1016/j.sse.2017.11.003 - P. H. Morel et al., “Ultra high density three dimensional capacitors based on Si nanowires array grown on a metal layer,” Appl. Phys. Lett., vol. 101, no. 8, 083110, Aug. 2012.
DOI: 10.1063/1.4746762 - M. Naffeti, P. A. Postigo, R. Chtourou, M. A. Zaïbi, “Elucidating the effect of etching time key-parameter toward optically and electrically-active silicon nanowires,” Nanomaterials, vol. 10, no. 3, 404, Feb. 2020.
DOI: 10.3390/nano10030404
PMid: 32106503
PMCid: PMC7152846 - J. Wu et al., “RF characterization of vertical wrap-gated InAs/High-κ nanowire capacitors,” IEEE Trans. Electron Devices, vol. 63, no. 2, pp. 584 – 589, Feb. 2016.
DOI: 10.1109/TED.2015.2506040 - C. Zhang, M. Xu, P. D. Ye, X. Li, “A distributive-transconductance model for border traps in III-V/high-k MOS capacitors,” IEEE Electron Device Lett., vol. 34, no. 6, pp. 735 – 737, Jun. 2013.
DOI: 10.1109/LED.2013.2255256 - N. Bachtouli, S. Aouida, B. Bessais, “Formation mechanism of porous silicon nanowires in HF/AgNO3 solution,” Microporous Mesoporous Mater., vol. 187, pp. 82 – 85, Mar. 2014.
DOI: 10.1016/j.micromeso.2013.11.048 - S. Ngqoloda, “Vertically aligned silicon nanowires synthesised by metal assisted chemical etching for photovoltaic applications,” M.Sc. thesis, University of the Western Cape, Dept. of Physics, Bellville, South Africa, 2015.
Retrieved from: http://etd.uwc.ac.za/xmlui/handle/11394/4872
Retrieved on: Feb. 18, 2021 - A. M. Akbaş, O. Çiçek, Ş. Altındal, Y. Azizian-Kalandaragh, “Frequency Response of C–V and G/ω-V Characteristics of Au/(Nanographite-doped PVP)/n-Si Structures,” J. Mater. Sci. Mater. Electron., vol. 32, no. 1, pp. 993 – 1006, Jan. 2021.
DOI: 10.1007/s10854-020-04875-6 - A. Mutale, S. C. Deevi, E. Yilmaz, “Effect of annealing temperature on the electrical characteristics of Al/Er2O3/n-Si/Al MOS capacitors,” J. Alloys Compd., vol. 863, 158718, May 2021.
DOI: 10.1016/j.jallcom.2021.158718 - A. Tataroğlu, Ş. Altındal, Y. Azizian-Kalandaragh, “C-V-f and G/ω-V-f characteristics of Au/(In2O3-PVP)/n-Si (MPS) structure,” Physica B Condens. Matter, vol. 582, 411996, Apr. 2020.
DOI: 10.1016/j.physb.2020.411996 - S. Maurya, “Effect of zero bias Gamma ray irradiation on HfO2 thin films,” J. Mater. Sci. Mater. Electron., vol. 27, no. 12, pp. 12796 – 12802, Dec. 2016.
DOI: 10.1007/s10854-016-5412-6 - Ç. G. Türk, S. O. Tan, Ş. Altındal, B. İnem, “Frequency and voltage dependence of barrier height, surface states, and series resistance in Al/Al2O3/p-Si structures in wide range frequency and voltage,” Physica B Condens. Matter, vol. 582, 411979, Apr. 2020.
DOI: 10.1016/j.physb.2019.411979 - A. Aktağ, A. Mutale, E. Yılmaz, “Determination of frequency and voltage dependence of electrical properties of Al/(Er2O3/SiO2/n-Si)/Al MOS capacitor,” J. Mater. Sci. Mater. Electron., vol. 31, no. 11, pp. 9044 – 9051, Jun. 2020.
DOI: 10.1007/s10854-020-03438-z - A. Tataroǧlu, G. G. Güven, S. Yilmaz, A. Büyükbas, “Analysis of barrier height and carrier concentration of MOS capacitor using C-f and G/ω-f measurements,” Gazi Univ. J. Sci., vol. 27, no. 3, pp. 909 – 915, 2014.
Retrieved from: https://dergipark.org.tr/tr/download/article-file/83667
Retrieved on: Feb. 10, 2021 - A. Kahraman, S. C. Deevi, E. Yilmaz, “Influence of frequency and gamma irradiation on the electrical characteristics of Er2O3, Gd2O3, Yb2O3, and HfO2 MOS-based devices,” J. Mater. Sci., vol. 55, no. 19, pp. 7999 – 8040, Jul. 2020.
DOI: 10.1007/s10853-020-04531-8 - S. Abubakar, E. Yilmaz, “Effects of series resistance and interface state on electrical properties of Al/Er2O3/Eu2O3/SiO2/n-Si/Al MOS capacitors,” Microelectron. Eng., vol. 232, 111409, Aug. 2020.
DOI: 10.1016/j.mee.2020.111409 - E. Yükseltük, M. Çotuk, S. Zeyrek, Ş. Altındal, M. M. Bülbül, “The Investigation of Frequency and Voltage Dependence of Electrical Characteristics in Al/P3HT/p-Si (MPS) Structures,” Mater. Today Proc., vol. 18, pp. 1842 – 1851, 2019.
DOI: 10.1016/j.matpr.2019.06.672
Medical Physics
COMPARISON OF FOTELP AND MCNP WITH VOXELISED GEOMETRY IN RADIOTHERAPY
Milena Zivkovic, Tatjana B. Miladinovic, Dragana Krstic
Pages: 97–100
Abstract | References | Full Text (PDF)
-
D. W. O. Rogers, “Fifty years of Monte Carlo simulations for medical physics,” Phys. Med. Biol., vol. 51, no. 13, pp. R287 – R301, Jul.2006.
DOI: 10.1088/0031-9155/51/13/r17
PMid: 16790908 -
B. E. Klein, R. Klein, K. L. Linton, T. Franke, “Diagnostic x-ray exposure and lens opacities: the Beaver Dam Eye Study,” Am. J. Public Health, vol. 83, no. 4, pp. 588 – 590, Apr. 1993.
DOI: 10.2105/ajph.83.4.588
PMid: 8460743
PMCid: PMC1694473 -
G. Chodick et al., “Risk of cataract after exposure to low doses of
ionizing radiation: a 20-year prospective cohort study among US radiologic
technologists,” Am. J. Epidemiol., vol. 168, no. 6, pp. 620 – 631,
Sep. 2008.
DOI: 10.1093/aje/kwn171
PMid: 18664497
PMCid: PMC2727195 -
ICRP Statement on Tissue Reactions and Early and Late Effects of
Radiation in Normal Tissues and Organs – Threshold Doses for Tissue
Reactions in a Radiation Protection Context
, vol. 41, ICRP Publication no. 118, ICRP, Ottawa, Canada, 2012.
Retrieved from: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20118
Retrieved on: Dec. 18, 2020 -
G. C. Pereira, M. Traughber, R. F. Muzic, “The role of imaging in radiation
therapy planning: past, present, and future,” Biomed. Res. Int.,
vol. 2014, spec. issue, 231090, Apr. 2014.
DOI: 10.1155/2014/231090
PMid: 24812609
PMCid: PMC4000658 -
W. Schneider, T. Bortfeld, W. Schlegel, “Correlation between CT numbers and
tissue parameters needed for Monte Carlo simulations of clinical dose
distributions,” Phys. Med. Biol., vol. 45, no. 2, pp. 459 – 478,
Feb. 2000.
DOI: 10.1088/0031-9155/45/2/314
PMid: 10701515 -
R. D. Ilić, “FOTELP - Simulacija transporta fotona, elektrona i pozitrona
metodom Monte Karlo,” u Zborniku radova XXXII Jugoslovenske konferencije ETAN-a, Sarajevo,
Jugoslavija, 1988, str. 45 – 52. (R. D. Ilic, “FOTELP - Monte Carlo simulation of photons, electrons and
positrons transport,” in Proc. XXXII Yugoslav Conf. ETAN,
Sarajevo, Yugoslavia, 1988, pp. 45 – 52.)
Retrieved from: https://inis.iaea.org/search/search.aspx?orig_q=RN:38039579
Retrieved on: Dec. 18, 2020 -
C. J. Werner, MCNP User`s Manual, Report LA-UR-17-29981, Los
Alamos National Security, Los Alamos (NM), USA, 2017.
Retrieved from: https://mcnp.lanl.gov/pdf_files/la-ur-17-29981.pdf
Retrieved on: Jan. 25, 2021 -
R. D. Ilić, S. Stanković, M. Vukčević, Milan Petrović, “Numerički eksperimenti u zaštiti i dozimetriji,” u Zborniku radova XIX Jugoslovenskog simpozijuma za zaštitu od zračenja, Golubac, Jugoslavija, 1997, str. 115 – 119.
(R. D. Ilic, S. Stankovic, M. Vukcevic, M. Petrovic, “Numerical experiments in protection and dosimetry,” in Proc. XIX Yugoslav Symp. Radiat. Protection, Golubac, Yugoslavia, 1997, pp. 115 – 119.)
Retrieved from: http://dzz.org.rs/wp-content/uploads/2013/06/XIX-JDZZ-1997-Golubac.pdf
Retrieved on: Jan. 25, 2021 - R. D. Ilic, FOTELP-2K3, Photon, Electron, and Positron Monte Carlo Transport Simulation, OECD NEA Data Bank, Paris, France, 2002.
-
R. D. Ilić, V. Spasić-Jokić, P. Belicev, M. Dragović, “The Monte Carlo
SRNA-VOX code for 3D proton dose distribution in voxelized geometry using
CT data,” Phys. Med. Biol., vol. 50, no. 5, pp. 1011 – 1017, Mar.
2005.
DOI: 10.1088/0031-9155/50/5/023
PMid: 15798273
Radiotherapy
IMPACT OF INTERMEDIATE DOSE CALCULATION MODULE ON THORACIC ESOPHAGUS CANCER RADIOTHERAPY PLANNING
Canan Koksal, Nazmiye Donmez Kesen, Nergiz Dagoglu Sakin
Pages: 101–104
Abstract | References | Full Text (PDF)
- H. Kato, M. Nakajima, “Treatments for esophageal cancer: a review,” Gen. Thorac. Cardiovasc. Surg., vol. 61, no. 6, pp. 330 - 335, Jun. 2013.
DOI: 10.1007/s11748-013-0246-0
PMid: 23568356 - M. Watanabe et al., “Correction to: Recent progress in multidisciplinary treatment for patients with esophageal cancer,” Surg. Today., vol. 50, no. 4, p. 425, Apr. 2020.
DOI: 10.1007/s00595-019-01952-0
PMid: 31925580
PMCid: PMC7098937 - M. Teoh, C. H. Clark, K. Wood, S. Whitaker, A. Nisbet, “Volumetric modulated arc therapy: a review of current literature and clinical use in practice,” Br. J. Radiol., vol. 84, no. 1007, pp. 967 - 996, Nov. 2011.
DOI: 10.1259/bjr/22373346
PMid: 22011829
PMCid: PMC3473700 - H. Chen, D. L. Craft, D. P. Gierga, “Multicriteria optimization informed VMAT planning,” Med. Dosim., vol. 39, no. 1, pp. 64 - 73, Mar. 2014.
DOI: 10.1016/j.meddos.2013.10.001
PMid: 24360919
PMCid: PMC3954571 - Y. Li et al., “Impact of dose calculation accuracy during optimization on lung IMRT plan quality,” J. Appl. Clin. Med. Phys., vol. 16, no. 1, pp. 219 - 228, Jan. 2015.
DOI: 10.1120/jacmp.v16i1.5137
PMid: 25679172
PMCid: PMC5689966 - B. D. Park, T. G. Kim, J. E. Kim, “Dosimetric impact of intermediate dose calculation for optimization convergence error,” Oncotarget, vol. 7, no. 25, pp. 37589 - 37598, Jun. 2016.
DOI: 10.18632/oncotarget.7743
PMid: 26933998
PMCid: PMC5122334 - A. van’t Riet, A. C. Mak, M. A. Moerland, L. H. Elders, W. van der Zee, “A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate,” Int. J. Radiat. Oncol. Biol. Phys., vol. 37, no. 3, pp. 731 - 736, Feb. 1997.
DOI: 10.1016/s0360-3016(96)00601-3
PMid: 9112473 - “Special considerations regarding absorbed-dose and dose-volume prescribing and reporting in IMRT,” J. ICRU, vol. 10, no. 1, pp. 27 - 40, Apr. 2010.
DOI: 10.1093/jicru/ndq008
PMid: 24173325 - D. Binny, T. Kairn, C. M. Lancaster, J. V. Trapp, S. B. Crowe, “Photon optimizer (PO) vs progressive resolution optimizer (PRO): a conformality- and complexity-based comparison for intensity-modulated arc therapy plans,” Med. Dosim., vol. 43, no. 3, pp. 267 - 275, Sep. 2018.
DOI: 10.1016/j.meddos.2017.10.003
PMid: 29079336 - U. Akbas et al., “Dosimetric impact of intermediate dose calculation on heterogeneous region radiotherapy planning”, Phys. Med., vol. 52, suppl. 1, p. 171, Aug. 2018.
DOI: 10.1016/j.ejmp.2018.06.531
Microwave, Laser, RF and UV radiations
Experimental measurements of A 5G outdoor massive MIMO antenna located into a shopping center
Ts. Shalamanova, Hr. Petkova, M. Israel, V. Zaryabova
Pages: 105–108
Abstract | References | Full Text (PDF)
- Министерство на здравеопазването/Министерство на околната среда. (Май 3, 1991). Държавен вестник брой 35. Наредба № 9 от 14 март 1991 г. за пределно допустими нива на електромагнитни полета в населени територии и определяне на хигиенно-защитни зони около излъчващи обекти .(Ministry of Health/Ministry of Environment and Water. (May 3, 1991). State gazette issue 35. Ordinance No. 9 of 14 March 1991. on the limit values of electromagnetic fields in populated areas and the identification of hygienic-protective zones around radiating objects .)
Retrieved from: https://dv.parliament.bg/DVWeb/broeveList.faces#
Retrieved on: Dec. 20, 2020 - The Council of European Union. (Jul. 12, 1999). 1999/519/EC. Council Recommendation on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz).
Retrieved from: https://op.europa.eu/en/publication-detail/-/publication/9509b04f-1df0-4221-bfa2-c7af77975556/language-en
Retrieved on: Mar. 17, 2021 - ICNIRP Guidelines for limiting exposure to to electromagnetic fields (100 kHz TO 300 GHz) , ICNIRP Publication – 2020, ICNIRP, Oberschleissheim, Germany, 2020.
Retrieved from: https://www.icnirp.org/cms/upload/publications/ICNIRPrfgdl2020.pdf
Retrieved on: Jan. 19, 2021 - Determination of RF field strength, power density and SAR in the vicinity of radiocommunication base stations for the purpose of evaluating human exposure , IEC 62232:2017, Aug. 23, 2017.
Retrieved from: https://webstore.iec.ch/publication/28673
Retrieved on: Jan. 19, 2021 - Case studies supporting IEC 62232 – Determination of RF field strength, power density and SAR in the vicinity of radiocommunication base stations for the purpose of evaluating human exposure , IEC TR 62669:2019, IEC, Geneva, Switzerland, 2019.
Retrieved from: https://webstore.iec.ch/publication/62014#additionalinfo
Retrieved on: Dec. 10, 2020
Patient and personnel health and safety in Magnetic Resonance Imaging Facility
M. Israel, M. Ivanova, P. Ivanova, Ts. Shalamanova, H. Petkova
Pages: 109–114
Abstract | References | Full Text (PDF)
- ICNIRP Guidelines on limits of exposure to static magnetic fields, ICNIRP Publication – 2009, ICNIRP, Oberschleissheim, Germany, 2009.
Retrieved from: https://www.icnirp.org/cms/upload/publications/ICNIRPstatgdl.pdf
Retrieved on: Mar. 29, 2021 - ICNIRP Guidelines for limiting exposure to electric fields induced by movement of the human body in a static magnetic field and by time varying magnetic fields below 1 Hz, ICNIRP Publication – 2014, ICNIRP, Oberschleissheim, Germany, 2014.
Retrieved from: https://www.icnirp.org/cms/upload/publications/ICNIRPmvtgdl_2014.pdf
Retrieved on: Mar. 29, 2021 - ICNIRP statement on medical magnetic resonance (MR) procedures: protection of patients , ICNIRP Publication – 2004, ICNIRP, Oberschleissheim, Germany, 2004.
Retrieved from: https://www.icnirp.org/cms/upload/publications/ICNIRPMR2004.pdf
Retrieved on: Mar. 29, 2021 - Protection of Patients and Volunteers Undergoing MRI Procedures: Advice from the Health Protection Agency , Documents of the Health Protection Agency, Radiation, Chemical and Environmental Hazards RCE-7, HPA, London, UK, 2008.
Retrieved from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/329364/ Protection_of_patients_and_volunteers_undergoing_MRI_procedures.pdf
Retrieved on: Feb. 8, 2021 - H. Kromhout et al., “ICNIRP Statement on diagnostic devices using non-ionizing radiation: Existing regulations and potential health risks,” Health Phys., vol. 113, no. 2, pp. 149 – 150, Aug. 2017.
DOI: 10.1097/HP.0000000000000686
PMid: 28658061 - S. Bongers, P. Slottje, H. Kromhout, “Development of hypertension after long-term exposure to static magnetic fields among workers from a magnetic resonance imaging device manufacturing facility,” Environ. Res., vol. 164, pp. 565 – 573, Jul. 2018.
DOI: 10.1016/j.envres.2018.03.008
PMid: 29621724 - The European Parliament and the Council of the European Union. (Jun. 26, 2013). Directive 2013/35/EC of the European Parliament and of the Council on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) .
Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:179:0001:0021:EN:PDF
Retrieved on: Dec. 14, 2020 - The Council of European Union. (Jul. 12, 1999). Council Recommendation 1999/519/EC on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz).
Retrieved from: https://op.europa.eu/en/publication-detail/-/publication/9509b04f-1df0-4221-bfa2-c7af77975556/language-en
Retrieved on: Dec. 14, 2020 - Electromagnetic Fields, vol. 1, Non-binding guide to good practice for implementing Directive 2013/35/EU, European Commission, Brussels, Belgium, 2015.
Retrieved from: http://bookshop.europa.eu/en/non-binding-guide-to-good-practice-for-implementing-directive-2013-35-eu-electromagnetic-fields-pbKE0415140/
Retrieved on: Dec. 14, 2020 - Министерство на труда и социалната политика/Министерство на здравеопазването. (Ное. 26, 2016). Държавен вестник брой 95. Наредба № РД-07-5 от 15 ноември 2016 г. за минималните изисквания за осигуряване на здравето и безопасността на работещите при рискове, свързани с експозиция на електромагнитни полета. (Ministry of Labor and Social Policy/Ministry of Health. (Nov. 26, 2016). State gazette No. 95. Ordinance No RD-07-5 of 15 November 2016. for the minimal requirements for providing health and safety at work at risks by exposure to electromagnetic fields. )
Retrieved from: http://dv.parliament.bg/DVWeb/broeveList.faces#
Retrieved on: Dec. 14, 2020 - Medical electrical equipment - Part 2-33: Particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis, IEC 60601-2-33:2010, Mar. 10, 2010.
Retrieved from: https://webstore.iec.ch/publication/2647
Retrieved on: Jan. 11, 2021 - Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices, ACGIH, Cincinnati (OH), USA, 2008.
Medical Imaging
High-quality iterative TOF MLEM reconstruction for short scans in total-body J-PET
R.Y. Shopa
Pages: 115–120
Abstract | References | Full Text (PDF)
- R. Ferrara, L. Mansi, “Paul Suetens (ed): Fundamentals of Medical Imaging (2nd edition),” Eur. J. Nucl. Med. Mol. Imaging, vol. 38, no. 2, 409, Feb. 2011.
DOI: 10.1007/s00259-010-1694-8 - D. L. Bailey, D. W. Townsend, P. E. Valk, M. N. Maisey, Positron Emission Tomography: Basic Sciences, 1st ed., London, UK: Springer-Verlag, 2005.
Retrieved from: http://library.lol/main/62ECAB329922072DF347CA01DC3AD401
Retrieved on: Jul. 14, 2021 - S. Vandenberghe, P. Moskal, J. S. Karp, “State of the art in total body PET,” EJNMMI Phys., vol. 7, 35, May. 2020.
DOI: 10.1186/s40658-020-00290-2
PMid: 32451783
PMCid: PMC7248164 - P. Moskal, E. Ł. Stępień, “Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators,” PET Clin., vol. 15, no. 4, pp. 439 - 452, Oct. 2020.
DOI: 10.1016/j.cpet.2020.06.009
PMid: 32739047 - R. D. Badawi et al., “First Human Imaging Studies with the EXPLORER Total-Body PET Scanner,” J. Nucl. Med., vol. 60, no. 3, pp. 299 - 303, Mar. 2019.
DOI: 10.2967/jnumed.119.226498
PMid: 30733314
PMCid: PMC6424228 - S. R. Cherry et al., “Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care,” J. Nucl. Med., vol. 59, no. 1, pp. 3 - 12, Jan. 2018.
DOI: 10.2967/jnumed.116.184028
PMid: 28935835
PMCid: PMC5750522 - P. Moskal et al., “Test of a single module of the J-PET scanner based on plastic scintillators,” Nucl. Instrum. Methods Phys. Res. A, vol. 764, pp. 317 - 321, Nov. 2014.
DOI: 10.1016/j.nima.2014.07.052 - P. Moskal et al., “A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals,” Nucl. Instrum. Methods Phys. Res. A, vol. 775, pp. 54 - 62, Mar. 2015.
DOI: 10.1016/j.nima.2014.12.005 - P. Moskal et al., “Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph,” Phys. Med. Biol., vol. 61, no. 5, pp. 2025 - 2047, Mar. 2016.
DOI: 10.1088/0031-9155/61/5/2025
PMid: 26895187 - S. Niedźwiecki et al., “J-PET: A New Technology for the Whole-body PET Imaging,” Acta Phys. Pol. B, vol. 48, no. 10, pp. 1567 - 1576, Oct. 2017.
DOI: 10.5506/APhysPolB.48.1567 - N. G. Sharma et al., “Hit-Time and Hit-Position Reconstruction in Strips of Plastic Scintillators Using Multithreshold Readouts,” IEEE Trans. Radiat. Plasma Med. Sci., vol. 4, no. 5, pp. 528 - 537, Sep. 2020.
DOI: 10.1109/TRPMS.2020.2990621 - S. Sharma et al., “Estimating relationship between the time over threshold and energy loss by photons in plastic scintillators used in the J-PET scanner,” EJNMMI Phys., vol. 7, 39, Jun. 2020.
DOI: 10.1186/s40658-020-00306-x
PMid: 32504254
PMCid: PMC7275104 - P. Moskal et al., “Simulating NEMA characteristics of the modular total-body J-PET scanner-an economic total-body PET from plastic scintillators,” Phys. Med. Biol., vol. 66, no. 17, 175015, Sep. 2021.
DOI: 10.1088/1361-6560/ac16bd
PMid: 34289460 - L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging, vol. 1, no. 2, pp. 113 - 122, Oct. 1982.
DOI: 10.1109/TMI.1982.4307558
PMid: 18238264 - A. J. Reader, H. Zaidi, “Advances in PET Image Reconstruction,” PET Clin., vol. 2, no. 2, pp. 173 - 190, Apr. 2007.
DOI: 10.1016/j.cpet.2007.08.001
PMid: 27157872 - S. Jan et al., “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol., vol. 49, no. 19, pp. 4543 - 4561, Oct. 2004.
DOI: 10.1088/0031-9155/49/19/007
PMid: 15552416
PMCid: PMC3267383 - Performance Measurements of Positron Emission Tomographs (PETs) , NEMA NU 2-2012, 2013.
Retrieved from: https://webstore.ansi.org/standards/nema/nemanu2012-1451586#PDF
Retrieved on: Jul. 14, 2021 - T. Merlin et al., “CASToR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction,” Phys. Med. Biol., vol. 63, no. 18, 185005, Sep. 2018.
DOI: 10.1088/1361-6560/aadac1
PMid: 30113313 - H. H. Barrett, T. White, L. C. Parra, “List-mode likelihood,” J. Opt. Soc. Am. A, vol. 14, no. 11, pp. 2914 - 2923, Nov. 1997.
DOI: 10.1364/josaa.14.002914
PMid: 9379247
PMCid: PMC2969184 - A. Strzelecki, “Image reconstruction and simulation of strip Positron Emission Tomography scanner using computational accelerators,” Ph.D. dissertation, Polish Academy of Sciences, Institute of Fundamental Technological Research, Kraków, Poland, 2016.
Retrieved from: https://oldwww.ippt.pan.pl/_download/doktoraty/2016strzelecki_a_doktorat.pdf
Retrieved on: Jul. 14, 2021 - V. Westerwoudt, M. Conti, L. Eriksson, “Advantages of Improved Time Resolution for TOF PET at Very Low Statistics,” IEEE Trans. Nucl. Sci., vol. 61, no. 1, pp. 126 - 133, Feb. 2014.
DOI: 10.1109/TNS.2013.2287175 - P. J. Green, “Bayesian reconstructions from emission tomography data using a modified EM algorithm,” IEEE Trans. Med. Imaging, vol. 9, no. 1, pp. 84 - 93, Mar. 1990.
DOI: 10.1109/42.52985 - S. Alenius, U. Ruotsalainen, “Bayesian image reconstruction for emission tomography based on median root prior,” Eur. J. Nucl. Med., vol. 24, no. 3, pp. 258 - 265, Mar. 1997.
DOI: 10.1007/BF01728761
PMid: 9143462 - J. Nuyts, D. Beque, P. Dupont, L. Mortelmans, “A concave prior penalizing relative differences for maximum-a-posteriori reconstruction in emission tomography,” IEEE Trans. Nucl. Sci., vol. 49, no. 1, pp. 56 - 60, Feb. 2002.
DOI: 10.1109/TNS.2002.998681 - H. Ling, A. C. Bovik, “Smoothing low-SNR molecular images via anisotropic median-diffusion,” IEEE Trans. Med. Imaging, vol. 21, no. 4, pp. 377 - 384, Apr. 2002.
DOI: 10.1109/TMI.2002.1000261
PMid: 12022625 - S. Alenius, U. Ruotsalainen, “Generalization of median root prior reconstruction,” IEEE Trans. Med. Imaging, vol. 21, no. 11, pp. 1413 - 1420, Nov. 2002.
DOI: 10.1109/TMI.2002.806415
PMid: 12575878 - J. Smyrski et al., “Measurement of gamma quantum interaction point in plastic scintillator with WLS strips,” Nucl. Instrum. Methods Phys. Res. A, vol. 851, pp. 39 - 42, Apr. 2017.
DOI: 10.1016/j.nima.2017.01.045 - P. Kowalski et al., “Estimating the NEMA characteristics of the J-PET tomograph using the GATE package,” Phys. Med. Biol., vol. 63, no. 16, 165008, Aug. 2018.
DOI: 10.1088/1361-6560/aad29b
PMid: 29992906 - S. Li, M. Wang, H. Hou, J. Yang, X. Wang, “Fast algorithm for calculating the radiological path in fan-beam CT image reconstruction,” Optik, vol. 127, no. 5, pp. 2973 - 2977, Mar. 2016.
DOI: 10.1016/j.ijleo.2015.12.034
Biomedicine
ADAPTIVE MECHANISMS OF RECOVERY FROM LATE RADIATION INJURIES USING DRUG AND REFLEXO-LASER THERAPY
E. Kuzmina, A. Degtyareva, T. Mushkarina, S. Zatsarenko
Pages: 121–127
Abstract | References | Full Text (PDF)
- M. S. Bardychev, S. N. Katsalap, “Local radiation damage: the characteristics of its pathogenesis, diagnosis and treatment”, Vopr. Onkol., vol. 41, no. 2, p. 99, 1995.
PMid: 7483460 - Е. А. Ростачева, “Влияние рефлексотерапии на противовирусный иммунитет”, Детская медицина северо-запада, т. 8, но. 1, с. 289 - 290, 2020. (E. A. Rostacheva, “The influence of reflexology on antiviral immunity”, Child. Med. North-West, vol. 8, no. 1, pp. 289 - 290, 2020.)
Retrieved from: https://elibrary.ru/item.asp?id=46338577
Retrieved on: May 10, 2021 - G. O. Andreeva, K. M. Naumov, “Modern concepts of acupuncture mechanisms”, Russian Military Med. Acad. Rep., vol. 39, no. s3 - 5, pp. 11 - 13, 2020.
- А. М. Василенко, С. А. Радзиевский, Л. Г. Агасаров, С. А. Бугаев, “Рефлексотерапия в формате восстановительной медицины”, Вопросы курортологии, физиотерапии и лечебной физической культуры, т. 90, но. 1, с. 32 - 38, 2013. (A. M. Vasilenko, S. A. Radzievsky, L. G. Agasarov, S. A. Bugaev, “Reflexotherapy in the context of rehabilitative medicine”,Questions of balneology, physiotherapy and therapeutic physical culture, vol. 90, no. 1, pp. 32 – 38, 2013.)
Retrieved from: https://www.mediasphera.ru/issues/voprosy-kurortologii-fizioterapii-i-lechebnoj-fizicheskoj-kultury/2013/1/030042-8787201316
Retrieved on: May 10, 2021 - Е. Г. Кузьмина и другие, “Интегративная (рефлексолазерная) терапия в восстановлении онкологических больных после комбинированной терапии (клинико-иммунологические аспекты)”, в кн. тез. 3-й Международный форум “Интегративная медицина 2008,” Москва, Россия, 2008, с. 147 – 151. (E. G. Kuzmina et al., “Integrative (reflexo-laser) therapy in restoration of oncologic patients after combination therapy (clinical-and-immunologic aspects)”, in Book of Abstr. 3rd Int. Forum “Integrative medicine 2008,” Moscow, Russia, 2008, pp. 147 – 151.)
- Е. А. Гурьянова, “Место рефлексотерапии в системе медицинской реабилитации”, в кн. тез.Межрегиональной научно-практической конференции Вопросы Медицинской Реабилитации, Чебоксары, Россия, 2018, с. 26 – 32. (E. A. Guryanova, “The place of reflexology in the system medical rehabilitation”, in Book of Abstr. Conf. Issues of medical rehabilitation, Chuvashiya, Russia, 2018, pp. 26 – 32.)
- A. Uncini et al., “Effect of closely repeated cathodal transcranial direct current stimulations”, Clin. Neurophysiol., vol. 128, no. 3, p. e150, Mar. 2017.
DOI: 10.1016/j.clinph.2016.10.395 - M. C. Ridding, U. Ziemann, “Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects”, J. Physiol., vol. 588, no. 13, pp. 2291 – 2304, Jul. 2010.
DOI: 10.1113/jphysiol.2010.190314
PMid: 20478978
PMCid: PMC2915507 - M. Vitor-Costa et al., “Improving cycling performance: transcranial direct current stimulation increases time to exhaustion in cycling”, PLoS ONE, vol. 10, no. 12, e0144916, Dec. 2015.
DOI: 10.1371/journal.pone.0144916
PMid: 26674200
PMCid: PMC4687680 - J. Nelson et al., “The effects of transcranial direct current stimulation (tDCS) on multitasking throughput capacity”, Front. Hum. Neurosci., vol. 10, 589, Nov. 2016.
DOI: 10.3389/fnhum.2016.00589
PMid: 27965553
PMCid: PMC5126079 - E. Santarnecchi et al., “Enhancing cognition using transcranial electrical stimulation”, Curr. Opin. Behav. Sci., vol. 4, pp. 171 - 178, Aug. 2015.
DOI: 10.1016/j.cobeha.2015.06.003 - S. Reardon, “’Brain doping’ may improve athletes’ performance”, Nature, vol. 531, no. 7594, pp. 283 - 284, Mar. 2016.
DOI: 10.1038/nature.2016.19534
PMid: 26983516 - R. A. McKinley, L. McIntire, J. Nelson, J. Nelson, C. Goodyear, “The effects of Transcranial Direct Current Stimulation (tDCS) on training during a complex procedural task”, in Advances in Neuroergonomics and Cognitive Engineering, vol. 488, K. S. Hale, K. M. Stanney, Eds., 1st ed., Cham, Switzerland: Springer, 2017, pp. 173 – 183.
Retrieved from: http://library.lol/main/48FCD7C078F18C6FED6799073A8E25C0
Retrieved on: Jan. 12, 2021 - C. Lustenberger, M. R. Boyle, A. A. Foulser, J. M. Mellin, F. Fröhlich, “Functional role of frontal alpha oscillations in creativity”, Cortex, vol. 67, pp. 74 - 82, Jun. 2015.
DOI: 10.1016/j.cortex.2015.03.012
PMid: 25913062
PMCid: PMC4451406 - A. Vossen, J. Gross, G. Thut, “Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment”, Brain Stimul., vol. 8, no. 3, pp. 499 - 508, May-Jun. 2015.
DOI: 10.1016/j.brs.2014.12.004
PMid: 25648377
PMCid: PMC4464304 - J. Yu, T. Yu, J. Han, “Aging-related changes in the transcriptional profile of cerebrum in senescence-accelerated mouse (SAMP10) is remarkably retarded by acupuncture”, Acupunct. Electrother. Res., vol. 30, no. 1 - 2, pp. 27 - 42, 2005.
DOI: 10.3727/036012905815901370
PMid: 16231630 - P. Karoly, M. P. Jensen, Multimethod assessment of chronic pain, Oxford, UK: Pergamon, 1987, p. 172.
- Д. Д. Бернс, При панических атаках: новая безлекарственная тревожная терапия, которая может изменить вашу жизнь, Москва, Россия: Издательство Альпина, 2021, с. 550. (D. D. Burns, When panic attacks: the new, drug-free anxiety therapy that can change your life, Moscow, Russia: Alpina Publisher, 2021, p. 550.)
- N. H. Embong, Y. C. Soh, L. C. Ming, T. W. Wong, “Revisiting reflexology:Concept, evidence, current practice, and practitioner training,” J. Tradit. Complement. Med., vol. 5, no. 4, pp. 197 – 206, Oct. 2015.
DOI: 10.1016/j.jtcme.2015.08.008
PMid: 26587391
PMCid: PMC4624523 - S. A. Glantz, Primer of Biostatistics, 7th ed., New York (NY), USA: McGraw-Hill, 2012.
Retrieved from: https://accessanesthesiology.mhmedical.com/book.aspx?bookid=665&isMissingChapter=true
Retrieved on: Aug. 15, 2021 - F. Quinn, C. M. Hughes, G. D. Baxter, “Reflexology in the management of low back pain: a pilot randomised controlled trial,” Complement. Ther. Med., vol. 16, no. 1, pp. 3 – 8, Feb. 2008.
DOI: 10.1016/j.ctim.2007.05.001
PMid: 18346622 - C. K. Chen, A. J. Nizar, “Myofascial pain syndrome in chronic back pain patients,” Korean J. Pain, vol. 24, no. 2, pp. 100 – 104, Jun. 2011.
DOI: 10.3344/kjp.2011.24.2.100
PMid: 21716607
PMCid: PMC3111556 - P. Hall, “Reflexology for Stroke,” Positive health, Oct. 2002.
Retrieved from: http://www.positivehealth.com/article/reflexology/reflexology-for-stroke
Retrieved on: Aug. 15, 2021 - H. J. Baltrusch, W. Stangel, I. Titze, “Stress, cancer and immunity. New developments in biopsychosocial and psychoneuroimmunologic research,” Acta Neurol., vol. 13, no. 4, pp. 315 - 327, Aug. 1991.
PMid: 1781308 - N. M. Burduli, L. G. Ranyuk, “The influence of laser radiation on the functional activity of leucocytes, lipid peroxidation and antioxidant defensein patients with chronic acalculous cholecystitys”, Kuban Scientific Medical Bulletin, vol. 140, no. 5, p. 56, Krasnodar, Russia, 2013.
Biomaterials
INVESTIGATION OF POLYMER CONCENTRATION ON PHYSICAL AND MORPHOLOGICAL PROPERTIES OF PLLA BASED FIBROUS STRUCTURES
Suzan Ozdemir, Janset Oztemur, Hande Sezgin, Ipek Yalcin Enis
Pages: 128–132
Abstract | References | Full Text (PDF)
- I. Yalcin-Enis,, J. Oztemur, “The potential use of fibrous webs electrospun from polylactic acid / poly ɛ-caprolactone blends in tissue engineering applications,” in Engineering and Architecture Sciences: Theory, Current Researches and New Trends , C. Çi̇vi̇, T. Yilmaz, Eds., 1st ed., Cetinje, Montenegro: IVPE, 2020, ch. XV, pp. 213 – 234.
Retrieved from: http://www.uakb.org/source/2020%20Ekim%20Kitaplari/ENGINEERING%20AND%20ARCHITECTURE%20SCIENCES%20Theory ,%20Current%20Researches%20and%20New%20Trends-min.pdf
Retrieved on: Nov. 10, 2020 - I. Y. Enis, T. G. Sadikoglu, “Design parameters for electrospun biodegradable vascular grafts,” J. Ind. Text., vol. 47, no. 8, pp. 2205 – 2227, May 2018.
DOI: 10.1177/1528083716654470 - J. Oztemur, I. Yalcin-Enis, “Morphological analysis of fibrous webs electrospun from Polycaprolactone, polylactic acid and their blends in chloroform based solvent systems,” Mater. Today: Proc., vol. 46, pp. 2161 – 2166, 2021.
DOI: 10.1016/j.matpr.2021.02.638 - T. Biswal, “Biopolymers for tissue engineering applications: A review,” Mater. Today Proc., vol. 41, pp. 397 – 402, 2021.
DOI: 10.1016/j.matpr.2020.09.628 - S. A. Ganie, A. Ali, T. A. Mir, Q. Li, “Physical and chemical modification of biopolymers and biocomposites,” in Advanced Green Materials, S. Ahmed, Ed., 1st ed., Sawston, UK: Woodhead Publishing, 2020, ch. 16, pp. 359 – 377.
DOI: 10.1016/B978-0-12-819988-6.00016-1 - J. Oztemur, I. Yalcin Enis, “The Role of Biopolymer Selection in the Design of Electrospun Small Caliber Vascular Grafts to Replace the Native Arterial Structure,” in Theory and Research in Engineering, A. Hayaloğlu, Ed., 1st ed., Ankara, Turkey: Gece Publishing, 2020, ch. 9, pp. 167 – 192.
Retrieved from: https://www.gecekitapligi.com/Webkontrol/uploads/Fck/engineering_7.pdf
Retrieved on: Feb. 18, 2021 - M. S. B. Reddy, D. Ponnamma, R. Choudhary, K. K. Sadasivuni, “A comparative review of natural and synthetic biopolymer composite scaffolds,” Polymers, vol. 13, no. 7, 1105, Apr. 2021.
DOI: 10.3390/polym13071105
PMid: 33808492
PMCid: PMC8037451 - E. Bolbasov et al., “Comparative Study of the Physical, Topographical and Biological Properties of Electrospinning PCL, PLLA, their Blend and Copolymer Scaffolds,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 350, 012012, 2018.
DOI: 10.1088/1757-899X/350/1/012012 - N. Poomathi et al., “3D printing in tissue engineering: a state of the art review of technologies and biomaterials,” Rapid Prototyp. J., vol. 26, no. 7, pp. 1313 – 1334, Jul. 2020.
DOI: 10.1108/RPJ-08-2018-0217 - Z. Xie, M. Gao, A. O. Lobo, T. J. Webster, “3D bioprinting in tissue engineering for medical applications: The classic and the hybrid,” Polymers, vol. 12, no. 8, 1717, Aug. 2020.
DOI: 10.3390/POLYM12081717
PMid: 32751797
PMCid: PMC7464247 - J. L. Walker, M. Santoro, “Processing and production of bioresorbable polymer scaffolds for tissue engineering,” in Bioresorbable Polymers for Biomedical Applications: From Fundamentals to Translational Medicine , G. Perale, J. Hilborn, Eds., 1st ed., Sawston, UK: Woodhead Publishing, 2016, pp. 181 – 203.
DOI: 10.1016/B978-0-08-100262-9.00009-4 - P. Muniyandi et al. “ECM mimetic electrospun porous poly (l-lactic acid) (PLLA) scaffolds as potential substrates for cardiac tissue engineering,” Polymers, vol. 12, no. 2, 451, Feb. 2020.
DOI: 10.3390/polym12020451
PMid: 32075089
PMCid: PMC7077699 - I. A. Fiqrianti et al., “Poly-L-Lactic acid (PLLA)-chitosan-collagen electrospun tube for vascular graft application,” J. Funct. Biomater., vol. 9, no. 2, 32, Apr. 2018.
DOI: 10.3390/jfb9020032
PMid: 29710843
PMCid: PMC6023529 - A. Hasan et al., “Fabrication and in Vitro Characterization of a Tissue Engineered PCL-PLLA Heart Valve,” Sci. Rep., vol. 8, no. 1, 8187, May 2018.
DOI: 10.1038/s41598-018-26452-y
PMid: 29844329
PMCid: PMC5974353 - I. Y. Enis, J. Vojtech, T. G. Sadikoglu, “Alternative solvent systems for polycaprolactone nanowebs via electrospinning,” J. Ind. Text., vol. 47, no. 1, pp. 57 – 70, Jul. 2017.
DOI: 10.1177/1528083716634032 - J. Lasprilla-Botero, M. Álvarez-Láinez, J. M. Lagaron, “The influence of electrospinning parameters and solvent selection on the morphology and diameter of polyimide nanofibers,” Mater. Today Commun., vol. 14, pp. 1 – 9, Mar. 2018.
DOI: 10.1016/j.mtcomm.2017.12.003 - F. A. A. Ruiter, C. Alexander, F. R. A. J. Rose, J. I. Segal, “A design of experiments approach to identify the influencing parameters that determine poly-D,L-lactic acid (PDLLA) electrospun scaffold morphologies,” Biomed. Mater., vol. 12, no. 5, 055009, Oct. 2017.
DOI: 10.1088/1748-605X/aa7b54 - B. Tarus, N. Fadel, A. Al-Oufy, M. El-Messiry, “Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats,” Alex. Eng. J., vol. 55, no. 3, pp. 2975 – 2984, Sep. 2016.
DOI: 10.1016/j.aej.2016.04.025 - G. Eda, S. Shivkumar, “Bead structure variations during electrospinning of polystyrene,” J. Mater. Sci., vol. 41, no. 17, pp. 5704 – 5708, Sep. 2006.
DOI: 10.1007/s10853-006-0069-9 - T. E. Boncu, N. Ozdemir, “Electrospinning of ampicillin trihydrate loaded electrospun PLA nanofibers I: effect of polymer concentration and PCL addition on its morphology, drug delivery and mechanical properties,” Int. J. Polym. Mater., 2021.
DOI: 10.1080/00914037.2021.1876057 - H. Maleki, A. A. Gharehaghaji, G. Criscenti, L. Moroni, P. J. Dijkstra, “The influence of process parameters on the properties of electrospun PLLA yarns studied by the response surface methodology,” J. Appl. Polym. Sci., vol. 132, no. 5, Feb. 2015.
DOI: 10.1002/app.41388