Vol. 10, 2025
Radon and Thoron
THE RADON EYE MONITOR: A REVIEW OF BENEFITS AND PROBLEMS
Peter Bossew
Pages: 1-5
Abstract | References | Full Text (PDF)
-
P. Bossew, E. Benà, S. Chambers, M. Janik, “Analysis of outdoor and indoor
radon concentration time series recorded with RadonEye monitors,”Atmosphere,
vol. 15, no. 12, 1468, Dec. 2024.
DOI: 10.3390/atmos15121468 -
P. Bossew, “Performance of the RadonEye Monitor,” Atmosphere, vol.
16, no. 5, 525, May 2025.
DOI: 10.3390/atmos16050525 -
P. Bossew, “The RadonEye monitor - Benefits and problems,” presented at Int.
Conf. Radiat. Appl. (RAP 2025), Crete, Greece, May 2025.
Retrieved from: https://www.rap-conference.org/25/index.php?page=presentations
Retrieved on: Jun. 22, 2025 - P. Bossew, M. Janik, “Radon time series” in Book of Abstr. 17th Int. workshop on the Geological Aspects of Radon Risk Mapping (GARRM 2025), Prague, Czech Republic, 2025.
-
FTLAB Corp., Ansan, South Korea, 2001.
Retrieved from: http://radonftlab.com/
Retrieved on: Dec. 1, 2024 -
P. Warkentin, E. Curry, O. Michael, B. Bjorndal,
“A comparison of consumer-grade electronic
radon monitors,” J. Radiol. Prot., vol. 40, no. 4,
pp. 1258 – 1272, Dec. 2020.
DOI: 10.1088/1361-6498/ab96d6 -
K. Mitev et al., “Recent work with electronic radon detectors for continuous
Radon-222 monitoring,” JERA, vol. 3, 8844, Dec. 2022.
DOI: 10.35815/radon.v3.8844 -
J. P. Sá, P. T. B. S. Branco, M. C. M. Alvim-Ferraz,
F. G. Martins, S. I. V. Sousa, “Radon in Indoor Air: Towards Continuous
Monitoring,” Sustainability,
vol. 14, no. 3, 1529, Feb. 2022.
DOI: 10.3390/su14031529 -
T. Turtiainen, K. Mitev, R. Dehqanzada, O. Holmgren,
S. Georgiev, “Testing of thoron cross-interference of continuous radon
measuring instruments,” JERA, vol. 3, 7694, Mar. 2022.
DOI: 10.35815/radon.v3.7694 -
I. Dimitrova et al., “Study of the performance and time response of the
RadonEye Plus2 continuous radon monitor,” Measurement, vol. 207,
112409, Feb. 2023.
DOI: 10.1016/j.measurement.2022.112409 -
A. Bahadori, B. Hanson, “Evaluation of consumer digital radon measurement
devices: a comparative analysis,”
J. Radiol. Prot., vol. 44, no. 2, 021514, Jun. 2024.
DOI: 10.1088/1361-6498/ad4bf1 -
T. R. Beck, E. Foerster, M. Biel, S. Feige, “Measurement Performance of
Electronic Radon Monitors,” Atmosphere, vol. 15, no. 10, 1180, Oct.
2024.
DOI: 10.3390/atmos15101180 -
D. Rábago et al., “Investigation of the Performance of Various Low-Cost
Radon Monitors under Variable Environmental Conditions,” Sensors,
vol. 24, no. 6, 1836, Mar. 2024.
DOI: 10.3390/s24061836 -
J. F. Rey, N. Meisser, D. Licina, J. Goyette Pernot, “Performance evaluation
of radon active sensors and passive dosimeters at low and high radon
concentrations,” Build. Environ., vol. 250, 111154,
Feb. 2024.
DOI: 10.1016/j.buildenv.2023.111154 -
J. F. Rey, N. Meisser, D. Licina, J. Goyette Pernot, “Evaluating the impact
of indoor aerosols on the performance of real-time radon sensors,”
Front. Built Environ.
vol. 10, 1407499, May 2024.
DOI: 10.3389/fbuil.2024.1407499 -
S. D. Chambers et al., “Portable two-filter dual-flow-loop 222Rn detector:
stand-alone monitor and calibration transfer device,” ADGEO, vol.
57, pp. 63 – 80, May 2022.
DOI: 10.5194/adgeo-57-63-2022 - P. Bossew, J. Vaupotič, Approximate secondary calibration of RadonEye monitors. In preparation.
-
M. Baskaran, Radon: A Tracer for Geological, Geophysical and Geochemical Studies, 1st ed., Cham, Switzerland: Springer Cham, 2016.
DOI: 10.1007/978-3-319-21329-3 -
D. E. Tchorz-Trzeciakiewicz, M. Rysiukiewicz, “Ambient gamma dose rate as an
indicator of geogenic radon potential,” Sci. Total. Environ., vol.
755, part 1, 142771, Feb. 2021.
DOI: 10.1016/j.scitotenv.2020.142771
Biotechnology
STUDY OF CHARACTERISTICS OF PRIMULA VULGARIS USING RAMAN SPECTROSCOPY
Evi Llaka, Arjana Ylli, Ramadan Firanj, Eugena Dedushaj
Pages: 6-10
Abstract | References | Full Text (PDF)
-
S. Talreja, D. S. Tiwari, “A complete overview on Primula
vulgaris,” Int. J. Life Sci. Pharma Res., vol. 13, no. 6, pp.
277 – 286, Nov. 2023.
DOI: 10.22376/ijlpr.2023.13.6.P277-P286 -
H. Jacquemyn, P. Endels, R. Brys, M. Hermy,
S. R. J. Woodell, “Biological flora of the British Isles:
Primula vulgaris
Huds. ( P. acaulis (L.) Hill),” J. Ecol., vol. 97, no. 4, pp. 812 – 833, Jul. 2009.
DOI: 10.1111/j.1365-2745.2009.01513.x -
P. S. Colombo et al., “Phytochemistry of European Primula species,”
Phytochemistry, vol. 143, pp. 132 – 144, Nov. 2017.
DOI: 10.1016/j.phytochem.2017.07.005 -
M. T. Özkan et al., “Phenolic characterisation and antioxidant activity of
Primula vulgaris and its antigenotoxic effect on fibroblast cells,”
Jundishapur J. Nat. Pharm. Prod., vol. 12, no. 1, e40073, Nov.
2016.
DOI: 10.5812/jjnpp.40073 -
L. Li, J. Ye, H. Li, Q. Shi, “Characterization of metabolites and
transcripts involved in flower pigmentation in Primula vulgaris,”
Front. Plant Sci., vol. 11, 572517, Nov. 2020.
DOI: 10.3389/fpls.2020.572517
PMCid: PMC7714730 -
A. Majid et al., “In vitro approaches of Primula vulgaris leaves
and roots extraction against human pathogenic bacterial strains,”
World Appl. Sci. J.
, vol. 30, no. 5, pp. 575 – 580, Feb. 2014.
DOI: 10.5829/idosi.wasj.2014.30.05.82264 -
I. Kurt-Celep et al., “From small-scale studies to an encompassing view:
Inhibiting inflammation and clinically relevant enzymes with various
extracts of Primula vulgaris using in vitro and
in silico
techniques,” Food Front., vol. 6, no. 1, pp. 329 – 359, Jan. 2025.
DOI: 10.1002/fft2.473 -
S. Demir, I. Turan, R. Aliyazicioglu, S. O. Yaman, Y. Aliyazicioglu, “
Primula vulgaris
extract induces cell cycle arrest and apoptosis in human cervix cancer
cells,” J. Pharm. Anal., vol. 8, no. 5, pp. 307 – 311, Oct. 2018.
DOI: 10.1016/j.jpha.2018.05.003
PMid: 30345144
PMCid: PMC6190528 -
O. Oluwole, W. B. Fernando, J. Lumanlan,
O. Ademuyiwa, V. Jayasena, “Role of phenolic acid, tannins, stilbenes,
lignans and flavonoids in human health – a review,”
Int. J. Food Sci. Technol
., vol. 57, no. 10, pp. 6326 – 6335, Oct. 2022.
DOI: 10.1111/ijfs.15936 -
M. Park, A. Somborn, D. Schlehuber, V. Keuter,
G. Deerberg, “Raman spectroscopy in crop quality assessment: focusing on
sensing secondary metabolites: a review,” Hortic. Res.,vol. 10, no.
5, Apr. 2023.
DOI: 10.1093/hr/uhad074
PMid: 37249949
PMCid: PMC10208899 -
M. Krysa, M. Szymanska-Chargot, A. Zdunek, “FT-IR and FT-Raman fingerprints
of flavonoids – A review,” Food Chem., vol. 393, 133430, Nov. 2022.
DOI: 10.1016/j.foodchem.2022.133430
PMid: 35696953 -
A. Noroozisharaf, H. Samizadeh Lahiji, A. Hatamzadeh, D. Bakhshi,
“Phytochemical attributes of endemic endangered primrose (Primula
heterochroma Stapf.) accessions grown in Iran,”
Physiol. Mol. Biol. Plants
, vol. 21, no. 4, pp. 573 – 581, Oct. 2015
DOI: 10.1007/s12298-015-0328-9
PMid: 26600683
PMCid: PMC4646863 -
I. Stefanis, P. Chatzopoulou, N. Krigas, A. Karioti, “Exploring the Chemical
Content of Primula veris L. subsp. veris Wild-Growing
Populations along a Climate Gradient: An HPLC-PDA-MS Quality Assessment of
Flowers, Leaves and Roots for Sustainable Exploitation,”
Horticulturae
, vol. 9, no. 10, 1120, Oct. 2023.
DOI: 10.3390/horticulturae9101120 -
T. Teslova et al., “Raman and Surface Enhanced Raman Spectra of Flavone and
Several Hydroxy- Derivatives,”
J. Raman Spectrosc., vol. 38, no. 7, pp. 802 – 818, Jul. 2007.
DOI: 10.1002/jrs.1695 -
C. A. Dehelean et al., “Rutin bioconjugates as potential nutraceutical
prodrugs: An in vitro and in ovo toxicological screening,”
Front. Pharmacol., vol. 13, 1000608, Sep. 2022.
DOI: 10.3389/fphar.2022.1000608
PMid: 36210849
PMCid: PMC9538480 -
H. Peng, H. Y. Hou, X. B. Chen, “DFT calculation and Raman spectroscopy
studies of α-linolenic acid,” Quim. Nova, vol. 44, no. 8, pp. 929 –
935, Apr. 2021.
DOI: 10.21577/0100-4042.20170749 -
A. Espina, S. Sanchez-Cortes, Z. Jurašeková, “Vibrational Study (Raman,
SERS, and IR) of Plant Gallnut Polyphenols Related to the Fabrication of
Iron Gall Inks,” Molecules, vol. 27, no. 1, 279, Jan. 2022.
DOI: 10.3390/molecules27010279
PMid: 35011511
PMCid: PMC8746386 -
Y. Fan, Sh. Li, D. P. Xu, “Raman spectra of oleic acid and linoleic acid,”
Guang Pu Xue Yu Guang Pu Fen Xi, vol. 33, no. 12, pp. 3240 – 3243,
Dec. 2013.
DOI: 10.3964/j.issn.1000-0593(2013)12-3240-04
PMid: 24611378 -
P. J. Larkin,
Infrared and Raman Spectroscopy: Principles and Spectral Interpretation
, 2 nd ed., Amsterdam, Netherlands: Elsevier, 2017.
DOI: 10.1016/C2010-0-68479-3 - G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd ed., Chichester, UK: J. Wiley and Sons, 2001.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds , 6th ed., Hoboken (NJ), USA: J. Wiley and Sons, 2009.
-
M. Caser, C. Lovisolo, V. Scariot, “The influence of water stress on growth,
ecophysiology and ornamental quality of potted Primula vulgaris
‘Heidy’ plants: New insights to increase water use efficiency in plant
production,” Plant Growth Regul.,vol. 83, no. 3, pp. 361 – 373,
Dec. 2017.
DOI: 10.1007/s10725-017-0301-4 -
S. Gunawardana, C. Gunasekara, N. M. S. Sirimuthu, “Raman Spectroscopy in
Phytochemical Analysis,” Sri Lankan J. Appl. Sci., vol. 1, no. 1,
pp. 1 – 10, Aug. 2022.
Retrieved from: https://sljoas.uwu.ac.lk/index.php/sljoas/article/view/24
Retrieved on: Jul. 28, 2025
Radon and Thoron
INDOOR RADON SURVEY IN TIRANA CITY, ALBANIA
Blerim Rrakaqi, Gerti Xhixha, Kozeta Tushe, Merita Xhixha (Kaçeli), Njomza Elezaj, Ylli Kaçiu, Nazim Gashi
Pages: 11-15
Abstract | References | Full Text (PDF)
-
Sources, Effects and Risks of Ionizing Radiation, UNSCEAR 2019
Report to the General Assembly with Scientific Annexes, UNSCEAR, New York
(NY), USA, 2020.
Retrieved from: https://www.unscear.org/unscear/uploads/documents/publications/UNSCEAR_2019_Annex-A-CORR.pdf
Retrieved on: Aug. 20, 2025 -
A Citizen’s guide to radon: the guide to protecting yourself and your
family from radon
, EPA402/K-12/002, US Environmental Protection Agency, Washington D.C., USA,
2002.
Retrieved from: https://www.epa.gov/sites/default/files/2016-12/documents/2016_a_citizens_guide_to_radon.pdf
Retrieved on: Aug. 20, 2025 -
Radon, NIEHS, Research Triangle Park (NC), USA, 2025.
Retrieved from: https://www.niehs.nih.gov/health/topics/agents/radon
Retrieved on: Aug. 20, 2025 -
Frequently asked questions, University of Georgia, Athens (GA),
USA.
Retrieved from: https://radon.uga.edu/information/frequently-asked-questions
Retrieved on: Aug. 24, 2025 -
Radon, VDH, Richmond (VA), USA.
Retrieved from: https://www.vdh.virginia.gov/environmental-public-health-tracking/radon
Retrieved on: Aug. 25, 2025 -
Radon: What you need to know, Health Canada, Ottawa, Canada.
Retrieved from: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/radon-what-you-need-to-know.html
Retrieved on: Aug. 25, 2025 -
S. Knapp, J. Athey, A. Nash Jr, Mitigating radon levels at home
(Information Circular 90), Alaska Department of Natural Resources,
DGGS, Anchorage (AK), USA, 2020.
Retrieved from: https://dggs.alaska.gov/webpubs/dggs/ic/text/ic090.pdf
Retrieved on: Aug. 25, 2025 -
WHO handbook on indoor radon: a public health perspective, WHO,
Geneva, Switzerland, 2009.
Retrieved from: https://www.who.int/publications/i/item/9789241547673
Retrieved on: Aug. 29, 2025 -
K. Bode et al., “Indoor radon concentration related to geological areas at
different workplaces of Albania,” in
Proc. 6th Int. Conf. Radiat. Appl. Var. Fields of Res. (RAD 2018), Ohrid, Macedonia, 2018, pp. 111 – 114.
DOI: 10.21175/RadProc.2018.24 -
K. Tushe, E. Bylyku, D. Prifti, B. Daci, “Study on Indoor Radon Measurements
with Passive Method in Schools and Workplaces in Tirana City,” presented at
the
9th Int. Symp. Naturally Occurring Radioactive Material (NORMIX 2019)
, Denver (CO), USA, Sep. 2019.
Retrieved from: https://nucleus.iaea.org/sites/orpnet/resources/Shared%20Documents/Tushe-Indoor-Radon-in-Tirana-City.pdf
Retrieved on: Sep. 05, 2025 -
K. B. Tushe et al., “First step toward the geographical distribution of
indoor radon in dwellings in
Albania,” Radiat. Prot. Dosimetry, vol. 172, no. 4,
pp. 488 – 495, Dec. 2016.
DOI: 10.1093/rpd/ncv494
PMid: 26656073 -
G. Xhixha et al., “Lessons Learned from the 2022 Campaign of the Measurement
of Indoor Radon Concentration in Dwellings in Albania,” in
Proc. Int. Conf. Radiat. Appl. (RAP 2024)
, Granada, Spain, 2024, pp. 53 – 56.
DOI: 10.37392/RapProc.2024.12 -
Qeveria e Shqipërisë. (Nëntor 25, 2015).
Vendim nr. 957 për miratimin e rregullores “Për nivelet e lejuara të
përqendrimit të radonit në ndërtesa dhe në ujë, nivelet drejtuese të
radionuklideve në materialet e ndërtimit, si dhe nivelet e lejuara të
radionuklideve në produktet ushqimore dhe kozmetike”
.
(Government of Albania. (Nov. 25, 2015). Decision no. 957 on the approval of the regulation “On the permitted levels of radon concentration in buildings and water, the guiding levels of radionuclides in building materials, as well as the permitted levels of radionuclides in food and cosmetic products” .)
Retrieved from: https://www.ishp.gov.al/wp-content/uploads/2019/04/Rr.Nr_.957-date-25.11.2015-Per-nivelet-udhezuese-te-perqendrimit-te-radonit.pdf
Retrieved on: Sep. 15, 2025 -
The Council of European Union. (Dec. 5, 2013). Council Directive
2013/59/Euratom (consolidated in 2022) laying down basic safety standards
for protection against the dangers arising from exposure to ionising
radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom,
96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF
Retrieved on: Sep. 20, 2025 -
Z. Daraktchieva, J. C. H. Miles, N. McColl, “Radon, the lognormal
distribution and deviation from it,”
J. Radiol. Prot., vol. 34, no. 1, pp. 183 – 190,
Mar. 2014.
DOI: 10.1088/0952-4746/34/1/183
PMid: 24441867 -
N. Elezaj, B. Zorko, G. Xhixha, V. Bytyqi, “Radon activity concentrations
and radiological exposure assessment in drinking water in Prizren
Region–Kosovo,” Int. J. Environ. Anal. Chem., vol. 105, no. 8, pp.
1764 – 1778, 2025.
DOI: 10.1080/03067319.2023.2298719 -
N. Elezaj et al., “Temporal variation of radon in soil and water in Kosovo,”
Radiochim. Acta, vol. 113, no. 6, pp. 471 – 483, May 2025.
DOI: 10.1515/ract-2024-0350 -
The European Commission. (Feb. 2, 2024).
Commission Recommendation (Eu) 2024/440 on the use of dose coefficients
for the estimation of the effective dose and equivalent dose for the
purposes of Council Directive 2013/59/Euratom.
Retrieved from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202400440
Retrieved on: Sep. 25, 2025
Radiation Measurements
OPTIMAL GEOMETRIC DESIGN OF THE DIAPHRAGM OF A FREE-AIR IONIZATION CHAMBER FOR LOW-ENERGY X-RAYS
Jessica Gschweng, Stefan Pojtinger
Pages: 16-20
Abstract | References | Full Text (PDF)
- Fundamental Quantities and Units for Ionizing Radiation (Revised), Rep. 85, ICRU, Bethesda (MD), USA, 2011.
-
H. A. B. Simons, “The Calculation of Gamma Ray Penetration of the Walls of
Cylindrical and Conical Collimating Holes,” Phys. Med. Biol., vol.
6, no. 4, pp. 561 – 576, Apr. 1962.
DOI: 10.1088/0031-9155/6/4/305
PMid: 13913179 -
M. Boutillon, W. H. Henry, P. J. Lamperti, “Comparison of Exposure Standards
in the 10–50 kV X-Ray Region,” Metrologia, vol. 5, no. 1, pp. 1 –
10, Jan. 1969.
DOI: 10.1088/0026-1394/5/1/002 -
A. C. McEwan, “Corrections for scattered photons in free-air ionisation
chambers,” Phys. Med. Biol., vol. 27, no. 3, pp. 375 – 386, Mar.
1982.
DOI: 10.1088/0031-9155/27/3/004
PMid: 7071149 -
D. T. Burns, L. Büermann, “Free-air ionization chambers,”
Metrologia, vol. 46, no. 2, pp. S9 – S23, Apr. 2009.
DOI: 10.1088/0026-1394/46/2/S02 -
D. T. Burns, C. Kessler, “Diaphragm correction factors for free-air chamber
standards for air kerma in x-rays,” Phys. Med. Biol., vol. 54, no.
9, pp. 2737 – 2745, May 2009.
DOI: 10.1088/0031-9155/54/9/009
PMid: 19351980 -
T. Kurosawa, N. Takata, N. Saito, “Effect of the diaphragm of free-air
ionisation chamber for X-ray air-kerma measurements,”
Radiat. Prot. Dosim., vol. 146, no. 1 – 3, pp. 195 – 197, Jul. 2011.
DOI: 10.1093/rpd/ncr146
PMid: 21498414 -
J. Gschweng, S. Pojtinger, “Free-air ionization chambers for the measurement
of air kerma in low-energy x-rays – optimum air path length and the
limitations of averaging monoenergetic correction factors,”
Metrologia, vol. 62, no. 2, 025013, Apr. 2025.
DOI: 10.1088/1681-7575/adc39d -
I. Kawrakow, D. W. O. Rogers,
The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon
Transport, Rep. PIRS-701, NRCC, Ottawa, Canada, 2000.
Retrieved from: https://nrc-cnrc.github.io/EGSnrc/doc/pirs701-egsnrc.pdf
Retrieved on: Apr. 04, 2025 -
E. Mainegra-Hing, N. Reynaert, I. Kawrakow, “Novel approach for the Monte
Carlo calculation of free-air chamber correction factors,”
Med. Phys., vol. 35, no. 8, pp. 3650 – 3660, Aug. 2008.
DOI: 10.1118/1.2955551
PMid: 18777925 -
I. Sechopoulos et al., “RECORDS: improved Reporting of montE CarlO RaDiation
transport Studies: Report of the AAPM Research Committee Task Group 268,”
Med. Phys., vol. 45, no. 1, pp. e1 – e5, Jan. 2018.
DOI: 10.1002/mp.12702
PMid: 29178605 -
I. Kawrakow, M. Fippel, “Investigation of variance reduction techniques for
Monte Carlo photon dose calculation using XVMC,” Phys. Med. Biol.,
vol. 45, no. 8, pp. 2163 – 2183, Aug. 2000.
DOI: 10.1088/0031-9155/45/8/308
PMid: 10958187 -
L. Büermann, The PTB free-air ionization chambers,
Physikalisch-Technische Bundesanstalt, Braunschweig, Germany, 2021.
DOI: 10.7795/120.20220324 -
C. Kessler, D. T. Burns, P. Roger,
Establishment of reference radiation qualities for mammography, Rep. 2010/01, BIPM, Paris, France, 2010.
Retrieved from: https://www.bipm.org/documents/20126/27085544/bipm+publication-ID-2090.pdf/246a5298-8b17-cbb1-bd96-38da3bc7da2a?version=1.3&download=false
Retrieved on: Apr. 04, 2025
Medical Physics
EXAMINING LESION VISIBILITY OF THICK COMPRESSED BREASTS UNDER DIFFERENT IONIZING RADIATION EXPOSURE CONDITIONS BY USING A MAMMOGRAPHIC MATHEMATICAL PHANTOM
Spyridoula Katsanevaki, Nektarios Kalyvas, Christos Michail, Ioannis Valais, George Fountos, Ioannis Kandarakis
Pages: 21-27
Abstract | References | Full Text (PDF)
-
W. Ren, M. Chen, Y. Qiao, F. Zhao. “Global guidelines for breast cancer
screening: A systematic review,” Breast, vol. 64, pp. 85 –
99, Aug. 2022.
DOI: 10.1016/j.breast.2022.04.003
PMid: 35636342
PMCid: PMC9142711 -
H. Aichinger, J. Dierker, S. Joite-Barfuß, M. Säbel, “Principles of X-Ray
Imaging,” in
Radiation Exposure and Image Quality in X-ray Diagnostic Radiology:
Physical Principles and Clinical Applications, 2nd ed., Berlin Heidelberg, Germany: Springer-Verlag, 2012, ch. 1, pp. 3 – 7.
DOI: 10.1007/978-3-642-11241-6_1 -
K. Bliznakova “The advent of anthropomorphic three-dimensional breast
phantoms for X-ray imaging,” Phys. Med., vol. 79, pp. 145 – 161,
Nov. 2020.
DOI: 10.1016/j.ejmp.2020.11.025
PMid: 33321469 -
N. Kalyvas et al., “A Novel Method to Model Image Creation Based on
Mammographic Sensors Performance Parameters: A Theoretical Study,”
Sensors, vol. 23, no. 4, 2335, Feb. 2023.
DOI: 10.3390/s23042335
PMid: 36850937
PMCid: PMC9968010 -
A. C. Konstantinidis, M. B. Szafraniec, R. D. Speller, A. Olivo “The Dexela
2923 CMOS X-ray detector: A flat panel detector based on CMOS active pixel
sensors for medical imaging applications,”
Nucl. Instrum. Methods in Phys. Res. Sec. A, vol. 689, pp. 12 – 21, Oct. 2012.
DOI: 10.1016/j.nima.2012.06.024 -
MATLAB version 9.12, MathWorks, Natick (MA), USA, 2022.
Retrieved from: https://www.mathworks.com
Retrieved on: Jun. 30, 2025 -
R. Nowotny, XMuDat: Photon attenuation data on PC version 1.0.1,
IAEA Nuclear Data Section, Vienna, Austria, 1998.
Retrieved from: https://www-nds.iaea.org/publications/iaea-nds/iaea-nds-0195.htm
Retrieved on: Jun. 30, 2025 -
S. Katsanevaki, “Mathematical creation of a phantom to study the effect of
exposure on mammography,” Diploma Thesis, University of West Attica, Athens,
Greece, 2024.
DOI: 10.26265/polynoe-5930 -
W. Rasband, ImageJ version 1.47h, National Institutes of Health,
Bethesda (MD), USA, 2012.
Retrieved from: https://imagej.net/ij/
Retrieved on: Jun. 30, 2025 -
F. Stossi, P. K. Singh, “Basic Image Analysis and Manipulation in
ImageJ/Fiji,” Curr. Protoc., vol. 3, no. 7, e849, Jul. 2023.
DOI: 10.1002/cpz1.849
PMid: 37498127
Radiation Protection
EVALUATION OF TLD-200 SENSITIVITY AND COMPARISON WITH TLD-100 AND STATISTICAL ANALYSIS
Ervis Gega, Elida Bylyku, Elda Spahiu, Klaudia Kaçori
Pages: 28-34
Abstract | References | Full Text (PDF)
-
IAEA, “Occupational Radiation Protection,” pp. 138 - 201, 2014, Proceedings
of an International Conference Vienna, Austria, 1–5 December 2014.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/STIPUB2004web.pdf
Retrieved on: Dec. 12, 2024 -
Intercomparison for individual monitoring of external exposure from
photon radiation, IAEA-TECDOC-1126, IAEA, Vienna, Austria, 1999.
Retrieved from: https://www.iaea.org/publications/5848/intercomparison-for-individual-monitoring-of-external-exposure-from-photon-radiation
Retrieved on: Dec. 12, 2024 -
The 2007 Recommendations of the International Commission on Radiological
Protection, ICRP Publication 103, ICRP, Ottawa, Canada, 2007.
Retrieved from: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20103
Retrieved on: Dec. 12, 2024 - Thermoluminescence dosimetry systems for personal and environmental monitoring, IEC 61066, Jun. 26, 2006.
- Radiation protection instrumentation–Determination of uncertainty in measurement, IEC TR 62461, IEC, Geneva, Switzerland, 2015.
- Radiological protection — Criteria and performance limits for the periodic evaluation of dosimetry services for external radiation, ISO 14146, Jul. 2024.
- General requirements for the competence of testing and calibration laboratories, ISO 17025, Nov. 2017.
- Nuclear energy - Radiation protection Individual Thermoluminecient dosemeter for extremities and eyes, ISO 12794, Mar. 2000.
-
T. Y. Kong, H. G. Kim, “Application of element correction and personal dose
equivalent response to extremity dosimeters used at Korean nuclear power
plants,” J. Nucl. Sci. Technol., vol. 49, no. 3, pp. 352 –
359, 2012.
DOI: 10.1080/00223131.2012.660013 -
M. Sadeghi, S. Sina, R. Faghihi , “Investigation of LiF, Mg and Ti (TLD-100)
Reproducibility,” J. Biomed. Phys. Eng., vol. 5, no. 4, pp.
217 – 222, Dec. 2015.
PMid: 26688801
PMCid: PMC4681467 -
R. Ch. Abul-Hail, M. K. Abdallah, “Characterization of TL-D200 and TL-D100
for Thermoluminescent Radiation Dosimetry,” IJETR, vol. 8,
no. 5, pp. 85 - 87, May 2018.
Retrieved from: https://www.scribd.com/document/696238451/Characterization-of-TL-D200-and-TL-D100-for-Radiation-Dosimetry
Retrieved on: Dec. 12, 2024 -
S. F. Alanazi, H. Alarifi, A. Alshehri, M. Almurayshid, “Response evaluation
of two commercial thermoluminescence dosimeters (TLDs) against different
parameters,” BJR|Open,vol. 5, no. 1, 20220035, Nov. 2023.
DOI: 10.1259/bjro.20220035 -
J. S. Stanković-Petrović et al., “Review of the thermoluminescent dosimetry
method for the environmental dose monitoring,”
Nucl. Technol. Radiat. Prot., vol. 36, no. 2, pp. 150 - 162, 2021.
DOI: 10.2298/NTRP2102150S -
N. Kržanović et al., “Characterization of Thermoluminescent Dosimetry
Systems According to the IEC 62387:2020 Standard,” Health Phys.,
vol. 125, no. 3, pp. 186 - 197, Sep. 2023.
DOI: 10.1097/hp.0000000000001711 -
D. S. Kim et al., “Intercomparison Exercise at Harshaw 6600, DVG-02TM, and
D-Shuttle Dosimeters for the Individual Monitoring of Ionizing Radiation,”
J. Radiat. Prot. Res., vol. 44, no. 2, pp. 79 - 88,
Jun. 2019.
DOI: 10.14407/jrpr.2019.44.2.79 -
S. I. Bhuiyan et al., “Quality Assurance and Quality Control in TLD
Measurement,” in
Proc. The Second All African IRPA Regional Radiation Protection Congress
(IRPA-2007), Ismailia, Egypt, 2007, pp. 103 - 112.
Retrieved from: https://www.osti.gov/etdeweb/servlets/purl/21073073
Retrieved on: Dec. 12, 2024 -
K. J. Velbeck, L. Z. Luo, K. L. Streetz, “Type testing the Model 6600 plus
automatic TLD reader,” vol. 120,
no. 1 - 4, pp. 303 - 306, Sep. 2006.
DOI: 10.1093/rpd/ncj012 -
J. F. Benavente, J. M. Gómez-Ros, A. M. Romero, “Thermoluminescence glow
curve deconvolution for discrete and continuous trap distributions,”
Appl. Radiat. Isot.,
vol. 153, 108843, Nov. 2019.
DOI: 10.1016/j.apradiso.2019.108843 -
E. Gega, E. Bylyku, “Statistical Evaluation of Elements Correction
Coefficients to Improve the Performance of TLDs in Radiation Protection
Dosimeters,” EMSJ, vol. 9, no. 3, pp. 1 - 12, Jun. 2025.
DOI: 10.59573/emsj.9(3).2025.01 -
M. Giglioli, V. D. Gonçalves, M. A. R. Fernandes,
H. Yoriyaz, “Calculation of Correction Factors for Dosimeters
Thermoluminescent of Lithium Fluoride (LiF-100) for Use in 6MV Photon
Beams,” in Proc. 18th Int. Conf. Medical Physics (ICMP2011), Porto
Alegre, Brazil, 2011, p. 402.
Retrieved from: https://inis.iaea.org/records/y33wq-nsy20
Retrieved on: Dec. 12, 2024 -
Recommendations of the International Commission on Radiological
Protection, vol. 21, ICRP Publication 60, ICRP, Ottawa, Canada, 1990.
Retrieved from: https://www.icrp.org/publication.asp?id=icrp%20publication%2060
Retrieved on: Dec. 12, 2024 -
O. Kouakou, G. A. Monnehan, G. B. D. L. Huberson, “Evaluation of Dosimetric
Performance and Global Uncertainty of the Harshaw 6600 Plus System Used to
Staff Monitoring in Côte d’Ivoire,” WJNST, vol. 9, no. 4,
pp. 159 - 173, Oct. 2019.
DOI: 10.4236/wjnst.2019.94012
Radon and Thoron
OUTDOOR RADIATION BACKGROUND SURVEY DESIGN
Kremena Ivanova, Todor Yordanov, Tsvetelin Tsrunchev, Daniela Draganova, Georgi Apostolov, Jana Djounova, Dimitar Antonov
Pages: 35-39
Abstract | References | Full Text (PDF)
-
D. Shahbazi-Gahrouei, M. Gholami, S. Setayandeh, “A review on natural
background radiation,” Adv. Biomed. Res., vol. 2, no. 1, pp. 65 –
71, Jul. – Sep. 2013.
DOI: 10.4103/2277-9175.115821
PMid: 24223380
PMCid: PMC3814895 -
Sources and Effects of Ionizing Radiation, vol. 1, Annex B, UNSCEAR
Report (A/55/46), UNSCEAR, New York (NY), USA, 2000, pp. 109 – 111.
Retrieved from: https://www.unscear.org/unscear/uploads/documents/publications/UNSCEAR_2000_Annex-B.pdf
Retrieved on: May 20, 2025 -
S. K. Jha, A. C. Patra, G. P. Verma, I. S. Iyer, D. K. Aswal, “Natural
radiation and environment,” in Handbook on Radiation Environment,
vol. 1, D. K. Aswal, Eds., 1st ed., Singapore: Springer, 2024, pp. 27 – 72.
DOI: 10.1007/978-981-97-2795-7_2 -
Sources and Effects of Ionizing Radiation, vol. 1, UNSCEAR Report
(A/79/46), UNSCEAR, New York (NY), USA, 2024, pp. 10 – 13.
Retrieved from: https://www.unscear.org/unscear/uploads/documents/unscear-reports/UNSCEAR_2024_Report_Vol.I.pdf
Retrieved on: May 20, 2025 -
A. Khawlany, A. Hamoud, A. R. Khan, J. M. Pathan, “Review on studies in
natural background radiation,” Radiat. Prot. Environ., vol. 41, no.
4, pp 215 – 222,
Oct. – Dec. 2018.
DOI: 10.4103/rpe.RPE_55_18 -
K. Nowak, A. Solecki, “Factors affecting background gamma radiation in the
urban space,” J. Elem., vol. 20, no. 3, pp. 653 – 665, 2015.
DOI: 10.5601/jelem.2014.19.4.755 -
A. J. Onwuegbuzie, N. L. Leech, “Sampling Designs in Qualitative Research:
Making the Sampling Process More Public,” Qual. Rep., vol. 12, no.
2, pp. 238 – 254, Jun. 2007.
DOI: 10.46743/2160-3715/2007.1636 -
Regions, districts and municipalities in the Republic of Bulgaria,
NSI, Sofia, Bulgaria, 2023.
Retrieved from: https://www.nsi.bg/publications/raionite-oblastite-i-obshtinite-v-republika-balgariya-2023-8322
Retrieved on: May 15, 2025 -
Й. Йовчев, Тектонски строеж на България, София, България: Техника,
1971.
(Y. Yovchev, Tectonic structure of Bulgaria, Sofia, Bulgaria: Technika, 1971.) -
K. Ivanova et al., “Analysis of the spatial variation of indoor radon
concentrations (national survey in Bulgaria),”
Environ. Sci. Pollut. Res., vol. 26, no. 7, pp. 6971 – 6979, Mar. 2019.
DOI: 10.1007/s11356-019-04163-9
PMid: 30645746 -
C. Dabovski et al., “Structure and Alpine evolution of Bulgaria,”
Geol. Balc., vol. 32, no. 2 – 4, pp. 9 – 15, Dec. 2002.
DOI: 10.52321/GeolBalc.32.2-4.9 -
I. Zagorchev, “Geomorphological zonation of Bulgaria. Principles and state
of the art,” Proc. Bulg. Acad. Sci., vol. 62, no. 8, pp. 981 – 982,
Jan. 2009.
Retrieved from: https://www.researchgate.net/publication/271190963_Geomorphological_zonation_of_Bulgaria_Principles_and_state_of_the_art
Retrieved on: May 20, 2025 -
IBM SPSS Complex Samples 28, IBM Corporation, Armonk (NY), USA,
2012.
Retrieved from: https://www.ibm.com/docs/en/SSLVMB_28.0.0/pdf/IBM_SPSS_Complex_Samples.pdf
Retrieved on: May 20, 2025 -
M. Tzortzis, E. Svoukis, H. Tsertos, “A comprehensive study of natural gamma
radioactivity levels and associated dose rates from surface soils in
Cyprus,” Radiat. Prot. Dosimetry, vol. 109, no. 3, pp. 217 – 224,
Jul. 2004.
DOI: 10.1093/rpd/nch300
PMid: 15254326 -
E. Kam, A. Bozkurt, “Environmental radioactivity measurements in Kastamonu
region of northern Turkey,” Appl. Radiat. Isot., vol. 65, no. 4,
pp. 440 – 444, Apr. 2007.
DOI: 10.1016/j.apradiso.2006.11.005
PMid: 17207627 -
I. Etikan, K. Bala, “Sampling and sampling methods,”
Biom. Biostat. Int. J., vol. 5, no. 6, pp. 215 – 217, May 2017.
DOI: 10.15406/bbij.2017.05.00149 -
Radiation protection equipment. Built-in passive dosimetry systems for
monitoring the environment and individuals with regard to photon
emission and beta radiation, БДС EN 62387:2016, Aug. 16, 2016.
Retrieved from: https://bds-bg.org/en/project/show/bds:proj:93261
Retrieved on: May 8, 2025 -
A. Podstawczyńska, K. Kozak, W. Pawlak, J. Mazur, “Seasonal and diurnal
variation of outdoor radon (222Rn) concentrations in urban and
rural area with reference to meteorological conditions,” Nukleonika, vol. 55, no. 4, pp. 543 – 547, Jan. 2010.
Retrieved from: http://www.nukleonika.pl/www/back/full/vol55_2010/v55n4p543f.pdf
Retrieved on: May 8, 2025 -
R. D. Hopper, F. Steinhäusler, M. Ronca-Battista, “IAEA/EPA international
climatic test program for integrating radon detectors,”
Health Phys., vol. 77, no. 3, pp. 303 – 308, Sep. 1999.
DOI: 10.1097/00004032-199909000-00009
PMid: 10456502 -
G. A. Gunning, D. Pollard, E. C. Finch, “An outdoor radon survey and
minimizing the uncertainties in low level measurements using CR-39
detectors,” J. Radiol. Prot., vol. 34, no. 2, pp. 457 – 467, Jun.
2014.
DOI: 10.1088/0952-4746/34/2/457
PMid: 24894188
Material Science
THE STUDY OF BLACK PIGMENTS USED BY ALBANIAN POST-BYZANTINE PAINTERS JANI AND VASILI IN THE XVIII CENTURY
Ramadan Firanj, Fatos Ylli, Olta Çakaj, Gentian Vokopola, Era Xhaferri, Enkelejda Nesturi
Pages: 40-44
Abstract | References | Full Text (PDF)
-
E. Tomasini, G. Siracusano, M. Maier “Spectroscopic, morphological and
chemical characterization of historic pigments based on carbon. Paths for
identification of an artistic pigment,” Microchem. J., vol. 102,
pp. 28 – 37, May 2012.
DOI: 10.1016/j.microc.2011.11.005 -
E. Tomasini et al., “Identification of carbon-based black pigments in four
South American polychrome wooden sculptures by Raman microscopy,”
Herit. Sci., vol. 3, no. 1, 19, Jun. 2015.
DOI: 10.1186/s40494-015-0049-y -
S. Potgieter-Vermaak et al., “Raman spectroscopy for the analysis of coal: a
review,” J. Raman Spectrosc., vol. 42, no. 1, pp. 123 – 129, Feb.
2011.
DOI: 10.1002/jrs.2636 -
V. Menella, G. Monaco, L. Colangeli, E. Bussoletti, “Raman spectra of
carbon-based materials excited at 1064 nm,” Carbon, vol. 33, no. 2,
pp. 115 – 121, 1995.
DOI: 10.1016/0008-6223(94)00113-E -
A. Coccato, J. Jehlicka, L. Moens, P. Vandenabeele, “Raman spectroscopy for
the investigation of carbon-based black pigments,”
J. Raman Spectrosc., vol. 47, no. 10, pp. 1003 – 1015, Oct. 2015.
DOI: 10.1002/jrs.4715 -
J. Liu et al., “Application of confocal laser Raman spectroscopy on marine
sediment microplastics,” J. Oceanol. Limnol., vol. 38, no. 5, pp.
1502 – 1516, Sep. 2020.
DOI: 10.1007/s00343-020-0129-z - P. Larkin, Infrared and Raman Spectroscopy, Principles and Spectral Interpretation, 2nd ed., Amsterdam, Netherlands: Elsevier, 2018.
-
A. Llukani, Ikonografia kishtare ne Shqiperi, Tiranë, Albania:
Trifon Gjika, 2009.
(Llukani, Church Iconography in Albania, Tirana, Albania: Trifon Gjika, 2009.) -
R. Karanxha, Teknika dhe kimia ne pikture, Tirana, Albania:
Kombinati Poligrafik “Shtypeshkronja e re”, 1984.
(R. Karanxha, Technique and Chemistry in Painting, Tirana, Albania: Kombinati Poligrafik “Shtypeshkronja e re”, 1984.) -
E. Chalmin, M. Menu, C. Vignaud, “Analysis of rock art painting and
technology of Paleolithic painters,” Meas. Sci. Technol., vol. 14,
no. 9, pp. 1590 – 1597, Sep. 2003.
DOI: 10.1088/0957-0233/14/9/310 -
A. Lluveras-Tenorio et al., “A multi-analytical characterization of artists’
carbon-based black pigments,” J. Therm. Anal. Calorim., vol. 138,
no. 5, pp. 3287 – 3299, Dec. 2019.
DOI: 10.1007/s10973-019-08910-5
Medical Physics
RESPONSE OF ALANINE DOSIMETER TO ULTRA-HIGH DOSE RATE ELECTRON BEAM
Supaporn Srisuwan, Pradip Deb, Eugene Tan, Tessa Charles, Moshi Geso
Pages: 45-50
Abstract | References | Full Text (PDF)
-
V. Favaudon et al., “Ultrahigh dose-rate FLASH irradiation increases the
differential response between normal and tumor tissue in mice,”
Sci. Transl. Med.,vol. 6, no. 245, p. 245ra93, Jul. 2014.
DOI: 10.1126/scitranslmed.3008973 -
P. Montay-Gruel et al., “Irradiation in a flash: Unique sparing
of memory in mice after whole brain irradiation with dose rates above
100Gy/s,” Radiother. Oncol.,vol. 124, no. 3, pp. 365 -
369, Sep. 2017.
DOI: 10.1016/j.radonc.2017.05.003 -
P. Montay-Gruel et al., “X-rays can trigger the FLASH effect:
Ultra-high dose-rate synchrotron light source prevents normal brain
injury after whole brain irradiation in mice,”
Radiother. Oncol.,vol. 129, no. 3, pp. 582 - 588, Dec. 2018.
DOI: 10.1016/j.radonc.2018.08.016 -
M.-C. Vozenin et al., “The Advantage of FLASH Radiotherapy
Confirmed in Mini-pig and Cat-cancer Patients,”
Clin. Cancer Res.,vol. 25, no. 1,
pp. 35 - 42, Jan. 2019.
DOI: 10.1158/1078-0432.Ccr-17-3375 -
E. Schuler et al., “Experimental Platform for Ultra-high Dose
Rate FLASH Irradiation of Small Animals Using a Clinical Linear
Accelerator,” Int. J. Radiat. Oncol. Biol. Phys.,vol.
97, no. 1, pp. 195 - 203, Jan. 2017.
DOI: 10.1016/j.ijrobp.2016.09.018 -
M. Lempart et al., “Modifying a clinical linear accelerator for
delivery of ultra-high dose rate irradiation,”
Radiother. Oncol.,vol. 139, pp. 40 - 45, Oct. 2019.
DOI: 10.1016/j.radonc.2019.01.031 -
C. DesRosiers, V. Moskvin, A. F. Bielajew, L. Papiez, “150-250
MeV electron beams in radiation therapy,” Phys. Med. Biol.,vol.
45, no. 7, 1781, Jul. 2000.
DOI: 10.1088/0031-9155/45/7/306 -
L. Papież, C. DesRosiers, V. Moskvin, “Very high energy
electrons (50 – 250 mev) and radiation therapy,”
Tech. Cancer Res. Treat.,vol. 1, no. 2, pp. 105 - 110, Apr. 2002
.
DOI: 10.1177/153303460200100202 -
M. Bazalova-Carter et al., “Treatment planning for radiotherapy
with very high-energy electron beams and comparison of VHEE and VMAT
plans,” Med. Phys.,vol. 42, no. 5, pp. 2615 - 2625,
May 2015.
DOI: 10.1118/1.4918923 -
F. S. D’Andrea, R. Chuter, A. H. Aitkenhead,
R. I. MacKay, R. M. Jones, “Comparative treatment planning of very
high-energy electrons and photon volumetric modulated arc therapy:
Optimising energy and beam parameters,”
Phys. Imaging Radiat. Oncol.,vol. 33, 100732, Jan. 2025.
DOI: 10.1016/j.phro.2025.100732 -
F. Romano, C. Bailat, P. G. Jorge, M. L. F. Lerch,
A. Darafsheh, “Ultra-high dose rate dosimetry: Challenges and
opportunities for FLASH radiation therapy,” Med. Phys.,vol.
49, no. 7, pp. 4912 - 4932, Jul. 2022.
DOI: 10.1002/mp.15649 -
F. Di Martino, M. Giannelli, A. C. Traino, M. Lazzeri, “Ion
recombination correction for very high dose-per-pulse high-energy
electron beams,” Med. Phys.,vol. 32, no. 7, pp. 2204 -
2210, Jul. 2005.
DOI: 10.1118/1.1940167 -
K. Petersson et al., “High dose-per-pulse electron beam
dosimetry — A model to correct for the ion recombination in the Advanced
Markus ionization chamber,” Med. Phys.,vol. 44, no. 3,
pp. 1157 - 1167, Mar. 2017.
DOI: 10.1002/mp.12111 -
F. Gómez et al., “Development of an ultra-thin parallel plate
ionization chamber for dosimetry in FLASH radiotherapy,”
Med. Phys.,vol. 49, no. 7,
pp. 4705 - 4714, Jul. 2022.
DOI: 10.1002/mp.15668 -
A. Fidanzio, L. Azario, R. Miceli, A. Russo,
A. Piermattei, “PTW-diamond detector: Dose rate and particle type
dependence,” Med. Phys.,vol. 27, no. 11, pp. 2589 -
2593, Nov. 2000.
DOI: 10.1118/1.1318218 -
J. Shi, W. E. Simon, T. C. Zhu, “Modeling the instantaneous dose
rate dependence of radiation diode detectors,” Med. Phys.,vol.
30, no. 9,
pp. 2509 - 2519, Sep. 2003.
DOI: 10.1118/1.1602171 -
F. Di Martino et al., “FLASH Radiotherapy with Electrons: Issues
Related to the Production, Monitoring, and Dosimetric Characterization
of the Beam,” Front. Phys.,vol. 8, 570697, Nov. 2020.
DOI: 10.3389/fphy.2020.570697 -
J. Cayley et al., “MOSkin dosimetry for an ultra-high dose-rate,
very high-energy electron irradiation environment at PEER,”
Front. Phys.,vol. 12, 1401834, Jul. 2024.
DOI: 10.3389/fphy.2024.1401834 -
J. Cayley et al., “Simulation and commissioning of a Faraday cup
for absolute charge measurements of very high-energy electrons in-air at
PEER,” Front. Phys.,vol. 12, 1448025, Oct. 2024.
DOI: 10.3389/fphy.2024.1448025 -
W. W. Bradshaw, D. G. Cadena, Jr., G. W. Crawford, H. A. W.
Spetzler, “The Use of Alanine as a Solid Dosimeter,”
Radiat. Res.,vol. 17, no. 1, pp. 11 - 21, Jul. 1962.
DOI: 10.2307/3571206 -
D. F. Regulla, U. Deffner, “Dosimetry by ESR spectroscopy of
alanine,” Int. J. Appl. Radiat. Isot.,vol. 33, no. 11,
pp. 1101 - 1114, Nov. 1982.
DOI: 10.1016/0020-708X(82)90238-1 -
H. Kudoh, M. Celina, R. J. Kaye, K. T. Gillen,
R. L. Clough, “Response of alanine dosimeters at very high dose rate,”
Appl. Radiat. Isot.,vol. 48,
no. 4, pp. 497 - 499, Apr. 1997.
DOI: 10.1016/S0969-8043(96)00281-3 - Practice for Use of an Alanine-EPR Dosimetry System , SO/ASTM 51607:2013, Jul. 1, 2013.
-
E. S. Bergstrand, H. Bjerke, E. O. Hole, “An experimental
investigation of the electron energy dependence of the EPR alanine
dosimetry system,” Radiat. Meas.,vol. 39, no. 1, pp.
21 - 28, Jan. 2005.
DOI: 10.1016/j.radmeas.2004.05.010 -
G. G. Zeng, M. R. McEwen, D. W. O. Rogers,
N. V. Klassen, “An experimental and Monte Carlo investigation of the
energy dependence of alanine/EPR dosimetry: II. Clinical electron
beams,” Phys. Med. Biol.,vol. 50, no. 6, 1119, Mar.
2005.
DOI: 10.1088/0031-9155/50/6/006 -
M. Anton, et al., “Difference in the relative response of the
alanine dosimeter to megavoltage x-ray and electron beams,”
Phys. Med. Biol.,vol. 58, no. 10, 3259, May 2013.
DOI: 10.1088/0031-9155/58/10/3259 -
S. Voros, M. Anton, B. Boillat, “Relative response of alanine
dosemeters for high-energy electrons determined using a Fricke primary
standard,” Phys. Med. Biol.,vol. 57, no. 5, 1413, Mar.
2012.
DOI: 10.1088/0031-9155/57/5/1413 -
M. McEwen, A. Miller, I. Pazos, P. Sharpe, “Determination of a
consensus scaling factor to convert a Co-60-based alanine dose reading
to yield the dose delivered in a high energy electron beam,”
Radiat. Phys. Chem.,vol. 171, 108673, Jun. 2020.
DOI: 10.1016/j.radphyschem.2019.108673 -
K. Kokurewicz et al., “Dosimetry for New Radiation Therapy
Approaches Using High Energy Electron Accelerators,”
Front. Phys.,vol. 8, 568302,
Nov. 2020.
DOI: 10.3389/fphy.2020.568302 -
S. Hofel, P. Liebig, M. K. Fix, M. Drescher,
F. Zwicker, “Adapting a practical EPR dosimetry protocol to measure
output factors in small fields with alanine,”
J. Appl. Clin. Med. Phys.,vol. 24,
no. 12, e14191, Dec. 2023.
DOI: 10.1002/acm2.14191
Radon and Thoron
PRELIMINARY RESULTS ON INDOOR RADON CONCENTRATIONS IN THE BUILDINGS OF UNIVERSITY ALEKSANDËR MOISIU, DURRËS (ALBANIA)
Merita Xhixha (Kaçeli) , Gerti Xhixha, Stela Sefa, Kozeta Tushe, Anisa Liti, Julian Priska, Osman Metalla, Blerim Rrakaqi
Pages: 51-53
Abstract | References | Full Text (PDF)
-
Sources and effects of ionizing radiation, Annexes A and B,
UNSCEAR 2008 report to the General Assembly with Scientific annexes,
UNSCEAR, New York (NY), USA, 2010.
Retrieved from: https://www.unscear.org/unscear/en/publications/2008_1.html
Retrieved on: Dec. 15, 2024 -
WHO handbook on indoor radon: a public health perspective, WHO,
Geneva, Switzerland, 2009.
Retrieved from: https://iris.who.int/server/api/core/bitstreams/47a93281-8a11-476f-aa7d-5488014ae433/content
Retrieved on: Dec. 15, 2024 -
The Council of European Union. (Dec. 5, 2013).
Council Directive 2013/59/EURATOM laying down basic safety standards
for protection against the dangers arising from exposure to ionising
radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom,
96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
Retrieved from: http://data.europa.eu/eli/dir/2013/59/oj
Retrieved on: Dec. 15, 2024 -
Qeveria e Shqipërisë. (Nëntor 25, 2015). Vendim nr. 957 për
miratimin e rregullores “Për nivelet udhëzuese të përqendrimit të
radonit në mjediset e brendshme dhe përqendrimet e radiobërthamave në
mallra, me efekt mbrojtjen e publikut”.
(Government of Albania. (Nov. 25, 2015). Decision No. 957 on the approval of the regulation “On the guideline levels of radon concentration in indoor environments and radionuclides concentrations in goods, with the effect of protecting the public”. ) -
P. Dhoqina, K. Tushe. G. Xhixha, B. Daci, E. Bylyku, “Measurements of
indoor radon concentrations in schools in some cities of North Albania,”
AIP Conf. Proc., vol. 2075, no. 1, 170003, Feb. 2019.
DOI: 10.1063/1.5091368 -
M. Müllerová et al., “Preliminary results of radon survey in the
kindergartens of V4 countries,” Radiat. Prot. Dosimetry, vol.
177, no. 1 – 2, pp. 95 – 98, Nov. 2017.
DOI: 10.1093/rpd/ncx155 -
M. Zhukovsky, A. Vasilyev, A. Onishchenko,
I. Yarmoshenko, “Review of indoor radon concentrations in schools and
kindergartens,” Radiat. Prot. Dosimetry, vol. 181, no. 1, pp. 6
– 10, Sep. 2018.
DOI: 10.1093/rpd/ncy092 - Measurement of radioactivity in the environment - Air: Radon-222 Part 4: Integrated measurement method for determining average activity concentration using passive sampling and delayed analysis, ISO 11665-4:2021, Mar. 1, 2021.
- The European Commission. (Feb. 2, 2024). Commission Recommendation (EU) 2024/440 on the use of dose coefficients for the estimation of the effective dose and equivalent dose for the purposes of Council Directive 2013/59/Euratom.
-
Occupational Intakes of Radionuclides: Part 3, vol. 46, ICRP
Publication 137, ICRP, Ottawa, Canada, 2017.
Retrieved from: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20137
Retrieved on: Dec. 15, 2024
Radiation Protection
A NEW PERSONAL ELECTRONIC DOSIMETER: THE PDOZ
Lucia Salvi, Ali Behcet Alpat, Giovanni Bartolini, Marco Bizzarri, Andrea Papi, Leonello Servoli, Haider Raheem
Pages: 54-58
Abstract | References | Full Text (PDF)
-
L. Salvi et al., “PDOZ: innovative personal electronic dosimeter for
electron and gamma H*(d) dosimetry,” J. Instrum., vol. 18, no. 8,
P08010, Aug. 2023.
DOI: 10.1088/1748-0221/18/08/P08010 -
BEAMIDE, INFN, Perugia, Italy, 2021.
Retrieved from: https://www.beamide.com
Retrieved on: Jul. 16, 2025 -
Scintillators Model CsI(Tl), CsI(Na) and pure CsI datasheet,
Epic-Crystal, Kunshan, China, 2012.
Retrieved from: https://www.epic-crystal.com/scintillation-crystals/csi-crystal.html
Retrieved on: Jul. 16, 2025 -
Scintillator Model BC408 datasheet, Luxium Solutions, Hiram (OH),
USA.
Retrieved from: https://www.luxiumsolutions.com/radiation-detection-scintillators/plastic-scintillators/bc400-bc404-bc408-bc412-bc416
Retrieved on: Jul. 16, 2025 -
Radiation protection instrumentation – Measurement of personal dose
equivalents Hp(10) and Hp(0,07) for X, gamma, neutron and beta
radiations – Direct reading personal dose equivalent meters, IEC 61526:2010, Jul. 22, 2010.
Retrieved from: https://webstore.iec.ch/en/publication/5540 Retrieved on: Jul. 16, 2025 -
S. Agostinelli et al., Geant4 simulation toolkit version 10.7,
CERN, Geneva, Switzerland, 2020.
Retrieved from: https://geant4.web.cern.ch/
Retrieved on: Jul. 16, 2025. -
Determination of dose equivalent resulting from external radiation
sources, Rep. 39, ICRU, Bethesda (MD), USA, 1985.
Retrieved from: https://www.icru.org/report/determination-of-dose-equivalents-resulting-from-external-radiation-sources-report-39/
Retrieved on: Jul. 16, 2025 -
Conversion coefficients for use in radiological protection against
external radiation, ICRP Publication 74, ICRP, Oxford (UK), 1996.
Retrieved from: https://www.icrp.org/publication.asp?id=icrp%20publication%2074
Retrieved on: Jul. 16, 2025 -
J-Series Silicon Photomultiplier (SiPM) Sensors datasheet, Onsemi,
Scottsdale (AZ), USA.
Retrieved from: https://www.onsemi.com/products/sensors/photodetectors-sipm-spad/silicon-photomultipliers-sipm/j-series
Retrieved on: Jul. 16, 2025 -
GAGG Scintillator datasheet, Advatech, London, UK.
Retrieved from: https://www.advatech-uk.co.uk/gagg_ce.html
Retrieved on: Jul. 16, 2025 -
EJ-254 Scintillator datasheet, Eljen Technology, Sweetwater (TX),
USA.
Retrieved from: https://eljentechnology.com/images/products/dat_sheets/EJ-254.pdf
Retrieved on: Jul. 16, 2025 -
EJ-276D and EJ-276G Scintillators datasheet, Eljen Technology,
Sweetwater (TX), USA.
Retrieved from: https://eljentechnology.com/products/plastic-scintillators/ej-276
Retrieved on: Jul. 16, 2025 -
CLLBC Scintillator datasheet, Berkeley Nucleonics Corp, San Rafael
(CA), USA.
Retrieved from: http://www.berkeleynucleonics.com/sites/default/files/products/resources/cllbc_datasheet_bnc.pdf
Retrieved on: Jul. 16, 2025 -
AutoCAD version 2023, Autodesk, Inc., San Rafael (CA), USA, 2023.
Retrieved from: https://www.autodesk.com/products/autocad/overview
Retrieved on: Jul. 16, 2025 -
MRADSIM Converter, MRADSIM, Perugia, Italy, 2023.
Retrieved from: https://www.mradsim.com/converter
Retrieved on: Jul. 16, 2025
Radiation Measurements
ASSESSMENT OF GAMMA DOSE RATE AND POPULATION EXPOSURE IN THE TOWN OF BERAT, ALBANIA
Jurgen Shano, Brunilda Daci, Elida Bylyku
Pages: 59-64
Abstract | References | Full Text (PDF)
-
P. Bossew, T. Tollefsen, G. Cinelli, V. Gruber,
M. De Cort, “Status of the European Atlas of Natural Radiation,”
Radiat. Prot. Dosimetry, vol. 167,
no. 1 – 3, pp. 29 – 36, Nov. 2015.
DOI: 10.1093/rpd/ncv216
PMid: 25920791 -
P. Bossew et al., “Estimating the terrestrial gamma dose rate by
decomposition of the ambient dose equivalent rate,”
J. Environ. Radioact., vol. 166,
pt. 2, pp. 296 – 308, Jan. 2017.
DOI: 10.1016/j.jenvrad.2016.02.013
PMid: 26926960 -
D. A. E. Darwish, K. T. M. Abul-Nasr,
A. M. El-Khayatt, “The assessment of natural radioactivity and its
associated radiological hazards and dose parameters in granite samples from
South Sinai, Egypt,” J. Radiat. Res. Appl. Sci., vol. 8, no. 1, pp.
17 – 25, Jan. 2015.
DOI: 10.1016/j.jrras.2014.10.003 - Sources and effects of ionizing radiation, Annexes A and B, UNSCEAR 2008 report to the General Assembly with Scientific annexes, UNSCEAR, New York (NY), USA, 2010.
- N. A. C. Cressie, Statistics for Spatial Data, revised ed., New York (NY), USA: J. Wiley and Sons, 1993.
-
E. O. Agbalagba, G. O. Avwiri, Y. E. Chad-Umoreh, “γ-Spectroscopy
measurement of natural radioactivity and assessment of radiation hazard
indices in soil samples from oil fields environment of Delta State,
Nigeria,” J. Environ. Radioact., vol. 109, pp. 64 – 70, Jul. 2012.
DOI: 10.1016/j.jenvrad.2011.10.012
PMid: 22310017 -
A. U. Itodo, P. O. Edimeh, I. S. Eneji, R. A. Wuana, “Radiological impact
assessment of mining on soil, water and plant samples from Okobo coal field,
Nigeria,” J. Geosci. Environ. Prot., vol. 8, no. 5,
pp. 65 – 81, May 2020.
DOI: 10.4236/gep.2020.85005 -
C. Papastefanou, “Radiological impact from atmospheric releases of 238U and
226Ra from phosphate rock processing plants,” J. Environ.
Radioact., vol. 54, no. 1, pp. 75 – 83, 2001.
DOI: 10.1016/S0265-931X(00)00167-3 -
B. D. Spycher et al., “Background ionizing radiation and the risk of
childhood cancer: A census-based nationwide cohort study,”
Environ. Health Perspect., vol. 123, no. 6, pp. 622 – 628, Jun. 2015.
DOI: 10.1289/ehp.1408548 -
M. Hauptmann, “Epidemiological studies of low-dose ionizing radiation and
cancer: Summary bias assessment and meta-analysis,”
J. Natl. Cancer Inst. Monogr., vol. 2020, no. 56, pp. 188 – 200, Jul. 2020.
DOI: 10.1093/jncimonographs/lgaa010
PMid: 32657347
PMCid: PMC8454205 -
Radiation Protection and Safety of Radiation Sources: International
Basic Safety Standards, IAEA Safety Standard No. GSR Part 3, IAEA, Vienna, Austria, 2014.
DOI: 10.61092/iaea.u2pu-60vm -
Programmes and Systems for Source and Environmental Radiation Monitoring, IAEA Safety Reports Series No. 64, IAEA, Vienna, Austria, 2010.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1427_web.pdf
Retrieved on: Jan. 18, 2025 - Sources and effects of ionizing radiation, vol. I, UNSCEAR Report to the General Assembly with scientific annexes, UNSCEAR, New York (NY), USA, 2000.
-
O. Šálek, M. Matolín, L. Gryc, “Mapping of radiation anomalies using UAV
mini-airborne gamma-ray spectrometry,” J. Environ. Radioact., vol.
182, pp. 101 – 107, Feb. 2018.
DOI: 10.1016/j.jenvrad.2017.11.033
PMid: 29220714 -
J. Skrede, S. K. Berg, “Cultural heritage and sustainable development: The
case of urban densification,” Hist. Environ.: Policy Pract., vol.
10, no. 1, pp. 83 – 102, 2019.
DOI: 10.1080/17567505.2019.1558027 -
A. E. Gfeller, “UNESCO, cultural heritage and outstanding universal value:
Value-based analyses of the World Heritage and Intangible Cultural Heritage
Conventions,” Conserv. Manag. Archaeol. Sites,
vol. 19, no. 3, pp. 238 – 240, 2017.
DOI: 10.1080/13505033.2017.1344505 -
M. Leus, W. Verhelst, “Sustainability Assessment of Urban Heritage Sites,”
Buildings, vol. 8, no. 8, 107, Aug. 2018.
DOI: 10.3390/buildings8080107 -
The Council of European Union. (Dec. 5, 2013).
Council Directive 2013/59/EURATOM laying down basic safety standards for
protection against the dangers arising from exposure to ionising
radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom,
96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF
Retrieved on: Jan. 18, 2025









