Vol. 9, 2024
Radiation Technologies in Industry and Environment
GEOCHEMICAL ASPECT OF CAAPUCU HEIGHT AT SOUTHEASTER PARAGUAY BY X-RAY FLUORESCENCE AND NEUTRON ACTIVATION ANALYSIS
Peter Kump, Julio Cabello(♰), Juan F. Facetti Masulli
Pages: 1-5
Abstract | References | Full Text (PDF)
- F. Albarede, Geochemistry, Cambridge, UK: Cambridge University Press, 2004.
- M. Menzies, N. Rodger, A. Tindle, A. C. Hawkesworth, “Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere,” in Mantle Metasomatism, M. Menzies. A. C. Hawkesworth, Eds., London, UK: London Academic Press, 1987, ch. 8, pp. 313 – 359.
- B. Bonin, Magmatisme et Roches Magmatiques, 2da ed de Petrologie endogene, Paris, France: Dunod, 2004, pp. 208 – 217.
(B. Bonin, Magmatism and Magmatic Rocks, 2nd ed. Endogenous Petrology, Paris, France: Dunod, 2004, pp. 208 – 217.) - B. W. Chappell, A. J. R. White, “Two contrasting granite types”, Pacific Geology, vol. 8, pp. 173 – 174, 1974.
- R. D. Raju, “I-, M-, A- and S-type Granitoids: their attributes and mineralization, with Indian examples,” J. Econ. Geol. Georesource Management, vol. 5, no. 1 – 2, pp. 1 – 23, 2008.
Retrieved from: https://www.researchgate.net/publication/321992577_I-_M-_A-_and_S-type_Granitoids_Their_Attributes_and_Mineralization_with_Indian_Examples
Retrieved on: Nov. 15, 2023 - K. Breiter, N. Gardenova, V. Kanicky, T. Vaculovic, “Gallium and germanium geochemistry during magmatic fractionation and post magmatic alteration in different types of granitoids: a case of study from Bohemian Massif,” Geol. Carpath, vol. 64, no. 3, pp. 171 – 180, Jun. 2013.
DOI: 10.2478/geoca-2013-0018 - E. B. Eckel, Geology and Mineral resources of Paraguay, Geol. Survey Professional Paper 327, US printing Office, Washington, D.C., USA, 1959.
DOI: 10.3133/pp327 - G. Vera Morinigo, J. F. Facetti Masulli, “El Precàmbrico en el Paraguay,” Rev. Soc. Cient. Paraguay, vol. 9, pp. 19 – 22, 1968.
(G. Vera Morinigo, J. F. Facetti Masulli, “Precambrian in Paraguay,” J. Sci. Soc. Paraguay, vol. 9, pp. 19 – 22, 1968.) - C. De Barros Gomes, P. Comin-Chiaramonti, V. F. Velázquez, “The Mesoproterozoic rhyolite occurrences of Fuerte Olimpo and Fuerte San Carlos, Northern Paraguay,” Braz. J. Geosci., vol. 30, no. 4, pp. 785 – 788, Dec. 2000.
DOI: 10.25249/0375-7536.2000304785788 - A. Kanzler, “The Southern Precambrian in Paraguay - Geological Inventory and age relations,” Central J. Geol. Palaontol. Pt. 1, no. 7/8, pp. 753 – 765, Sep. 1987.
Retrieved from: https://www.geologiadelparaguay.com.py/The-Southern-Precambrian-in-Paraguay-Kanzler.pdf
Retrieved on: Nov. 15, 2023 - R. Boettner, “Estudio Geológico desde Fonciere hasta Toledo cué,” Rev. Fac. Quimica, n. 6 – 7, p. 9 – 14, 1947.
(R. Boettner, “Geological Study from Fonciere to Toledo cue,” Chem. Fac. Magazine, no. 6 – 7, pp. 9 – 14, 1947.) - M. M. Pimentel, R. A. Fuck, C. J. Alvarenga, “Post-Brasiliano (Pan-African) high-K granitic magmatism in Central Brazil: the role of late Precambrian-early Palaeozoic extension,” Precambrian Res., vol. 80, no. 3 – 4, pp. 217 – 238, Dec. 1996.
DOI: 10.1016/S0301-9268(96)00016-2 - M. M. Pimentel, M. J. Whitehouse, Maria das G. Viana, R. A. Fuck, N. Machado, “The Mara Rosa Arch in the Tocantins Province: further evidence for Neoproterozoic crustal accretion in Central Brazil,” Precambrian Res., vol. 81, no. 3 – 4, pp. 299 – 310, Feb. 1997.
DOI: 10.1016/S0301-9268(96)00039-3 - F. Ohana, A. S. Ruiz, M. Z. Aguiar de Sousa, M. E. Fróes Batata, J. M. Lafon, “Geology, petrology, U-Pb (shrimp) geochronology of the Morrinhos granite -Paraguá terrane, SW Amazonian craton: implications for the magmatic evolution of the San Ignácio orogeny,” Braz. J. Geol., vol. 44, no. 3, pp. 415 – 432, Jul.-Sep. 2014.
DOI: 10.5327/Z2317-4889201400030006 - M. M. Pimentel, R. A. Fuck, N. F. Botelho, “Granites and the geodynamic history of the neoproterozoic Brası́lia belt, Central Brazil: a review,” Lithos, vol. 46, no. 3, pp. 463 – 483, Mar. 1999.
DOI: 10.1016/S0024-4937(98)00078-4 - P. Comin-Chiaramonti et al., “Potassic and Sodic Igneous Rocks from Eastern Paraguay: their Origin from the Lithospheric Mantle and Genetic Relationships with the Associated Paraná flood tholeiites,” J. Petrol., vol 38, no. 4, pp. 495 – 528, Apr. 1997.
DOI: 10.1093/petroj/38.4.495 - W. F. Hillebrand, G. E. F. Lundell, H. A. Brigt, J. I. Hoffman, Applied Inorganic Analysis, 2nd ed., New York (NY), USA: J. Wiley and Sons, 1962.
- R. B. Firestone, V. S. Shirley, Table of Isotopes, vol. II, 8th ed., New York (NY), USA: J. Wiley and Sons, 1996.
- J. Hoste, Isotopic Neutron Sources for Neutron Activation Analysis, IAEA-TECDOC-465, Vienna, Austria, 1988, p. 115.
- T. Uckan, J. March-Leuba, D. Powell, J. D. White, J. Glaser, 241-Am-Be Sealed Neutron Source Assessment Studies for the Fissile Mass Flow Monitor, ORNL/TM Publications, Oak Ridge (TN), USA, 2003.
- P. Van Espen, H. Nullens, F. Adams, “A Computer Analysis of X-Ray Fluorescence Spectra,” Nucl. Instrum. Meth., vol. 142, no. 1 – 2, pp. 243 – 250, Apr. 1977.
DOI: 10.1016/0029-554X(77)90834-5 - P. Kump, QAES Instruction Manual, Josef Stefan Institute, Ljubljana, Slovenia, 1988.
- A. Dávalos, P. Kump, J. F. Facetti Masulli, “Biogeochemical aspects of selected elemental content in Ilex paraguayensis S.H from Eastern Paraguay,” IJOEAR, vol. 7, no. 7, pp. 10 – 20, Jul. 2021.
DOI: 10.5281/zenodo.5149731 - P. Comin Chiaramonti et al., “Tertiary nephelinitic magmatism in Eastern Paraguay: Petrology, Sr-Nd isotopes and genetic relationships with associated spinel-peridotite xenoliths,” Eur. J. Mineral., vol. 3, no. 3, pp. 507 – 525, Jun. 1991.
DOI: 10.1127/ejm/3/3/0507 - B. R. Frost et al., “A Geochemical Classification for Granitic Rocks,” J. Petrol., vol. 42, no. 11, pp. 2033 – 2048, Nov. 2001.
DOI: 10.1093/petrology/42.11.2033 - B. E. John, J. Wooden, “Petrology and geochemistry of the metaluminous to peraluminous Chemehuevi Mountains Plutonic suite, southeastern California,” in The Nature and Origin of Cordilleran Magmatism, vol. 174, J. L. Anderson, Eds., Boulder (CO), USA: GSA Memoirs, 1990, ch. 5, pp. 71 – 98.
DOI: 10.1130/MEM174-p71 - J. B. Whalen, K. L. Currie, B. W. Chappell, “A-type granites: geochemical characteristics, discrimination and petrogenesis,” Contrib. Mineral. Petrol., v. 95, p. 407-419, 1987.
- R. De Argollo, J.-G. Schilling, “Ge-Si and Ga-AI fractionation in Hawaiian volcanic rocks,” Geochim. Cosmochim. Acta, vol. 42, no. 6, pp. 623 – 630, Jun. 1978.
DOI: 10.1016/0016-7037(78)90007-8 - S.-S. Sun, W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins, A. D. Saunders, M. J. Norry, Eds., London, UK: Special Publication, Geological Society of London,1989, pp. 313 – 345.
DOI: 10.1144/GSL.SP.1989.042.01.19 - L. M. de Araújo, A. M. Godoy, “Magmatismo do Batólito RAPAKIVI Rio Branco, SW do Cráton Amazônico (MT)”, Geociências, v. 30, n. 2, p. 173 – 195, Apr. 2011.
(L. M. de Araújo, A. M. Godoy, “Magmatism of the RAPAKIVI Rio Branco Batholith, SW of the Amazon Craton (MT)”, Geosci., vol. 30, no. 2, pp. 173 – 195, Apr. 2011.)
Radon and Thoron
PARALLEL HALF-YEAR-LONG RADON CONCENTRATION MEASUREMENT AT TCAS IN ZRENJANIN, SERBIA
Iris Borjanović Trusina, Milica Rajačić
Pages: 6-9
Abstract | References | Full Text (PDF)
-
Sources and effects of ionizing radiation, vol. 1, UNSCEAR
Report (A/63/46), UNSCEAR, New York (NY), USA, 2010.
Retrieved from: https://www.unscear.org/docs/reports/2008/09-86753_Report_2008_Annex_B.pdf
Retrieved on: Apr. 11, 2024 -
D. Nikezić, “Radon, glavni radioaktivni kontaminant čovekove okoline,”
uJoniyujuća zrečenja iz prirode,
M. Kovačević, Ur., Beograd, Jugoslavija: Jugoslovensko društvo za zaštitu od
zračenja, 1995, poglavlje 11,
str. 145 – 190.
(D. Nikezić, “Radon, main radioactive contaminant of environment” inIonizing radiation from nature, M. Kovačević, Eds., Belgrade, Yugoslavia: Yugoslav association for radiation protection, 1995, ch. 11, pp. 145 – 190.)
Retrieved from: https://dzz.org.rs/wp-content/uploads/2013/06/1995-JDZZ-Beograd-Jonizujuca-zracenja-iz-prirode.pdf
Retrieved on: Apr. 11, 2024 -
Health Effects of Exposure to Radon, Rep. X820576-01-0, Committee
on Health Risks of Exposure to Radon (BEIR VI), Washinton D.C., USA, 1999.
Retrieved from: http://www.nap.edu/catalog/5499.html
Retrieved on: Apr. 11, 2024
DOI: 10.17225/5499 -
WHO Handbook on indoor radon: a public health perspective, WHO,
Geneva, Switzerland, 2009.
Retrieved from: https://iris.who.int/bitstream/handle/10665/44149/9789241547673_eng.pdf?sequence=1
Retrieved on: Apr. 11, 2024 -
I. Borjanović, L. Manojlović, M. Kovačević, “Seasonal measurements of radon
concentration level in the period of spring at Technical College of Applied
Sciences in Zrenjanin,” inBook of Abstr. 10th Jubilee Int. Conf.
Radiation in Various Fields of Research (RAD 2022) - summer edition,
Herceg-Novi, Montenegro, 2022,
p. 124.
Retrieved from: https://www.rad-conference.org/RAD_2022_Summer_Book_of_Abstracts.pdf
Retrieved on: Apr. 12, 2024 -
I. Borjanović, A. Rajić, Ž. Eremić, “Seasonal Measurements of Indoor Radon
Concentration Level in the Period of Summer at Technical College of Applied
Sciences in Zrenjanin,” in
Proc. 11th Int. Conf. Balcan Physical Union (BPU11 PoS),
Belgrade, Serbia, 2022, PoS(BPU11)025.
Retrieved from: https://pos.sissa.it/427/
Retrieved on: Apr. 12, 2024 -
I. Borjanović, M. Rajačić, I. Vukanac, “Winter Measurements of Radon
Concentration at TCAS,” in
Proc. 11 th Int. Conf. Physical Aspects of Environment
(ICPAE 2023), Zrenjanin, Serbia, 2023, pp. 194 – 199.
Retrieved from: http://www.nirs.qst.go.jp/rd/reports/proceedings/pdf/2nd_International_Symposium_2016.pdf
Retrieved on: Apr. 12, 2024 -
I. Borjanović, M. Rajačić, I. Vukanac, “Jesenja merenja nivoa radona na
Visokoj tehničkoj školi strukovnih studija u Zrenjaninu,”
DIT naučno-stručni časopis,
br. 39, str. 53 – 57, Mar. 2023.
(I. Bojanović, M. Rajačić, I. Vukanac, “Autumn Measurements of Radon Level at Technical College of Applied Sciences in Zrenjanin,” DIT Scientific and Professional Journal, no. 39, pp. 53 – 57, Mar. 2023)
Retrieved from: http://www.diz.org.rs/images/casopis/dit39.pdf
Retrieved on: Apr. 12, 2024 -
How we make The Correntium Home Radon Detectors, Airthings, Oslo,
Norway, 2022.
Retrieved from: https://www.airthings.com/resources/radon-detector
Retrieved on: Apr. 22, 2024 -
Correntium Home Radon Detector User Manual, Airthings, Oslo,
Norway, 2022.
Retrieved from: https://cdn2.hubspot.net/hubfs/4406702/Website/Manuals/Home/1-043-Corentium-Home-manual-60x77.pdf
Retrieved on: Apr. 22, 2024 -
View Plus Radon Detector User Manual, Airthings, Oslo, Norway,
2022.
Retrieved from: https://www.airthings.com/view-series-manul
Retrieved on: Apr. 22, 2024 -
FIDO Track, Niton, Milano, Italy, 2022.
Retrieved from: https://www.niton.it/fidotrack/
Retrieved on: Apr. 22, 2024 -
Sources and effects of ionizing radiation,vol. 1, UNSCEAR Report
(A/55/46), UNSCEAR, New York (NY), USA, 2000.
Retrieved from: https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf
Retrieved on: Apr. 22, 2024 -
N. Todorović, S. Forkapić, J. Papuga, I. Bikit, J. Slivka, “Analiza uticaja
faktora na koncentraciju aktivnosti radona u zatorenim prostorijama,”
Prirodno-matematički fakultet - Departman za fiziku, Novi Sad, Srbija, 2009.
(N. Todorović, S. Forkapić, J. Papuga, I. Bikit, J. Slivka, “Analysis of factors which influence radon concentration in closed spaces,” Faculty of Sciences – Physics Department, Novi Sad, Serbia, 2009.)
Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/41/131/41131350.pdf
Retrieved on: Apr. 22, 2024 -
S. Forkapić et al., “Methods of Radon Measurement,”
Facta universitatis - series Phys. Chem. Technol.,
vol. 4, no. 1, pp. 1 – 10, Jan. 2006.
DOI: 10.2298/FUPCT0601001F - G. K. Kanji, 100 Statistical Tests, 3rd ed., London, UK: Sage Publications, 2006.
-
M. Živanović, “Optimizacija merenja koncentracije radona u zatvorenom
prostoru metodom ugljenih filtera,” doktorska disertacija, Univerzitet u
Beogradu, Fakultet za fizičku hemiju, Beograd, Srbija, 2016.
(M. Živanović, “Optimisation of Indoor Radon Concentration Measurements by Means of Charcoal Canisters,” Ph.D. dissertation, Belgrade University, Faculty of Physical Chemistry, Belgrade, Serbia, 2016.)
Retrieved from: http://lotos.ffh.bg.ac.rs/Aktuelno/Dokumenta/Doktorska%20teza%20-%20Milos%20Zivanovic.pdf
Retrieved on: Apr. 22, 2024 -
Vlada Republike Srbije. (Nov. 18, 2011., Jun. 29, 2018).
Službeni Glasnik RS 86/11 i Službeni Glasnik RS 50/18.
Pravilnik o granicama izlaganja jonizujućim zračenjima i merenjima radi
procene nivoa izlaganja jonizujućim zračenjima.
(Government of the Republic of Serbia. (Nov. 18, 2011, Jun. 29, 2018). Official Gazette RS 86/11 and Official Gazette RS 50/18. Rulebook on Limits of Exposure to Ionizing Radiation and Measurements for Assessment of the Exposure Level.)
Retrieved from: https://www.srbatom.gov.rs/srbatomm/wp-content/uploads/2019/11/Pravilnik-o-granicama-izlaganja_50_2018.pdf
Retrieved on: Apr. 23, 2024 -
The Council of European Union. (Dec. 5, 2013).
Council Directive 2013/59/EURATOM laying down basic safety standards
for protection against the dangers arising from exposure to ionising
radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom,
96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
Retrieved from: https://eur-lex.europa.eu/eli/dir/2013/59/oj
Retrieved on: Apr. 23, 2024
Radiochemistry
NEW DEVELOPMENT OF RADIUM-226 ANALYSIS IN WATER SAMPLES USING MnO2 RESIN AND ALPHA SPECTROMETRY
Aishah Alboloushi
Pages: 10-12
Abstract | References | Full Text (PDF)
-
Radium, ScienceDirect, Amsterdam, Netherlands.
Retrieved from: https://www.sciencedirect.com/topics/chemistry/radium
Retrieved on: Jun. 19, 2023 -
Analytical methodology for the determination of radium isotopes in
environmental samples, IAEA/AQ/19, IAEA, Vienna, Austria, 2010.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/IAEA-AQ-19_web.pdf
Retrieved on: Jun. 19, 2023 -
A procedure for the rapid determination of 226Ra and 228Ra in drinking
water by liquid scintillation counting, IAEA/AQ/39, IAEA, Vienna, Austria, 2014.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/IAEA-AQ-39_web.pdf
Retrieved on: Jun. 19, 2023 -
J. C. Lozano, F. Fernandez, J. M. G. Gomez, “Determination of radium
isotopes by BaSO 4 coprecipitation for the preparation of
alpha-spectrometric sources,” J. Radioanal. Nucl. Chem., vol. 223,
no. 1 – 2, pp. 133 – 137, Sep. 1997.
DOI: 10.1007/BF02223373 -
Radium-226/228 in water, Analytical Procedure, Eichrom, Lisle
(IL), USA, 2014.
Retrieved from: https://www.eichrom.com/wp-content/uploads/2018/02/raw04-11_ra-water.pdf
Retrieved on: May 1, 2023 -
D. S. Moon, W. C. Burnett, S. Nour, P. Horwitz, A. Bond, “Preconcentration
of radium isotopes from natural waters using MnO2 resin,”
Appl. Radiat. Isot., vol. 59, no. 4, pp. 255 – 262, Oct. 2003.
DOI: 10.1016/s0969-8043(03)00193-3
PMid: 14522233
Biomedicine
GENDER PREDICTION BASED ON QUANTITATIVE ANALYSIS OF THE MASTOID PROCESS
Aida Sarač – Hadžihalilović, Edin Hojkurić
Pages: 13-17
Abstract | References | Full Text (PDF)
-
A. Sarač – Hadžihalilović et al., “Model “P” in gender prediction based on
mastoid process,” Med. Glas. (Zenica), vol. 17, no. 2, pp. 279 –
284, Aug. 2020.
DOI: 10.17392/1145-20
PMid: 32483958 -
P. V. Sumati, V. V. G. Patnaik, A. Phatak, “Determination of Sex from
Mastoid Process by Discriminant Function Analysis,”
J. Anat. Soc. India, vol. 59, no. 2, pp. 222 – 228, Dec. 2010.
DOI: 10.1016/S0003-2778(10)80030-9 -
D. R. Johnson, P. O`Higgins, W. J. Moore, T. J. McAndrew, “Determination of race and sex of the human skull by
discriminant function analysis of linear and angular dimensions — an
appendix,” Forensic Sci. Int., vol. 45, no. 1 – 2, pp. 41 – 53,
Apr. – May. 1989.
DOI: 10.1016/0379-0738(89)90234-x
PMid: 2636546 -
I. C. Suazo Galdames, D. A. Zavando Matamala, R. L. Smith, “Sex
Determination Using Mastoid Process Measurements in Brazilian Skulls,”
Int. J. Morphol., vol. 26, no. 4, pp. 941 – 944, Dec. 2008.
DOI: 10.4067/S0717-95022008000400025 -
A. Ibrahim, A. Alias, M. S. Shafie, S. Das, F. Mohd Nor, “Osteometric
estimation of sex from mastoid triangle in Malaysian population,”
Asian J. Pharm. Clin. Res., vol. 11, no. 7, pp. 303 – 307, Jul. 2018.
DOI: 10.22159/ajpcr.2018.v11i7.25986 -
A. Manivanan, K. Saraswathi Gopal, S. Archana, “Osteometric Assessment of
the Mastoids for Gender Determination: A Retrospective CBCT Study,”
Am. J. Otolaryngol. Head and Neck Surg., vol. 2, no. 3, 1044, Mar. 2019.
Retrieved from: https://www.remedypublications.com/open-access/osteometric-assessment-of-the-mastoids-for-gender-determination-a-retrospective-cbct-study-407.pdf
Retrieved on: Dec. 15, 2023 -
S. B. Sukre, P. R. Chavan, S. N. Shewale, “Morphometric analysis of mastoid
process for sex determination among Marathwada population,” MIJOANT, vol. 1, no. 2, pp. 27 – 32, Feb. 2017.
Retrieved from: https://www.medpulse.in/Anatomy/Article/Volume1Issue2/Anatomy_1_2_2.pdf
Retrieved on: Dec. 15, 2023 -
Z. Ajanović, A. Sarač – Hadžihalilović, “Multivariate analysis of
Cranioscopic and Craniometric parameters in gender determination of
skulls,” HealthMED, vol. 12, no. 3, pp. 75 – 84, Feb. 2018.
Retrieved from: https://www.researchgate.net/publication/330797365_Multyvariate_analysis_of_Cranioscopic_and_Craniometric_parameters_in_gender_determination_of_skulls
Retrieved on: Jan. 20, 2024 -
S. K. Mittal, S. Jaleswararao, J. Goyal, L. Mittal,
B. Goyal, “Sex determination using mastoid process of dry skull”,
IJBAMR, vol. 7, no. 3, pp. 404 – 408, Jun. 2018.
Retrieved from: https://www.ijbamr.com/assets/images/issues/pdf/June%202018%20404%20-%20408.pdf.pdf
Retrieved on: Jan. 20, 2024 -
H. Jung, E. J. Woo, “Evaluation of Mastoid Process as Sex Indicator in
Modern White Americans using Geometric Morphometrics,”
J. Forensic. Sci., vol. 61, no. 4, pp. 1029 – 1033, Jul. 2016.
DOI: 10.1111/1556-4029.13079
PMid: 27364284 -
A. Kemkes, T. Göbel, “Metric Assessment of the “Mastoid Triangle” for Sex
Determination: Validation Study,” J. Forensic. Sci., vol. 51, no.
5, pp. 985 – 989, Sep. 2006.
DOI: 10.1111/j.1556-4029.2006.00232.x
PMid: 17018073 -
T. Nagaoka et al., “Sex determination using mastoid process measurements:
standards for Japanese human skeletons of the medieval and early modern
periods,” Anthropol. Sci., vol. 116, no. 2,
pp. 105 – 113, Aug. 2008.
DOI: 10.1537/ase.070605
Radiation Measurements
Thermoluminescence of beta-irradiated YBO3 :Nd3+ phosphor synthesized by combustion method: A preliminary study
Sibel Akça Özalp, Z. Gizem Portakal Uçar, Y. Ziya Halefoğlu, Mustafa Topaksu
Pages: 18-22
Abstract | References | Full Text (PDF)
-
C. Furetta, M. Prokic, R. Salamon, V. Prokic, G. Kitis, “Dosimetric
characteristics of tissue equivalent thermoluminescent solid TL detectors
based on lithium borate,” Nucl. Instrum. Methods Phys. Res. A,
vol. 456, no. 3, pp. 411 – 417, Jan. 2001.
DOI: 10.1016/S0168-9002(00)00585-4 -
L.H. Jiang et al., “Thermoluminescence studies of LiSrBO3:RE3+(RE=Dy,
Tb, Tm and Ce),” Appl. Radiat. Isot., vol. 68, no. 1, pp. 196 –
200, Jan. 2010.
DOI: 10.1016/j.apradiso.2009.10.001
PMid: 19884017 -
B. Ramesh et al., “Determination of strain, site occupancy,
photoluminescent, and thermoluminescent-trapping parameters of Sm3+-doped
NaSrB5O 9 microstructures,” Ceram. Int., vol.
42, no. 1, pp. 1234 – 1245, Jan. 2016.
DOI: 10.1016/j.ceramint.2015.09.055 -
C. Wang, B. Yan, “Sol–gel synthesis and photoluminescence of RE3BO6:
Eu3+/Tb3+(RE = Y, Gd) microcrystalline phosphors from
hybrid precursors,”
J. Non-Cryst. Solids, vol. 354, no. 10 – 11, pp. 962 – 969, Feb.
2008.
DOI: 10.1016/j.jnoncrysol.2007.08.029 -
X. Zhang et al., “Tunable photoluminescence and energy transfer of YBO3:Tb3+,
Eu 3+ for white light emitting diodes,”
J. Mater. Chem. C, vol. 1, no. 43, pp. 7202 – 7207, Nov. 2013.
DOI: 10.1039/C3TC31200C -
R.G. Nair et al., “YBO 3 versus Y3BO 6 host
on Tb 3+ luminescence,” J. Lumin., vol. 195, pp. 271 –
277, Mar. 2018.
DOI: 10.1016/j.jlumin.2017.11.038 -
L. J. Q. Maia, A. L. Moura, V. Jerez, C. B. de Araújo, “Structural
properties and near infrared photoluminescence of Nd 3+ doped
YBO 3 nanocrystals,” Opt. Mater., vol. 95, 109227, Sep.
2019.
DOI: 10.1016/j.optmat.2019.109227 -
R. Balakrishnaiah et al., “Enhanced luminescence properties of YBO3:Eu
3+ phosphors by Li-doping,” Mater. Res. Bull., vol.
46, no. 4, pp. 621 – 626, Apr. 2011.
DOI: 10.1016/j.materresbull.2010.09.012 -
V. Dubey, J. Kaur, S. Agrawal, N. S. Suryanarayana, K. V. R. Murthy,
“Effect of Eu 3+ concentration on photoluminescence and
thermoluminescence behavior of YBO3:Eu 3+ phosphor,”
Superlattice Microst., vol. 67, pp. 156 – 171, Mar. 2014.
DOI: 10.1016/j.spmi.2013.12.026 -
V. Dubey, N. V. Dubey, S. J. Dhoble, H. C. Swart, “TL glow curve analysis
and kinetics of UV, β and γ irradiated YBO3: Eu 3+
and Y2O3: Eu 3+ phosphors,”
J. Mater. Sci: Mater. Electron., vol. 28, pp. 13565 – 13578, May 2017.
DOI: 10.1007/s10854-017-7196-8 -
S. Akça, “Thermoluminescence behavior of YBO 3 synthesized by
combustion reaction versus beta radiation,” in Book of Abstr. 3rdInt.
Conf. Materials Science, Mechanical and Automotive Engineerings and
Technology (IMSMATEC`20), İstanbul, Turkey, 2020, pp. 377 – 377.
Retrieved from: http://www.imsmatec.org/
Retrieved on: Jun. 20, 2024 -
S. Akça, “Kinetic Parameters of Thermoluminescence Dosimetric Peak of YBO
3 Phosphor,”
Süleyman Demirel University Faculty of Arts and Sciences J. Sci., vol. 15, no. 1, pp. 100 – 109, May 2020.
DOI: 10.29233/sdufeffd.705417 -
S. Akça, Z. G. Portakal Uçar, Y. Z. Halefoğlu, M. Topaksu, “Variation of
thermoluminescence behavior of doped (Nd 3+ and Eu3+)
yttrium borate phosphor produced by a combustion process,” in
Proc. 1st
Int. Conf. Sensor, Detector, Materials Science and Technologies
(SensDeTech), Bolu, Turkey, 2023, pp. 12 – 16.
Retrieved from: https://senstech.ibu.edu.tr/Files/ckFiles/senstech-ibu-edu-tr/AbstractBook/SensDeTech-Proceedings.pdf
Retrieved on: Jun. 20, 2024 -
Y. Z. Halefoglu, “Luminescent properties and characterisation of LaB3O6:Eu
3+ phosphor synthesized using the combustion method,”
Appl. Radiat. Isot.,
vol. 148, pp. 40 – 44, Jun. 2019.
DOI: 10.1016/j.apradiso.2019.03.011
PMid: 30921615 -
S. Akca et al., “Thermoluminescence analysis of beta irradiated ZnB2O4:
Pr 3+ phosphors synthesized by a wet-chemical method,”
Radiat. Phys. Chem.,
vol. 160, pp. 105 – 111, Jul. 2019.
DOI: 10.1016/j.radphyschem.2019.03.033 -
V. Pagonis, G. Kitis, C. Furetta, “TL Dose Response Models”, in
Numerical and Practical Exercises in
Thermoluminescence, 1st ed., New York (NY), USA: Springer, 2006,
ch. 4, p. 121.
DOI: 10.1007/0-387-30090-2 -
S. Del Sol Fernández et al., “Thermoluminescent characteristics of LiF:Mg,
Cu, P and CaSO4:Dy for low dose measurement,”
Appl. Radiat. Isot., vol. 111,
pp. 50 – 55, May 2016.
DOI: 10.1016/j.apradiso.2016.02.011
PMid: 26922395 -
Z. G. Portakal-Uçar et al., “A thermoluminescence study of Tb 3+
doped LaB3O6: dosimetric characteristics and kinetic
parameters,” J. Lumin., vol. 253, 119493,
Jan. 2023.
DOI: 10.1016/j.jlumin.2022.119493 -
M. Oglakci et al., “Thermoluminescence behavior of Ce 3+ doped
lanthanum tri-borate phosphor for dosimetry applications,”
Ceram. Int., vol. 49, no. 22, pp. 36092 – 36102, Nov. 2023.
DOI: 10.1016/j.ceramint.2023.08.288 -
G. Kitis, F. Hasan, S. Charalambous, “Regenerated thermoluminescence: some
new data,” Nucl. Tracks Radiat. Meas., vol. 10, no. 4 – 6, pp. 565
– 570, 1985.
DOI: 10.1016/0735-245X(85)90058-4
Nuclear Forensics
APPLICATION OF DISPERSION MODELS OF ESTE FOR MODELLING OF THE RADIOLOGICAL IMPACT OF RELEASED Cs-137 IN A SPECIFIC URBAN ENVIRONMENT
Jozef Sabol, Ľudovít Lipták, Jan Bajura, Eva Fojcíková, Peter Čarný
Pages: 23-28
Abstract | References | Full Text (PDF)
-
L. Lipták, E. Fojcíková, M. Krpelanová, V. Fabová,
P. Čarný, “The ESTE decision support system for nuclear and radiological
emergencies: Atmospheric dispersion models”, Atmosphere, vol. 12,
no. 2, 204, Feb. 2021.
DOI: 10.3390/atmos12020204 -
E. Fojcíková, Ľ. Lipták, M. Krpelanová, M. Chylý,
P. Čarný, “ESTE—Decision support system for nuclear and radiological
accidents,” Radiat. Prot. Dosimetry, 2019, vol. 186, no. 2 – 3, pp.
321 – 325, Dec. 2019.
DOI: 10.1093/rpd/ncz226
PMid: 31711210 -
Radionuclide Basics: Cesium-137, United States Environmental
Protection Agency (EPA), Washington D.C., USA, 2024.
Retrieved from: https://www.epa.gov/radiation/radionuclide-basics-cesium-137
Retrieved on: Jan. 22, 2024 -
A. G. Marzo, “Atmospheric transport and deposition of radionuclides
released after the Fukushima Dai-chi accident and resulting effective
dose,” Atmos. Environ.,vol. 94, pp. 709 – 722, Sep. 2014.
DOI: 10.1016/j.atmosenv.2014.06.009 -
L. Lipták et al., “Dispersion and radiation modelling in ESTE system using
urban LPM,” Atmoshere, vol. 14,
no. 7, 1077, Jul. 2023.
DOI: 10.3390/atmos14071077 - CIMERA – Comprehensive Hazard Identification and Monitoring System for Urban Areas, EU Horizon Project no. 101121342, European Union, Brussels, Belgium, 2022.
-
P. Čarný et al.,
Simulácia událostí pomocou DSS ESTE CBRN v Prahe a Varšave, May 2024.
(P. Čarný et al., Simulation of events using DSS ESTE in Prague and Warsaw, May 2024.) -
Přehled dosavadního vývoje jaderné havárie v Japonsku,
Státní úřad pro jadernou bezpečnost, Praha, ČR, 2011.
(An overview of the nuclear accident in Japan, State Office for Nuclear Safety, Prague, Czech Republic, 2011.)
Retrieved from: https://sujb.gov.cz/aktualne/detail/prehled-dosavadniho-vyvoje-jaderne-havarie-v-japonsku/
Retrieved on: Jan. 22, 2024 - J. Sabol, “Difficulties in using the present system of quantifying radiation exposure. Problems of the unified system of quantities in radiation protection for the risk assessment due to external and internal exposure,” in Proc. 6th European Congress on Radiation Protection (IPRA 2022), Budapest, Hungary, 2022.
Medical Physics
THE APPLICATION OF AI-BASED TECHNIQUES FOR EARLY DETECTION OF BREAST CANCER
Dafina Xhako, Elda Spahiu, Suela Hoxhaj, Niko Hyka
Pages: 29-35
Abstract | References | Full Text (PDF)
-
H. Sung et al., “Global cancer statistics 2020: GLOBOCAN estimates of
incidence and mortality worldwide for 36 cancers in 185 countries,”
CA Cancer J. Clin., vol. 71, no. 3, pp. 209 – 249, May 2021.
DOI: 10.3322/caac.21660
PMid: 33538338 -
A. Y. Ng et al., “Prospective implementation of
AI-assisted screen reading to improve early detection of breast cancer,”
Nat. Med., vol. 29, no. 12,
pp. 3044 – 3049, Dec. 2023.
DOI: 10.1038/s41591-023-02625-9
PMid: 37973948
PMCid: PMC10719086 -
J. S. Ahn et al., “Artificial Intelligence in Breast Cancer Diagnosis and
Personalized Medicine,”
J. Breast Cancer, vol. 26, no. 5, pp. 405 – 435,
Oct. 2023.
DOI: 10.4048/jbc.2023.26.e45
PMid: 37926067
PMCid: PMC10625863 -
J. Tang, R. M. Rangayyan, J. Xu, I. El Naqa, Y. Yang, “Computer-aided
detection and diagnosis of breast cancer with mammography: recent
advances,”
IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 2,
pp. 236 – 251, Mar. 2009.
DOI: 10.1109/TITB.2008.2009441
PMid: 19171527 -
I. Kim, K. Kang, Y. Song, T.-J. Kim, “Application of artificial
intelligence in pathology: trends and challenges,” Diagnostics,
vol. 12, no. 11, 2794,
Nov. 2022.
DOI: 10.3390/diagnostics12112794
PMid: 36428854
PMCid: PMC9688959 -
N. Houssami, G. Kirkpatrick-Jones, N. Noguchi,
C. I. Lee, “Artificial Intelligence (AI) for the early detection of breast
cancer: a scoping review to assess AI’s potential in breast screening
practice,” Expert Rev. Med. Devices, vol. 16, no. 5, pp. 351 – 362,
May 2019.
DOI: 10.1080/17434440.2019.1610387
PMid: 30999781 -
L. Shen et al., “Deep Learning to improve breast cancer early detection on
screening mammography,” Sci. Rep., vol. 9, no. 1, 12495, Aug.
2019.
DOI: 10.1038/s41598-019-48995-4
PMid: 31467326
PMCid: PMC6715802 -
C. Leibig et al., “Combining the strengths of radiologists and AI for
breast cancer screening:
A retrospective analysis,” Lancet Digit. Health, vol. 4, no. 7, pp.
e507 – e519, Jul. 2022.
DOI: 10.1016/S2589-7500(22)00070-X
PMid: 35750400
PMCid: PMC9839981 -
Y. Qiu et al., “A new approach to develop computer-aided diagnosis scheme of
breast mass classification using deep learning technology,” J. Xray
Sci. Technol., vol. 25, no. 5, pp. 751 – 763, Jan. 2017.
DOI: 10.3233/XST-16226
PMid: 28436410
PMCid: PMC5647205 -
D. Ribli, A. Horváth, Z. Unger, P. Pollner, I. Csabai, “Detecting and
classifying lesions in mammograms with deep learning,” Sci. Rep.,
vol. 8, no. 1, 4165,
Mar. 2018.
DOI: 10.1038/s41598-018-22437-z
PMid: 29545529
PMCid: PMC5854668 -
N. Houssami, C. I. Lee, D. S. M. Buist, D. Tao, “Artificial intelligence
for breast cancer screening: opportunity or hype?” Breast, vol.
36, pp. 31 – 33, Dec. 2017.
DOI: 10.1016/j.breast.2017.09.003
PMid: 28938172 -
D. Zheng, X. He, J. Jing, “Overview of artificial intelligence in breast
cancer medical imaging,” J. Clin. Med., vol. 12, no. 2, 419, Jan.
2023.
DOI: 10.3390/jcm12020419
PMid: 36675348
PMCid: PMC9864608 - M. Ghassemi et al., “A review of challenges and opportunities in machine learning for health,” deposited at arXiv, Dec. 5, 2019. arXiv:1806.00388
-
R. Agarwal, O. Diaz, X. Lladó, M. H. Yap, R. Martí, “Automatic mass
detection in mammograms using deep convolutional neural networks,”
J. Med. Imaging, vol. 6, no. 3, 031409, Jul. 2019.
DOI: 10.1117/1.JMI.6.3.031409
PMid: 35834317
PMCid: PMC6381602 -
C. R. Taylor, N. Monga, C. Johnson, J. R. Hawley, M. Patel, “Artificial
Intelligence Applications in Breast Imaging: Current Status and Future
Directions,”Diagnostics, vol. 13, no. 12, 2041,
Jun. 2023.
DOI: 10.3390/diagnostics13122041
PMid: 37370936
PMCid: PMC10296832 -
J. W. Li et al., “Artificial intelligence in breast imaging: Potentials and
challenges,” Phys. Med. Biol., vol. 68, no. 23, 23TR01, Nov. 2023.
DOI: 10.1088/1361-6560/acfade
PMid: 37722385 -
A. Yala, C. Lehman, T. Schuster, T. Portnoi, R. Barzilay, “A deep learning
mammography-based model for improved breast cancer risk prediction,”
Radiology, vol. 292, no. 1, pp. 60 – 66, Jul. 2019.
DOI: 10.1148/radiol.2019182716
PMid: 31063083 -
D. Xhako, S. Hoxhaj, N. Hyka, E. Spahiu, P. Malkaj, “Artificial
Intelligence in Medical Image Processing,”
Int. J. Intell. Syst. Appl. Eng., vol. 12, no. 8s,
pp. 549 – 552, Dec. 2023.
Retrieved from: https://ijisae.org/index.php/IJISAE/article/view/4186
Retrieved on: Feb. 10, 2024 -
D. Xhako, N. Hyka, “Artificial neural networks application in medical
images,” Int. J. Health Sci.,
vol. 6, no. S2, pp. 10632 – 10639, May 2022.
DOI: 10.53730/ijhs.v6nS2.7829 -
N. Dhungel, G. Carneiro, A. P. Bradley, “A deep learning approach for the
analysis of masses in mammograms with minimal user intervention,” Med.
Image Anal., vol. 37, pp. 114 – 128, Apr. 2017.
DOI: 10.1016/j.media.2017.01.009
PMid: 28171807 -
D. Xhako, E. Spahiu, N. Hyka, S. Hoxhaj, P. Malkaj, “Integration of DCNN
Model for Brain Tumor Detection with PPIR Simulator,”
Int. J. Intell. Syst. Appl. Eng., vol. 12, no. 8s, pp. 534 – 538, Dec. 2023.
Retrieved from: https://ijisae.org/index.php/IJISAE/article/view/4184
Retrieved on: Feb. 10, 2024 -
F. Valdora, N. Houssami, F. Rossi, M. Calabrese,
A. S. Tagliafico, “Rapid review: Radiomics and breast cancer,”
Breast Cancer Res. Treat., vol. 169, no. 2,
pp. 217 – 229, Jun. 2018.
DOI: 10.1007/s10549-018-4675-4
PMid: 29396665 -
W. L. Bi. et al., “Artificial intelligence in cancer imaging: Clinical
challenges and applications,”
CA Cancer J. Clin., vol. 69, no. 2, pp. 127 – 157,
Mar. 2019.
DOI: 10.3322/caac.21552
PMid: 30720861
PMCid: PMC6403009 -
S. B Shamir, A. L. Sasson, L. R. Margolies,
D. S. Mendelson, “New Frontiers in Breast Cancer Imaging: The Rise of AI,”
Bioengineering, vol. 11,
no. 5, 451, May 2024.
DOI: 10.3390/bioengineering11050451
PMid: 38790318
PMCid: PMC11117903
Medical Physics
CANCER RISK EVALUATION FOR HIGH-DOSE CHEST CT EXAMINATION DURING THE COVID-19 PANDEMIC
Dafina Xhako, Suela Hoxhaj, Elda Spahiu, Niko Hyka
Pages: 36-40
Abstract | References | Full Text (PDF)
-
C. Huang et al., “Clinical features of patients infected with 2019 novel
coronavirus in Wuhan,” Lancet, vol. 395, no. 10223, pp. 497 – 506,
Feb. 2020.
DOI: 10.1016/s0140-6736(20)30183-5
PMid: 31986264
PMCid: PMC7159299 -
Y. Yang et al., “Evaluating the accuracy of different respiratory specimens
in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV
infections,” deposited at medRxiv, Feb. 17, 2020.
DOI: 10.1101/2020.02.11.20021493 -
T. Ai et al., “Correlation of Chest CT and RT-PCR Testing in Coronavirus
Disease (COVID-19) in China: “A Report of 1014 Cases,” Radiology,
vol. 296, no. 2, pp. E32 – E40, Aug. 2020.
DOI: 10.1148/radiol.2020200642
PMid: 32101510
PMCid: PMC7233399 -
D. Caruso et al., “Chest CT Features of COVID-19 in Rome. Italy,”
Radiology,vol. 296, no. 2, pp. E79 – E85, Aug. 2020.
DOI: 10.1148/radiol.2020201237
PMid: 32243238
PMCid: PMC7194020 -
Y. Fang et. al., “Sensitivity of Chest CT for COVID-19: Comparison to
RT-PCR,”Radiology, vol. 296, no. 2, pp. E115 – E117, Aug. 2020.
DOI: 10.1148/radiol.2020200432
PMid: 32073353
PMCid: PMC7233365 -
J. P. Kanne, B. P. Little, J. H. Chung, B. M. Elicker, L. H. Ketai,
“Essentials for Radiologists on COVID-19: An Update- Radiology Scientific
Expert Panel,” Radiology,vol. 296, no. 2, pp. E113 –
E114, Aug. 2020.
DOI: 10.1148/radiol.2020200527
PMid: 32105562
PMCid: PMC7233379 -
M. P. Revel et al., “European Society of Radiology (ESR) and the European
Society of Thoracic Imaging (ESTI). COVID-19 patients and the radiology
department - advice from the European Society of Radiology (ESR) and the
European Society of Thoracic Imaging (ESTI),” Eur. Radiol., vol.
30, no. 9, pp. 4903 – 4909, Sep. 2020.
DOI: 10.1007/s00330-020-06865-y
PMid: 32314058
PMCid: PMC7170031 -
N. Sverzellati et al., “Integrated Radiologic Algorithm for COVID-19
Pandemic,” J. Thorac. Imaging, vol. 35, no 4, pp. 228 – 233, Jul.
2020.
DOI: 10.1097/RTI.0000000000000516
PMid: 32271278
PMCid: PMC7253044 -
Z. Kang, X. Li, S. Zhou, “Recommendation of low-dose CT in the detection
and management of COVID-2019,” Eur. Radiol.,vol. 30, no.
8, pp. 4356 – 4357, Aug. 2020.
DOI: 10.1007/s00330-020-06809-6
PMid: 32193637
PMCid: PMC7088271 -
C Ghetti, O. Ortenzia, F. Palleri, M. Sireus, “Definition of Local
Diagnostic Reference Levels in a Radiology DepartmentUsing a Dose
Tracking Software,” Radiat. Prot. Dosimetry, vol. 175, no. 1, pp.
38 – 45, Jun. 2017.
DOI: 10.1093/rpd/ncw264
PMid: 27614299 -
F. Palorini, D. Origgi, C. Granata, D. Matranga, S. Salerno, “Adult
exposures from MDCT including multiphase studies: first Italian nationwide
survey,” Eur. Radiol., vol. 24, no. 2, pp. 469 – 483, Feb. 2014.
DOI: 10.1007/s00330-013-3031-7
PMid: 24121713 - N. Hyka, D. Xhako, G. Halilaj, F. Nela, “How chest CT radiation dose of patients with confirmed COVID-19 will impact the cancer risk in the future,” Phys. Med., vol. 92, suppl. S1, pp. S230 – S231, Dec. 2021.
-
D. Xhako, N. Hyka, S. Hoxhaj, E. Spahiu, P. Malkaj, “An Overview of
Protocol for Quality Control Tests for Diagnostic Radiology Applied By
Albmedtech,”
J. Jilin University (Engineering and Technol. Edition),
vol. 42, no. 11, pp. 72 – 84, Nov. 2023.
DOI: 10.5281/zenodo.10081328 -
N. Hyka, D. Xhako, K. Sallabanda, P. Malkaj, “Using Deep Convolutional
Neural Network to Create a DCNN Model for Brain Tumor Detection,”
Eur. Chem. Bull., vol. 12, spec. issue 7, pp. 4979 – 4989, Jul. 2023.
DOI: 10.48047/ecb/2023.12.si7.430
Radiation Detectors
YAG:Ce SCINTILLATOR DETECTOR FOR GAMMA RADIATION
Madalina Cruceru, Alin Serban, Liviu Ciolacu
Pages: 41-43
Abstract | References | Full Text (PDF)
-
M. Khoshakhlagh, J. P. Islamian, S. M. Abedi, B. Mahmoudian, “Development
of scintillators in nuclear medicine,” World J. Nucl. Med., vol.
14, no. 3, pp. 156 – 159, Sep.-Dec. 2015.
DOI: 10.4103/1450-1147.163241
PMid: 26420984
PMCid: PMC4564916 -
M. C. Rao, “Applications of Nd:YAG Lasers in material processing:
Fundamental approach,” IJAPBC, vol. 2, no. 3, pp. 518 – 522,
Jul.-Sep. 2013.
Retrieved from: https://www.ijapbc.com/files/17-2316.pdf
Retrieved on: Feb. 22, 2024 -
C. W. E van Eijk, “Development of inorganic scintillators,”
Nucl. Instr. Meth. Phys. Res. A, vol. 392, no. 1 – 3, pp. 285 – 290, Jun. 1997.
DOI: 10.1016/S0168-9002(97)00239-8 -
J. Andriessen, P. Dorenbos, C. W. E. van Eijk, “Calculation of energy
levels of cerium in inorganic scintillator crystals,”
Mater. Res. Soc. Symp. Proc., vol. 348, pp. 355 – 365, Jun. 1994.
DOI: 10.1557/PROC-348-355 -
M. Cruceru, I. Cruceru, O. G. Duliu, “On the spectroscopic properties of
highly doped CsI(Tl) scintillators,” Rom. Rep. Phys., vol. 63, no.
3,
pp. 693 – 699, 2011.
Retrieved from: https://rrp.nipne.ro/2011_63_3/art07Cruceru.pdf
Retrieved on: Feb. 22, 2024 -
M. Moscynski, T. Ludziejewski, D. Wolski, W. Klamra, L. O. Norlin,
“Properties of the YAG:Ce scintillator,”
Nucl. Instr. Meth. Phys. Res. A, vol. 345, no. 3,
pp. 461 – 467, Jul. 1994.
DOI: 10.1016/0168-9002(94)90500-2 -
R. Bougault et al., “The FAZIA project in Europe: R&D phase,”
Eur. Phys. J. A, vol. 50, 47, Feb. 2014.
DOI: 10.1140/epja/i2014-14047-4 -
E. Aker et al., “The Crystal Barrel Spectrometer at LEAR,”
Nucl. Instr. Meth. Phys. Res. A, vol. 321,
no. 1 – 2, 69 – 108, Sep. 1992.
DOI: 10.1016/0168-9002(92)90379-I -
C. Bebek, “A Cesium Iodide Calorimeter with Photodiode Readout for
{CLEO}-{II},” Nucl. Instr. Meth. Phys. Res. A, vol. 265, no. 1 –
2, pp. 258 – 265, Mar. 1988.
DOI: 10.1016/0168-9002(88)91079-0 -
Y. Ohshima et al., “Beam test of the CsI(Tl) calorimeter for the BELLE
detector at the KEK B factory,” Nucl. Instr. Meth. Phys. Res. A,
vol. 380, no. 3, pp. 517 – 523, Oct. 1996.
DOI: 10.1016/0168-9002(96)00706-1 -
A. Stahl, “The BaBaR Electromagnetic calorimeter,”
Nucl. Instr. Meth. Phys. Res. A, vol. 409, no. 1 – 3,
pp. 615 – 617, May 1998.
DOI: 10.1016/S0168-9002(97)01335-1
Radiation Detectors
FABRICATION AND FIRST ELECTRICAL TESTS OF SILICON-BASED PIN PHOTODIODES FOR RADIATION APPLICATIONS
E. Yilmaz, E. Doganci, O. Yilmaz, U. Gurer, A. Kahraman, A. Mammadli, C. Abbasova, N. Suleymanova, S. Nuruyev, R. Akbarov, A. Mutale, E. Budak, A. Aktag, H. Karacali
Pages: 44-47
Abstract | References | Full Text (PDF)
-
G. F. Dalla Betta, S. Ronchin, A. Zoboli, N. Zorzi,
“High-performance PIN photodiodes on TMAH thinned silicon wafers,”
Microelectron. J., vol. 39, no. 12,
pp. 1485 – 1490, Dec. 2008.
DOI: 10.1016/j.mejo.2008.04.009 -
I. B. Chistokhin, K. B. Fritzler, “The Influence of the Conditions of
Getter Formation in High-Resistivity Silicon on the Characteristics of PIN
Photodiodes,” Tech. Phys. Lett., vol. 46, no. 11, pp. 1057 – 1059,
Nov. 2020.
DOI: 10.1134/S1063785020110048 -
P. Buzhan et al., “An Advanced Study of Silicon Photomultiplier,”
ICFA Ins. Bull., vol. 23, Fall Issue,
pp. 28 – 41, 2001.
Retrieved from: https://www.slac.stanford.edu/pubs/icfa/
Retrieved on: Nov. 15, 2024 -
M. Holik et al., “Miniaturized read-out interface ‘Spectrig MAPD’ dedicated
for silicon photomultipliers,” Nucl. Inst. Meth. Phys. Res. A,
vol. 978, 164440, Oct. 2020.
DOI: 10.1016/j.nima.2020.164440 -
Y. J. Feng et al., “Scalability of dark current in silicon PIN photodiode,”
Chin. Phys. B, vol. 27, no. 4, 048501,
Apr. 2018.
DOI: 10.1088/1674-1056/27/4/048501 -
E. Doǧanci et al., “Fabrication and characterization of
Si-PIN photodiodes,” Turk. J. Phys., vol. 43, no. 6,
pp. 556 – 562, 2021.
DOI: 10.3906/fiz-1905-16 -
S. C. Lee, H. B. Jeon, K. H. Kang, H. Park, “Study of silicon PIN diode
responses to low energy gamma-rays,” J. Korean Phys. Soc., vol. 69,
no. 10, pp. 1587 – 1590, Nov. 2016.
DOI: 10.3938/jkps.69.1587 -
K.-S. Park et al., “Estimates of the Photo-Response Characteristics of a
Non-Fully-Depleted Silicon p-i-n Photodiode for the Near Infrared Spectral
Range and the Experimental Results,” J. Korean Phys. Soc., vol. 50,
no. 4, pp. 1156 – 1162, Apr. 2007.
DOI: 10.3938/jkps.50.1156 -
R. Kumar, S. D. Sharma, A. Philomina, A. Topkar, “Dosimetric
characteristics of a PIN diode for radiotherapy application,”
Technol. Cancer Res. Treat., vol. 13, no. 4, pp. 361 – 367, Aug. 2014.
DOI: 10.7785/tcrt.2012.500388
PMid: 24325130 -
M. Kunst, O. Abdallah, F. W. Unsch, “Passivation of silicon by silicon
nitride films,” Sol. Energy Mater. Sol. Cells, vol. 72, no. 1 – 4,
pp. 335 – 341, Apr. 2002.
DOI: 10.1016/S0927-0248(01)00181-7 -
Z. Sadygov et al., “Model of single-electron performance of micro-pixel
avalanche photo-diodes,” deposited at arXiv, Oct. 9, 2014.
arXiv: 1410.2619 -
A. Sadigov et al., “An Iterative Model of Performance of Micropixel
Avalanche Photodiodes,” IJARPS, vol. 3, no. 2, pp. 9 – 19, Feb.
2016.
Retrieved from: www.arcjournals.org
Retrieved on: Nov. 15, 2024 -
C. G. Kang et al., “Correlation between Guard Ring Geometry and Reverse
Leakage Current of Si PIN Diode for Radiation Detector,” in
Proc. Trans. Korean Nuc. Soc. Autumn Meeting, Gyeongju, Korea, 2017.
Retrieved from: https://www.kns.org/files/pre_paper/38/17A-175%EA%B0%95%EC%B0%BD%EA%B5%AC.pdf
Retrieved on: Nov. 15, 2024 -
P. Jursinic, “PIN diodes for radiation therapy use: Their construction,
characterization, and implementation,” Phys. Med., vol. 59, pp. 86
– 91, Mar. 2019.
DOI: 10.1016/j.ejmp.2019.02.021 -
M. Menichelli, L. Servoli, N. Wyrsch, “Status and perspectives of
hydrogenated amorphous silicon detectors for MIP detection and beam flux
measurements,” Front. Phys., vol. 10, Oct. 2022.
DOI: 10.3389/fphy.2022.943306 -
Z. Sadygov, A. Olshevski, I. Chirikov, I. Zheleznykh, A. Novikov, “Three
advanced designs of micro-pixel avalanche photodiodes: Their present
status, maximum possibilities, and limitations,”
Nucl. Instrum. Methods Phys. Res. A, vol. 567, no. 1, pp. 70 – 73, Nov. 2006.
DOI: 10.1016/j.nima.2006.05.215 -
A. B. Rosenfeld, “Electronic dosimetry in radiation therapy,”
Radiat. Meas., vol. 41, suppl. 1, pp. S134 – S153, Dec. 2006.
DOI: 10.1016/j.radmeas.2007.01.005 -
Y. Yamashita, H. Tadano, “Numerical modeling of reverse recovery
characteristic in silicon pin diodes,” Solid State Electron., vol.
145, pp. 8 – 18, Jul. 2018.
DOI: 10.1016/j.sse.2018.02.014 -
A. B. Rosenfeld, “Advanced Semiconductor dosimetry in radiation therapy,”
AIP Conf. Proc., vol. 1345, no. 1, pp. 48 – 74, May 2011.
Retrieved from: https://ro.uow.edu.au/eispapers
Retrieved on: Nov. 15, 2024 -
R. A. Akbarov et al., “Scintillation readout with MAPD array for gamma
spectrometer,” JINST, vol. 15, no. 1, C01001, Jan. 2020.
DOI: 10.1088/1748-0221/15/01/C01001 -
G. Ahmadov et al., “Gamma-ray spectroscopy with MAPD array in the readout
of LaBr3 scintillator,” JINST, vol. 16, no. 7, P07020, Jul. 2021.
DOI: 10.1088/1748-0221/16/07/P07020 -
F. Ahmadov et al., “Investigation of parameters of new MAPD-3NM silicon
photomultipliers,” JINST, vol. 17, no. 1, C01001, Jan. 2022.
DOI: 10.1088/1748-0221/17/01/C01001 -
M Holik et al., “Gamma ray detection performance of newly developed
MAPD-3NM-II photosensor with LaBr3(Ce) crystal,” Sci. Rep., vol. 12, no. 1,
15855, Sep. 2022.
DOI: 10.1038/s41598-022-20006-z -
A. Z. Sadigov et al., “Improvement of parameters of micro-pixel avalanche
photodiodes,” J. Instrum., vol. 17, no. 7, P07021, Jul. 2022.
DOI: 10.1088/1748-0221/17/07/P07021 -
A. Sadigov et al., “Performance of styrene polymerized plastic scintillator
with micropixel avalanche photodiode,” Radiat. Meas., vol. 171, 107061, Feb. 2024.
DOI: 10.1016/j.radmeas.2024.107061 -
S. Nuruyev et al., “Neutron/gamma scintillation detector for status
monitoring of accelerator-driven neutron source IREN,”
Nucl. Eng. Technol., vol. 56, no. 5, pp. 1667 – 1671, May 2024.
DOI: 10.1016/j.net.2023.12.020 -
A. N. Buynin, V. V. Osiko, Z. Z. Sadygov,
V. G. Shangurov, “Microchannel avalanche photodetectors on Si/YSZ and Si/Si
structures,” in
Proc. 29th Workshop on Compound Semiconductor Devices and Integrated
Circuits held in Europe (WOCSDICE), Cardiff, UK, 2005.
Retrieved from: https://www.researchgate.net/publication/257873810
Retrieved on: Nov. 15, 2024 -
Z. Z. Sadygov et al., “A new low-noise avalanche photodiode with
micro-pixel structure,” Physics, vol. X, no. 4, pp. 79 – 80, 2004.
Retrieved from: https://www.researchgate.net/publication/237496809
Retrieved on: Nov. 15, 2024 -
M. Menichelli et al., “Fabrication of a hydrogenated amorphous silicon
detector in 3-d geometry and preliminary test on planar prototypes,”
Instruments, vol. 5, no. 4, 32, Dec. 2021.
DOI: 10.3390/instruments5040032 -
J. C. Gallagher et al., “Effect of GaN Substrate Properties on Vertical GaN
PiN Diode Electrical Performance,” J. Electron. Mater., vol. 50,
no. 6, pp. 3013 – 3021, Jun. 2021.
DOI: 10.1007/s11664-021-08840-9
Radiation Measurements
ASSESSING GAMMA DOSE RATES: AIRBORNE NATURAL RADIOACTIVITY MEASUREMENTS IN ALBANIA
Jurgen Shano, Elida Bylyku, Dritan Prifti, Kozeta Tushe, Brunilda Daci
Pages: 48-52
Abstract | References | Full Text (PDF)
-
K. S. V. Nambi et al.,
Natural background radiation and population dose distribution in India, Bhabha Atomic Research Centre, Bombay, India, 1986.
Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/20/084/20084715.pdf
Retrieved on: Aug. 8, 2023 -
Atlas of Albania, Commons Wikimedia, a, San Francisco (CA), USA,
2022.
Retrieved from: https://commons.wikimedia.org/wiki/Atlas_of_Albania
Retrieved on: Jan. 16, 2022 -
Copernicus: 2022 was a year of climate extremes, with record high
temperatures and rising concentrations of greenhouse gases, ECMWF/ Copernicus Climate Change Service, 2022.
Retrieved from: https://climate.copernicus.eu/copernicus-2022-was-year-climate-extremes-record-high-temperatures-and-rising-concentrations
Retrieved on: Apr. 1, 2022 -
Qeveria e Shqipërisë. (Nëntor 21, 2018).
Vendim nr. 700 për miratimin e rregullores “për përgatitjen dhe
reagimin në rast emergjence radiologjike për mbrojtjen e punonjësve
dhe të publikut”.
(Government of Albania. (Nov. 21, 2018). Decision no. 700 for the approval of the regulation “for the preparation and response in the case radiological emergency for the protection of employees and the public” )
Retrieved from: https://shendetesia.gov.al/wp-content/uploads/2019/02/VKM-nr.-700-date-21.11.2018.pdf
Retrieved on: Apr. 1, 2022 -
G. Cinelli et al., “Digital version of the European Atlas of natural
radiation,” J. Environ. Radioact., vol. 196, pp. 240 – 252, Jan.
2019.
DOI: 10.1016/j.jenvrad.2018.02.008
PMid: 29496295
PMCid: PMC6290173 -
Weather in Tirana in April 2022, World Weather, 2022.
Retrieved from: https://world-weather.info/forecast/albania/tirana/april-2022
Retrieved on: Apr. 1, 2022 -
N. Kadhim, Radioactivity, ResearchGate, Berlin, Germany, 2020.
Retrieved from: https://www.researchgate.net/publication/339831191_Radioactivity
Retrieved on: Aug. 8, 2023 -
D. Shahbazi-Gahrouei, M. Gholami, S. Setayandeh, “A review on natural
background radiation,” Adv. Biomed. Res., vol. 2, no. 1, p. 65,
2013.
DOI: 10.4103/2277-9175.115821 -
S. S. Duhan, P. Khyalia, J. S. Laura, “A comprehensive analysis of health
risk due to natural outdoor gamma radiation in Southeast Haryana, India,”
Curr. Sci., vol. 123, no. 2, pp. 169 – 176, Jul. 2022.
DOI: 10.18520/cs/v123/i2/169-176 -
D. Patel, M. K. Jindal, P. S. Pamidimukkala, D. Chakraborty, “Gamma
radiation dose rate distribution in the Anand, Bharuch, Vadodara, and
Narmada districts of Gujarat, India,” Environ. Sci. Pollut. Res.,
vol. 30, no. 49, pp. 107104 – 107117, Oct. 2023.
DOI: 10.1007/s11356-023-25711-4
PMid: 36807856 -
J. F. Mercier et al., “Increased environmental gamma-ray dose rate during
precipitation: A strong correlation with contributing air mass,”
J. Environ. Radioact., vol. 100, no. 7, pp. 527 – 533, Jul. 2009.
DOI: 10.1016/j.jenvrad.2009.03.002
PMid: 19403214 -
G. Cortes, J. Sempau, X. Ortega, “Automated measurement of radon daughters
Bi-214 and
Pb-214 in rainwater,” Nukleonika, vol. 46, no. 4, pp. 161 – 164,
2001.
Retrieved from: http://www.ichtj.waw.pl/ichtj/nukleon/back/full/vol46_2001/v46n4p161f.pdf
Retrieved on: Aug. 8, 2023
Radon and Thoron
LESSONS LEARNED FROM THE 2022 CAMPAIGN OF THE MEASUREMENT OF INDOOR RADON CONCENTRATION IN DWELLINGS IN ALBANIA
Gerti Xhixha, Blerim Rrakaqi, Kozeta Tushe, Merita Xhixha (Kaçeli), Njomza Elezaj, Ylli Kaçiu, Nazim Gashi
Pages: 53-56
Abstract | References | Full Text (PDF)
-
Sources and effects of ionizing radiation, vol. 1, UNSCEAR Report
(A/55/46), UNSCEAR, New York (NY), USA, 2000.
Retrieved from: https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf
Retrieved on: Jan. 10, 2024 -
K. B. Tushe et al., “First step toward the geographical distribution of
indoor radon in dwellings in Albania,” Radiat. Prot. Dosim., vol.
172, no. 4, pp. 488 – 495, Dec. 2016.
DOI: 10.1093/rpd/ncv494 -
Qeveria e Shqipërisë. (Nëntor 25, 2015).
Vendim nr. 957 për miratimin e rregullores “Për nivelet e lejuara të
përqendrimit të radonit në ndërtesa dhe në ujë, nivelet drejtuese të
radionuklideve në materialet e ndërtimit, si dhe nivelet e lejuara të
radionuklideve në produktet ushqimore dhe kozmetike”.
(Government of Albania. (Nov. 25, 2015). Decision no. 957 on the approval of the regulation “On the permitted levels of radon concentration in buildings and water, the guiding levels of radionuclides in building materials, as well as the permitted levels of radionuclides in food and cosmetic products”.) -
The Council of European Union. (Dec. 5, 2013).
Council Directive 2013/59/EURATOM laying down basic safety standards
for protection against the dangers arising from exposure to ionising
radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom,
96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF
Retrieved on: Jan. 10, 2024 -
F. Bochicchio et al., “Annual average and seasonal variations of
residential radon concentration for all the Italian Regions,”
Radiat. Meas., vol. 40,
no. 2 – 6, pp. 686 – 694, Nov. 2005.
DOI: 10.1016/j.radmeas.2004.12.023 -
P. Bossew, H. Lettner, “Investigations on indoor radon in Austria, Part 1:
Seasonality of indoor radon concentration,” J. Environ. Radioact.,
vol. 98, no. 3, pp. 329 – 345, Dec. 2007.
DOI: 10.1016/j.jenvrad.2007.06.006 -
Z. Daraktchieva, “New correction factors based on seasonal variability of
outdoor temperature for estimating annual radon concentrations in UK,”
Radiat. Prot. Dosim., vol. 175, no. 1, pp. 65 – 74, Jun. 2017.
DOI: 10.1093/rpd/ncw270 -
K. Kozak et al., “Correction factors for determination of annual average
radon concentration in dwellings of Poland resulting from seasonal
variability of indoor radon,” Appl. Radiat. Isot., vol. 69, no.
10, pp. 1459 – 1465, Oct. 2011.
DOI: 10.1016/j.apradiso.2011.05.018 -
V. Giagias, D. Burghele, C. Cosma, “Seasonal variation of indoor radon in
dwellings from
Athens, Greece,” Rom. J. Phys., vol. 60, no. 9 – 10, pp. 1581 –
1588, 2015.
Retrieved from: https://rjp.nipne.ro/2015_60_9-10/RomJPhys.60.p1581.pdf
Retrieved on: Jan. 10, 2024 -
Z. Stojanovska et al., “Seasonal indoor radon concentration in FYR of
Macedonia,” Radiat. Meas., vol. 46, no. 6 – 7, pp. 602 – 610,
Jun.-Jul. 2011.
DOI: 10.1016/j.radmeas.2011.04.022 -
G. Cinelli, “Digital version of the European Atlas of natural radiation,”
J. Environ. Radioact., vol. 196, pp. 240 – 252, Jan. 2019.
DOI: 10.1016/j.jenvrad.2018.02.008 -
H. A. Ghany, “Variability of radon levels in different rooms of Egyptian
dwellings,” Indoor and Built Environ., vol. 15, no. 2, pp. 193 –
196, Apr. 2006.
DOI: 10.1177/1420326X06063218 -
S.U. Rahman, J. Anwar, M. Matiullah, “Measurement of indoor radon
concentration levels in Islamabad, Pakistan,” Radiat. Meas., vol.
43, suppl. 1, pp. S401 – S404, Aug. 2008.
DOI: 10.1016/j.radmeas.2008.04.046 -
H. J. Jeon et al., “A preliminary study for conducting a rational
assessment of radon exposure levels,” Environ. Sci. Pollut. Res.,
vol. 24, pp. 14491 – 14498, Jun. 2017.
DOI: 10.1007/s11356-017-9030-5 -
K. Badhan, R. Mehra, R. G. Sonkawade, “Studying the variation of indoor
radon levels in different dwellings in Hoshiarpur district of Punjab,
India,” Indoor and Built Environ., vol. 21, no. 4,
pp. 601 – 606, Aug. 2012.
DOI: 10.1177/1420326X11419983