Vol. 8, 2023

Medical Physics


Nektarios Kalyvas, Marios K. Tzomakas, Vasiliki Peppa, Antigoni Alexiou, Georgios Karakatsanis, Anastasios Episkopakis, Christos Michail, Ioannis Valais, George Fountos, Ioannis S. Kandarakis

Pages: 1-4

DOI: 10.37392/RapProc.2023.01

Electronic Portal Imaging Systems (EPIDs) are used in Radiotherapy treatment as part of the patient positioning verification check and for portal dosimetry purposes. The quality control of the imaging performance of an EPID is performed with dedicated phantoms. In this work, an examination through Monte Carlo (MC) simulation is presented in order to determine an appropriate step wedge phantom configuration for measuring low contrast differences in EPIDs. The PENELOPE based MC software package PenEasy was used. A simple geometry of a narrow cone beam with a cross section of 0.00053 cm2 at 100 cm distance was assumed. A 2 MeV beam was considered to impinge on a 4 cm water equivalent phantom in conjunction with a metal sheet of Pb, Al, Fe or W positioned at 80 cm distance. At 100 cm distance a Gd2O2S:Tb scintillator, as part of an EPID responsible for detecting X-rays was assumed. The Gd2O2S:Tb thicknesses considered were 0.02cm and 0.03 cm. All the metal thicknesses were allowed to range from 0.1 cm to 1.5 cm per 0.1 cm step. The optical photons escaping to the Gd2O2S:Tb output were calculated by an analytical formula for each metal thickness. Hence, if a wedge metallic pattern from 0.1 cm to 1.5 cm is assumed to be constructed, then the optical photon output originating from each step, as well as the signal contrast between two steps would be known. It was found that a combination of Pb, Fe and W materials can be used for a step wedge phantom design.
  1. S. -H. Baek et al., “Clinical Efficacy of an Electronic Portal Imaging Device versus a Physical Phantom Tool for Patient-Specific Quality Assurance,” Life, vol. 12, no. 11, 1923, Nov. 2022.
    DOI: 10.3390/life12111923
    PMid: 36431058
    PMCid: PMC9694583
  2. L. E. Antonuk, “Electronic portal imaging devices: a review and historical perspective of contemporary technologies and research,” Phys. Med. Biol. , vol. 47, no. 6, pp. R31 – R65, Mar. 2002.
    DOI: 10.1088/0031-9155/47/6/201
    PMid: 11936185
  3. C. K. McGarry, M. W. D. Grattan, V. P. Cosgrove, “Optimization of image quality and dose for Varian aS500 electronic portal imaging (EPIDs),” Phys. Med. Biol. , vol. 52, no. 23, pp. 6865 – 6877, Dec. 2007.
    DOI: 10.1088/0031-9155/52/23/006
    PMid: 18029980
  4. A. Mans et al., “3D Dosimetric verification of volumetric-modulated arc therapy by portal dosimetry,” Radiother. Oncol., vol. 94, no. 2, pp. 181 – 187, Feb. 2010.
    DOI: 10.1016/j.radonc.2009.12.020
    PMid: 20089323
  5. K. Ślosarek et al., “Portal dosimetry in radiotherapy repeatability evaluation,” J. Appl. Clin. Med. Phys., vol. 22, no. 1, pp. 156 – 164, Jan. 2021.
    DOI: 10.1002/acm2.13123
    PMid: 33314643
    PMCid: PMC7856497
  6. W. van Elmpt et al., “A literature review of electronic portal imaging for radiotherapy dosimetry,” Radiother. Oncol., vol. 88, no. 3, pp. 289 – 309, Sep. 2008.
    DOI: 10.1016/j.radonc.2008.07.008
    PMid: 18706727
  7. L. C. G. G, Persoon et al., “Interfractional trend analysis of dose differences based on 2D transit portal dosimetry,” Phys. Med. Biol., vol. 57, no. 20, pp. 6445 – 6458, Oct. 2012.
    DOI: 10.1088/0031-9155/57/20/6445
    PMid: 23001452
  8. I. Olaciregui-Ruiz, R. Rozendaal, B. Mijnheer, M. van Herk, A. Mans, “Automated in vivo portal dosimetry of all treatments,” Phys. Med. Biol. , vol. 58, no. 22, pp. 8253 – 8264, Nov. 2013.
    DOI: 10.1088/0031-9155/58/22/8253
    PMid: 24201085
  9. F. Cremers et al., “Performance of electronic portal imaging devices (EPIDs) used in radiotherapy: image quality and dose measurements,” Med. Phys. , vol. 31, no. 5, pp. 985 – 996, May 2004.
    DOI: 10.1118/1.1688212
    PMid: 15191282
  10. S. Y. Son et al., “Evaluation of image quality for various electronic portal imaging devices in radiation therapy,” J. Radiol. Sci. Technol. , vol. 38, no. 4, pp. 451 – 461, Dec. 2015.
    DOI: 10.17946/JRST.2015.38.4.16
  11. B. K. Rout, M. C. Shekar, A. Kumar, K. K. D. Ramesh, “Quality control test for electronic portal imaging device using QC-3 phantom with PIPSpro,” Int. J. Cancer Ther. Oncol., vol. 2, no. 4, 02049, Sep. 2014.
    DOI: 10.14319/ijcto.0204.9
  12. I. J. Das et al., “A quality assurance phantom for electronic portal imaging devices,” J. Appl. Clin. Med. Phys., vol. 12, no. 2, pp. 391 – 403, Feb. 2011.
    DOI: 10.1120/jacmp.v12i2.3350
    PMid: 21587179
    PMCid: PMC5718680
  13. I. J. Das, F. Salvat, PENELOPE: a Code system for Monte Carlo simulation of electron and photon transport , OECD Nuclear Energy Agency, Issy-les-Moulineaux, France, 2015.
    Retrieved from: https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/nsc-doc2015-3.pdf
    Retrieved on: Jun. 12, 2023
  14. J. Sempau, E. Acosta, J. Baro, J. M. Fernández-Varea, F. Salvat, “An algorithm for Monte Carlo simulation of coupled electron-photon transport,” Nucl. Instrum. Methods Phys. Res. B, vol. 132, no. 3, pp. 377 – 390, Nov. 1997.
    DOI: 10.1016/S0168-583X(97)00414-X
  15. J. Baro, J. Sempau, J. M. Fernández-Varea, F. Salvat, “PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter,” Nucl. Instrum. Methods Phys. Res. B , vol. 100, no. 1, pp. 31 – 46, May 1995.
    DOI: 10.1016/0168-583X(95)00349-5
  16. C. M. Michail et al., “Experimental and theoretical evaluation of a high resolution CMOS based Detector under X-ray imaging conditions,” IEEE Trans. Nucl. Sci. , vol. 58, no. 1, pp. 314 – 322, Feb. 2011.
    DOI: 10.1109/TNS.2010.2094206
  17. J. Sempau, A. Badal, L. Brualla, “A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields,” Med. Phys., vol. 38, no. 11, pp. 5887 – 5895, Nov. 2011.
    DOI: 10.1118/1.3643029
    PMid: 22047353
  18. I. Kandarakis, D. Cavouras, G. S. Panayiotakis, C. D. Nomicos, “Evaluating x-ray detectors for radiographic applications: a comparison of ZnSCdS:Ag with Gd2O2S:Tb and Y2O2S:Tb screens,” Phys. Med. Biol., vol. 42, no. 7, pp. 1351 – 1373, Jul. 1997.
    DOI: 10.1088/0031-9155/42/7/009
    PMid: 9253044
  19. N. Kalyvas, P. Liaparinos, “Analytical and Monte Carlo comparisons on the optical transport mechanisms of powder phosphors,” Opt. Mater., vol. 88, pp. 396 – 405, Feb. 2019.
    DOI: 10.1016/j.optmat.2018.12.006
  20. NIST Physical Measurement Laboratory Elemental Data Index: X-ray Form Factor, Attenuation and Scattering Tables , NIST, Gaithersburg (MD), USA.
    Retrieved from: https://physics.nist.gov/PhysRefData/Elements/index.html
    Retrieved on: Jun. 15, 2023
  21. D. Parsons, J. L. Robar, “The effect of copper conversion plates on low Z target image quality,” Med. Phys.,vol. 39, no. 9, pp. 5362 – 5371, Sep. 2012
    DOI: 10.1118/1.4742052
    PMid: 22957604
  22. A. Kosunen, D. W. Rogers, “Beam quality specification for photon beam dosimetry,” Med. Phys.,vol. 20, no. 4, pp. 1181 – 1188, Jul. 1993.
    DOI: 10.1118/1.597150
    PMid: 8413028

Radiation Protection


Aishah Alboloushi, Omar Alboloushi

Pages: 5-7

DOI: 10.37392/RapProc.2023.02

Polonium-210 and uranium were monitored in most consumed vegetables and fruits in Kuwait following two validated procedures (radiochemical separation and then measurements using alpha spectrometry). The highest 210Po activity concentration was found in dates and bananas (111.4±25 and 107±16 mBq/kg respectively), while the lowest was monitored in green pepper (12 ± 2 mBq/kg). Uranium radioisotopes were below minimal detectable activity (0.25 Bq/kg). The importance of the study can be linked to the high local consumption of imported fruits and vegetables from different countries with different nuclear histories in addition to the fact that most Kuwaitis are being vegetarians nowadays. Conclusively, radiological data for natural alpha emitters have been established for fruits and vegetables in Kuwait, and they were found to agree with international similar data confirming their radiological safety. Future studies will be done determining gamma emitters in fruits and vegetables, in addition to the seafood analysis because it is the 1st source of 210Po incorporation.
  1. Natural and induced radioactivity in food, IAEA-TECDOC-1287, IAEA, Vienna, Austria, 2002.
    Retrieved from: https://www.iaea.org/publications/6291/natural-and-induced-radioactivity-in-food
    Retrieved on: Sep. 17, 2022
  2. F. Carvalho et al., The Environmental Behaviour of Polonium, Tech. Rep. Series no. 484, IAEA, Vienna, Austria, 2017.
    Retrieved from: https://www.iaea.org/publications/10845/the-environmental-behaviour-of-polonium
    Retrieved on: Sep. 17, 2022
  3. J. Alexander et al., “Uranium in foodstuffs, in particular mineral water,” EFSA J., vol. 7, no. 4, 1018, Apr. 2009.
    DOI: 10.2903/j.efsa.2009.1018
  4. K. D. Arunachalam et al., “Ingestion of Polonium (210Po) via dietary sources in high background radiation areas of south India,” Int. J. Radiat. Biol., vol. 90, no. 10, pp. 867 – 875, Oct. 2014.
    DOI: 10.3109/09553002.2014.922720
    PMid: 24844373
  5. I. Louw, A. Faanhof, D. Kotze, “Determination of Polonium-210 in various foodstuffs after microwave digestion,” Radioprotection, vol. 44, no. 5, pp. 89 – 95, 2009.
    DOI: 10.1051/radiopro/20095022
  6. S. Sdraulig, B. Orr, D. Urban, R. Tinker, Radiation doses from the average Australian diet, Tech. Rep. 181, ARPANSA, Melbourne, Australia, 2019.
    Retrieved from: https://www.arpansa.gov.au/sites/default/files/tr181.pdf
    Retrieved on: Sep. 17, 2022
  7. L. Zikovsky, “Determination of uranium in food in Quebec by neutron activation analysis,” J. Radioanal. Nucl. Chem., vol. 267, no. 3, pp. 695 – 697, Mar. 2006.
    DOI: 10.1007/s10967-006-0106-9
  8. F. Monroy-Guzmán, “Isolation of uranium by anionic exchange resins,” J. Chem. Chem. Eng., vol. 10, no. 2, pp. 90 – 95, 2016.
    DOI: 10.17265/1934-7375/2016.02.005
  9. A Procedure for Determination of Po-210 in Water Samples by Alpha Spectrometry, IAEA/AQ/12, IAEA, Vienna, Austria, 2010.
    Retrieved from: https://www.iaea.org/publications/8200/a-procedure-for-determination-of-po-210-in-water-samples-by-alpha-spectrometry
    Retrieved on: Sep. 17, 2022
  10. K. S. Din, “Determination of 210Po in various foodstuffs and its annual effective dose to inhabitants of Qena City, Egypt,” Sci. Total Environ., 2011, vol. 409, no. 24, pp. 5301 – 5304, Nov. 2011.
    DOI: 10.1016/j.scitotenv.2011.09.001
    PMid: 21959247

Novelties in Covid-19 research


Maria Zoran, Roxana Savastru, Dan Savastru, Marina Tautan

Pages: 8-14

DOI: 10.37392/RapProc.2023.03

This paper investigated the influences of urban aerosols and radon (222Rn) together climate parameters variability at both local and regional scales in relationship with COVID-19 pandemic incidence and mortality in Bucharest metropolitan area of Romania, considered one of the European’s most polluted hotspots cities. A spatio-temporal analysis of the daily particulate matter in two size fractions PM10 and PM2.5 in relation with daily radon concentrations and meteorological parameters was done through synergy of in-situ monitoring data and MODIS Terra/Aqua time-series satellite data for March 2020-April 2022 time period. This study investigated the COVID-19 waves patterns under different air quality and meteorological conditions, highlighting the role of synoptic anticyclonic stagnant conditions during each COVID-19 wave for SARS-CoV-2 virus spreading. These results contribute to a better understanding of urban decision makers and epidemiologists through considering the specific characteristics of different urban sectors for air quality improvement.
  1. Europe’s Air Quality Status 2022, Rep. 04/2022, Eur. Environ. Agency, Copenhagen, Denmark, 2022.
    DOI: 10.2800/049755
  2. D. Kikaj et al., “Investigating the vertical and spatial extent of radon-based classification of the atmospheric mixing state and impacts on seasonal urban air quality,” Sci. Total Environ., vol. 872, no. 2, 162126, May 2023.
    DOI: 10.1016/j.scitotenv.2023.162126
    PMid: 36773908
  3. M. Hosoda et al., “A unique high natural background radiation area - Dose assessment and perspectives,” Sci. Total Environ., vol. 750, no. 5, 142346, Jan. 2021.
    DOI: 10.1016/j.scitotenv.2020.142346
    PMid: 33182182
  4. L. Borro et al., “The role of air conditioning in the diffusion of Sars-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children’s hospital,” Environ. Res., vol. 193, 110343, Feb. 2021.
    DOI: 10.1016/j.envres.2020.110343
    PMid: 33068577
    PMCid: PMC7557177
  5. E. Burgio, P. Piscitelli, L. Migliore, “Ionizing radiation and human health: reviewing models of exposure and mechanisms of cellular damage. An epigenetic perspective,” Int. J. Environ. Res. Public Health, vol. 15, no. 9, 1971, Sep. 2018.
    DOI: 10.3390/ijerph15091971
    PMid: 30201914
    PMCid: PMC6163535
  6. I. Yarmoshenko, M. Zhukovsky, A. Onishchenko, A. Vasilyev, G. Malinovsky, “Factors influencing temporal variations of radon concentration in high-rise buildings,” J. Environ. Radioact., vol. 232, 106575, Jun. 2021.
    DOI: 10.1016/j.jenvrad.2021.106575
    PMid: 33711618
  7. F. Loffredo et al., “Indoor Radon Concentration and Risk Assessment in 27 Districts of a Public Healthcare Company in Naples, South Italy,” Life , vol. 11, no. 3, 178, Feb. 2021.
    DOI: 10.3390/life11030178
    PMid: 33668261
    PMCid: PMC7996231
  8. P. P. S. Otahal et al., “Low-Level Radon Activity Concentration-A MetroRADON International Intercomparison,” Int. J. Environ. Res. Public Health , vol. 19, no. 10, 5810, May 2022.
    DOI: 10.3390/ijerph19105810
    PMid: 35627347
    PMCid: PMC9141648
  9. V. Weilnhammer et al., “Extreme weather events in Europe and their health consequences - A systematic review,” Int. J. Hyg. Environ. Health , vol. 233, no. 9, 113688, Apr. 2021.
    DOI: 10.1016/j.ijheh.2021.113688
    PMid: 33530011
  10. N. S. M. Nor et al., “Particulate matter (PM2.5) as a potential SARS-CoV-2 carrier,” Sci. Rep., vol. 11, no. 1, 2508, Jan. 2021.
    DOI: 10.1038/s41598-021-81935-9
    PMid: 33510270
    PMCid: PMC7844283
  11. T. Borisova, S. Komisarenko, “Air pollution particulate matter as a potential carrier of SARS-CoV-2 to the nervous system and/or neurological symptom enhancer: arguments in favor,” Environ. Sci. Pollut. Res. Int ., vol. 28, no. 30, pp. 40371 – 40377, Aug. 2021.
    DOI: 10.1007/s11356-020-11183-3
    PMid: 33051841
    PMCid: PMC7552951
  12. M. Mullerova, K. Holy, P. Blahusiak, M. Bulko, “Study of radon exhalation from the soil,” J. Radioanal. Nucl. Chem., vol. 315, no. 2, pp. 237 – 241, Feb. 2018.
    DOI: 10.1007/s10967-017-5657-4
  13. M. Zoran, D. Savastru, A. Dida, “Assessing urban air quality and its relation with radon (222Rn),” J. Radioanal. Nucl. Chem., vol. 309, pp. 909 – 922, Aug. 2016.
    DOI: 10.1007/s10967-015-4681-5
  14. J. Maya et al., “Radon Risks Assessment with the Covid-19 Lockdown Effects,” J. Appl. Math. Phys., vol. 8, no. 7, pp. 1402 – 1412, Jul. 2020.
    DOI: 10.4236/jamp.2020.87106
  15. A. J. Blomberg et al., “The Role of Ambient Particle Radioactivity in Inflammation and Endothelial Function in an Elderly Cohort,” Epidemiology , vol. 31, no. 4, pp. 499 – 508, Jul. 2020.
    DOI: 10.1097/EDE.0000000000001197
    PMid: 32282436
    PMCid: PMC7269805
  16. M. Jerrett et al., “Air pollution and meteorology as risk factors for COVID-19 death in a cohort from Southern California,” Environ. Int., vol. 171, 107675, Jan. 2023.
    DOI: 10.1016/j.envint.2022.107675
    PMid: 36565571
    PMCid: PMC9715495
  17. E. F. Yates et al., “Review on the biological, epidemiological, and statistical relevance of COVID-19 paired with air pollution,” Environ. Adv ., vol. 8, no. 4, 100250, Jul. 2022.
    DOI: 10.1016/j.envadv.2022.100250
    PMid: 35692605
    PMCid: PMC9167046
  18. M. Travaglio et al., “Links between air pollution and COVID-19 in England,” Environ. Pollut., vol. 268, part A, 115859, Jan. 2021.
    DOI: 10.1016/j.envpol.2020.115859
    PMid: 33120349
    PMCid: PMC7571423
  19. Y. M. Baron, “Could changes in the airborne pollutant particulate matter acting as a viral vector have exerted selective pressure to cause COVID-19 evolution?,” Med. Hypotheses, vol. 146, 110401, Jan. 2021.
    DOI: 10.1016/j.mehy.2020.110401
    PMid: 33303307
    PMCid: PMC7679512
  20. M. Jerrett et al., “Air pollution and meteorology as risk factors for COVID-19 death in a cohort from Southern California,” Environ. Int., vol. 171, 107675, Jan. 2023.
    DOI: 10.1016/j.envint.2022.107675
    PMid: 36565571
    PMCid: PMC9715495
  21. B. Neupane et al., “Long-term exposure to ambient air pollution and risk of hospitalization with community-acquired pneumonia in older adults,”Am. J. Respir. Crit. Care Med., vol. 181, no. 1, pp. 47 – 53, Jan. 2010.
    DOI: 10.1164/rccm.200901-0160OC
    PMid: 19797763
  22. Y. M. Baron, L. Camilleri, “The Emergence of Ten SARS-CoV-2 Variants and Airborne PM2.5,” Virol. Curr. Res., vol. 5, no. 6, 141, Nov. 2021.
    Retrieved from: https://www.hilarispublisher.com/open-access/the-emergence-of-ten-sarscov2-variants-and-airborne-pmsub25sub-83896.html
    Retrieved on: Feb. 8, 2023
  23. Y. M. Baron, “Are there medium to outdoor multifaceted effects of the airborne pollutant PM2.5 determining the emergence of SARS-CoV-2 variants?,” Med. Hypotheses, vol. 158, 110718, Jan. 2022.
    DOI: 10.1016/j.mehy.2021.110718
    PMid: 34758423
    PMCid: PMC8526108
  24. A. Facciola, P. Lagana, G. Caruso, “The COVID-19 pandemic and its implications on the environment,” Environ. Res., vol. 201, 111648, Oct. 2021.
    DOI: 10.1016/j.envres.2021.111648
    PMid: 34242676
    PMCid: PMC8261195
  25. T. Sagawa et al., “Exposure to particulate matter upregulates ACE2 and COVID-19 Environmental Dependence 21 TMPRSS2 expression in the murine lung,” Environ. Res., vol. 195, 110722, Apr. 2021.
    DOI: 10.1016/j.envres.2021.110722
  26. M. A. Zoran, R. S. Savastru, D. M. Savastru, M. N. Tautan, “Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy,” Sci. Total Environ ., vol. 738, no. 6, 139825, Oct. 2020.
    DOI: 10.1016/j.scitotenv.2020.139825
    PMid: 32512362
    PMCid: PMC7265857
  27. M. A. Zoran, R. S. Savastru, D. M. Savastru, M. N. Tautan, “Impacts of exposure to air pollution, radon and climate drivers on the COVID-19 pandemic in Bucharest, Romania: A time series study,” Environ. Res., vol. 212, part D, 113437, Sep. 2022.
    DOI: 10.1016/j.envres.2022.113437
    PMid: 35594963
    PMCid: PMC9113773
  28. J. L. Domingo, M. Marqu`es, J. Rovira, “Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review,” Environ. Res., vol. 188, 109861, Sep. 2020.
    DOI: 10.1016/j.envres.2020.109861
    PMid: 32718835
    PMCid: PMC7309850
  29. J. L. Domingo, J. Rovira, “Effects of air pollutants on the transmission and severity of respiratory viral infections,” Environ. Res., vol. 187, 109650, Aug. 2020.
    DOI: 10.1016/j.envres.2020.109650
    PMid: 32416357
    PMCid: PMC7211639
  30. N. H. Orak, “Effect of ambient air pollution and meteorological factors on the potential transmission of COVID-19 in Turkey,” Environ. Res., vol. 212,
    part E, 113646, Sep. 2022.
    DOI: 10.1016/j.envres.2022.113646
    PMid: 35688216
    PMCid: PMC9172252
  31. A. Srivastava, “COVID-19 and air pollution and meteorology-an intricate relationship: A review,”Chemosphere, vol. 263, 128297, Jan. 2021.
    DOI: 10.1016/j.chemosphere.2020.128297
    PMid: 33297239
    PMCid: PMC7487522
  32. F. Tian et al., “Ambient air pollution and low temperature associated with case fatality of COVID-19: A nationwide retrospective cohort study in China,” The Innovation, vol. 2, no. 3, 100139, Aug. 2021.
    DOI: 10.1016/j.xinn.2021.100139
    PMid: 34189495
    PMCid: PMC8226106
  33. A. Sanchez-Lorenzo et al., “Did anomalous atmospheric circulation favor the spread of COVID-19 in Europe?” Environ. Res., vol. 194, 110626, Mar. 2021.
    DOI: 10.1016/j.envres.2020.110626
    PMid: 33345895
    PMCid: PMC7746124
  34. N. R. Rahimi et al., “Bidirectional association between COVID- 19 and the environment: A systematic review,” Environ. Res., vol. 194, no. 2, 110692, Mar. 2021.
    DOI: 10.1016/j.envres.2020.110692
    PMid: 33385384
    PMCid: PMC7833965
  35. J. D. Ford et al., “Interactions between climate and COVID-19,” Lancet Planet. Health , vol. 6, no. 10,
    pp. e825 – e833, Oct. 2022.
    DOI: 10.1016/S2542-5196(22)00174-7
    PMid: 36208645
    PMCid: PMC9534524
  36. V. Yilmaz, Y. Can, “Impact of knowledge, concern and awareness about global warming and global climatic change on environmental behavior,” Environ. Dev. Sustain ., vol. 22, no. 7, pp. 6245 – 6260, Oct. 2020.
    DOI: 10.1007/s10668-019-00475-5
  37. Y. Matiiuk, R. Krikštolaitis, G. Liobikienė, “The Covid-19 pandemic in context of climate change perception and resource-saving behavior in the European Union countries,” J. Clean. Prod., vol. 395, no. 7, 136433, Apr. 2023.
    DOI: 10.1016/j.jclepro.2023.136433
    PMid: 36818660
    PMCid: PMC9925455



Saori Nakamura, Nobuhiko Takai, Yoshino Katsuki, Akiko Uzawa, Ryoichi Hirayama, Yoshihito Ohba

Pages: 15-19

DOI: 10.37392/RapProc.2023.04

The intestinal crypt stem cells in the gut have a high growth potential and radiosensitivity that is dose-dependently reduced by carbon-ion irradiation, and intestinal death occurs by the arrest of epithelial cells supply in high-dose areas. Therefore, the development of intestinal radioprotection methods may contribute to more effective and less harmful carbon-ion radiotherapy. We have demonstrated that N-methyl-D-aspartate (NMDA) receptor antagonists reduce radiation-induced intestinal injury and that the activation of NMDA receptors significantly increased 24 hours after irradiation. In this study, we investigated the association with amino acid concentration that activates NMDA receptors in intestinal injury in irradiated mice. To investigate changes in amino acid concentration in mouse small intestine by carbon ion irradiation, we developed the HPLC method for the determination of six amino acids and related compounds—glycine (Gly), serine (Ser), aspartic acid (Asp), glutamic acid (Glu), taurine (Tau), and γ-aminobutyric acid (GABA). C3H/He female mice were abdominally irradiated with carbon ion at doses of 9 Gy (20 keV/μm, 290 MeV/u, accelerated by Heavy-Ion Medical Accelerator in Chiba synchrotron at National Institute of Radiological Sciences, Japan). After carbon-ion irradiation, the concentration of Tau significantly decreased with time. Tau, a sulfur-containing amino acid-related compound, has been reported to have a radioprotective effect. Therefore, the decrease in Tau concentration was inferred to be a decrease in radioprotective ability in the mouse’s intestine. On the contrary, the concentration of Glu significantly increased with time dependence by the irradiation. These results suggested that the increase in glutamate concentration after irradiation induces the activation of NMDA receptors; thus, radiation-induced intestinal injuries could be suppressed by NMDA receptor antagonists as radioprotective agents after carbon-ion irradiation.
  1. T. Kamada, “Outline of Heavy Ion Radiotherapy,” in Proc. 2nd Int. Symp. Heavy-Ion Radiotherapy and Adv. Technology, Tokyo, Japan, 2016, pp. 1 – 4.
    Retrieved from: http://www.nirs.qst.go.jp/rd/reports/proceedings/pdf/2nd_International_Symposium_2016.pdf
    Retrieved on: Feb. 01, 2017
  2. Y. Yoshida et al., “Evaluation of therapeutic gain for fractionated carbon-ion radiotherapy using the tumor growth delay and crypt survival assays,” Radiother. Oncol.,vol. 117, no. 2, pp. 351 – 357, Nov. 2015.
    DOI: 10.1016/j.radonc.2015.09.027
    PMid: 26454348
  3. T. Ohno, “Particle radiotherapy with carbon ion beams,” EPMA J., vol. 4, no. 1, 9, Mar. 2013.
    DOI: 10.1186/1878-5085-4-9
    PMid: 23497542
    PMCid: PMC3598788
  4. A. Dubois, R. I. Walker, “Prospects for Management of Gastrointestinal Injury Associated with the Acute Radiation Syndrome,” Gastroenterology , vol. 95, no. 2, pp. 500 – 507, Aug. 1988.
    Retrieved from: http://www.sciencedirect.com/science/article/pii/0016508588905124
    Retrieved on: Feb. 01, 2017
  5. M. M. Bismar, F. A. Sinicrope, “Radiation enteritis,” Curr. Gastroenterol. Rep. , vol. 4, no. 5, pp. 361 – 365, Oct. 2002.
    DOI: 10.1007/s11894-002-0005-3
    PMid: 12228037
  6. C. G. Rousseaux, “A Review of Glutamate Receptors I: Current Understanding of Their Biology,” J. Toxicol. Pathol., vol. 21, no. 1, pp. 25 – 51, Apr. 2008.
    DOI: 10.1293/tox.21.25
  7. S. F. Traynelis et al., “Glutamate Receptor Ion Channels: Structure, Regulation, and Function,” Pharmacol. Rev.,vol. 62, no. 3, pp. 405 – 496, Sep. 2010.
    DOI: 10.1124/pr.109.002451
    PMid: 20716669
    PMCid: PMC2964903
  8. K. G. Dickman, J. G. Youssef, S. M. Mathew, S. I. Said, “Ionotropic Glutamate Receptors in Lungs and Airways,” Am. J. Respir. Cell Mol., vol. 30, no. 2, pp. 139 – 144,
    Feb. 2004.
    DOI: 10.1165/rcmb.2003-0177OC
    PMid: 12855408
  9. J. W. Olney, “Excitotoxic Amino Acids and Neuropsychiatric Disorders,” Annu. Rev. Pharmacol. Toxicol. , vol. 30, pp. 47 – 71, Apr. 1990.
    DOI: 10.1146/annurev.pa.30.040190.000403
    PMid: 2188577
  10. D. W. Choi, “Excitotoxic cell death,” J. Neurobiol., vol. 23, no. 9, pp. 1261 – 1276, Nov. 1992.
    DOI: 10.1002/neu.480230915
    PMid: 1361523
  11. Y. M. Lu, H. Z. Yin, J. Chiang, J. H. Weiss, “Ca2+-Permeable AMPA/Kainate and NMDA Channels: High Rate of Ca 2+ Influx Underlies Potent Induction of Injury,” J. Neurosci., vol. 16, no. 17, pp. 5457 – 5465, Sep. 1996.
    Retrieved from: http://www.jneurosci.org/content/jneuro/16/17/5457.full.pdf
    Retrieved on: Feb. 01, 2017
  12. C. G. Rousseaux, “A Review of Glutamate Receptors II: Pathophysiology and Pathology,” J. Toxicol. Pathol., vol. 21, no. 3, pp. 133 – 173, Oct. 2008.
    DOI: 10.1293/tox.21.133
  13. L. Tenneti, D. M. D`Emilia, C. M. Troy, S. A. Lipton, “Role of Caspases in N-Methyl-D-Aspartate-Induced Apoptosis in Cerebrocortical Neurons,” J. Neurochem., vol. 71, no. 3, pp. 946 – 959, Sep. 1998.
    DOI: 10.1046/j.1471-4159.1998.71030946.x
    PMid: 9721720
  14. J. A. McRoberts et al., “Role of peripheral N-methyl-D-aspartate (NMDA) receptors in visceral nociception in rats,” Gastroenterology, vol. 120, no. 7, pp. 1737 – 1748, Jun. 2001.
    DOI: 10.1053/gast.2001.24848
    PMid: 11375955
  15. H. Chen et al., “Identification of a homocysteine receptor in the peripheral endothelium and its role in proliferation,” J. Vasc. Surg., vol. 41, no. 5, pp. 853 – 860, May. 2005.
    DOI: 10.1016/j.jvs.2005.02.021
    PMid: 15886671
  16. H. Wang, R. J. Liu, R. X. Zhang, J. T. Qiao, “Peripheral NMDA receptors contribute to activation of nociceptors: a c-fos expression study in rats,” Neurosci. Lett., vol. 221, no. 2-3, pp. 101 – 104, Jan. 1997.
    DOI: 10.1016/S0304-3940(96)13299-7
    PMid: 9121674
  17. C. G. Parsons, “NMDA receptors as targets for drug action in neuropathic pain,” Eur. J. Pharmacol., vol. 429, no. 1-3, pp. 71 – 78, Oct. 2001.
    DOI: 10.1016/S0014-2999(01)01307-3
    PMid: 11698028
  18. A. B. Petrenko, T. Yamakura, H. Baba, K. Shimoji, “The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review,” Anesth Analg , vol. 97,no. 4, pp. 1108 – 1116, Oct. 2003.
    DOI: 10.1213/01.ANE.0000081061.12235.55
    PMid: 14500166
  19. W. Rzeski, L. Turski, C. Ikonomidou, “Glutamate antagonists limit tumor growth,” PNAS USA, vol. 98, no. 11, pp. 6372 – 6377, May 2001.
    DOI: 10.1073/pnas.091113598
    PMid: 11331750
    PMCid: PMC33475
  20. M. Ohgami et al., “Effect of N-methyl-D-aspartate receptors antagonist on radiation-induced gut injuries in mice,” in Proc. 5th Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2017) , Budva, Montenegro, 2017, pp. 6 – 10.
    DOI: 10.21175/RadProc.2017.02
  21. M. J. Niciu, B. Kelmendi, G. Sanacora, “Overview of glutamatergic neurotransmission in the nervous system,” Pharmacol. Biochem. Behav ., vol. 100, no. 4, pp. 656 – 664, Feb. 2012.
    DOI: 10.1016/j.pbb.2011.08.008
    PMid: 21889952
    PMCid: PMC3253893
  22. T. Yamashita et al., “Effect of Radiation on the Expression of Taurine Transporter in the Intestine of Mouse,” Adv. Exp. Med. Biol., vol. 975, part 2, pp. 729 – 740, 2017.
    DOI: 10.1007/978-94-024-1079-2_57
    PMid: 28849495
  23. X. Wu et al., “Determination of amino acid neurotransmitters in rat hippocampi by HPLC-UV using NBD-F as a derivative,” Biomed. Chromatogr ., vol. 28, no. 4, pp. 459 – 462, Apr. 2014.
    DOI: 10.1002/bmc.3062
    PMid: 24132719
  24. Xue-Jiao Zhao et al., “Simultaneous determination of five amino acid neurotransmitters in rat and porcine blood and brain by two-dimensional liquid chromatography,” J. Chromatgr. B, vol. 1163, 122507, Jan. 2021.
    DOI: 10.1016/j.jchromb.2020.122507
    PMid: 33387860
  25. K. Hamase et al., “Regional distribution and postnatal changes of D-amino acids in rat brain,” Biochim. Biophys. Acta Gen. Subj., vol. 1334, no. 2-3, pp. 214 – 222, Mar. 1997.
    DOI: 10.1016/s0304-4165(96)00095-5
    PMid: 9101716
  26. A. Furusho et al., “Development of a Highly-Sensitive Two-Dimensional HPLC System with Narrowbore Reversed-Phase and Microbore Enantioselective Columns and Application to the Chiral Amino Acid Analysis of the Mammalian Brain,” Chromatography, vol. 39, no. 2, pp. 83 – 90, Apr. 2018.
    DOI: 10.15583/jpchrom.2018.007
  27. E. Bonfoco, D. Krainc, M. Ankarcrona, P. Nicotera, S. A. Lipton, “Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures,” PNAS USA, vol. 92, no. 16, pp. 7162 – 7166, Aug. 1995.
    DOI: 10.1073/pnas.92.16.7162
    PMid: 7638161
    PMCid: PMC41299



Héctor D. Colmán, J. F. Facetti Masulli

Pages: 20-23

DOI: 10.37392/RapProc.2023.05

The distribution of the valence states III and V of radioactive 76As after neutron irradiations of thioarsenic compounds has been investigated. The irradiated compounds were thioarsenites as well as sodium thioarsenate; fresh precipitated arsenic trisulfide was also investigated. Materials were irradiated with neutrons at a flux of 1012 n cm-2 s-1. The radioisotope formed by (n, γ) reaction is 76As with T1/2= 26.4h. Separations of valence states were performed by high voltage electrophoresis at a gradient of 35V cm-1 on 3MM Whatmann paper. Radiochemical yield of As(V)in the hydrated thioarsenites was very high but when dehydrated thioarsenite is irradiated, the yield of the radioactive As(V) was much lower and similar to that obtained in the irradiated disordered trisulfide. On irradiated thioarsenate the retention was also very high. These yields are like those found in the previous work on irradiating As sulfides and it seems to be related to the covalent character of the As-S bond; likewise, internal conversion accounts for the primary oxidation of recoil atoms.
  1. S. Radescu et al., “Study of the orpiment and anorpiment phases of As2S3 under pressure,” J. Phys. Conf. Ser., vol. 950, no. 4, 042018, 2017.
    DOI: 10.1088/1742-6596/950/4/042018
  2. V. P. Cuenca-Gotor et al., “Orpiment under compression: metavalent bonding at high pressure. Orpiment under compression: metavalent bonding at high pressure,” Phys. Chem. Chem. Phys., vol. 22, no. 6, pp. 3352 – 3369, Feb. 2020.
    DOI: 10.1039/c9cp06298j
    PMid: 31976513
  3. V. P. Cuenca-Gotor, “Estudio de compuestos As2X 3 bajo presión,” Tesis doctoral, Universitat Politécnica de Valencia, Departamento de Física Aplicada, Valencia, España, Junio 2019.
    (V. P. Cuenca-Gotor, “Study of compounds As2X 3 under pressure,” Ph.D thesis, Polytechnic University of Valencia, Department of Applied Physics, Valencia, Spain, Jun. 2019.)
    Retrieved from: https://riunet.upv.es/bitstream/handle/10251/125699/Cuenca%20-%20Estudio%20de%20compuestos%20As2X3%20bajo%20presi%C3%B3n.pdf?sequence=1&isAllowed=y
    Retrieved on: Jun. 22, 2023
  4. I. Fejes, F. Billes, V. Mitsa, “A theoretical study of the effect on the vibrational spectrum of the stepwise sulfur by selenium substitution in arsenic pentasulfide,” J. Mol. Struct. (Theochem), vol. 531, no. 1-3, pp. 407 – 414, Oct. 2000.
    DOI: 10.1016/S0166-1280(00)00461-9
  5. H. Kobayashi, H. Kanbara, M. Koga, K. Kubodera, “Third‐order nonlinear optical properties of As2S 3 chalcogenide glass,” J. Appl. Phys., vol. 74, no. 6, pp. 3683 – 3687, Sep. 1993.
    DOI: 10.1063/1.354511
  6. M. Wuttig, V. L. Deringer, X. Gonze, C. Bichara, J. Y. Raty, “Incipient Metals: Functional Materials with a Unique Bonding Mechanism,”Adv. Mater., vol. 30, no. 51, 1803777, Dec. 2018.
    DOI: 10.1002/adma.201803777
    PMid: 30318844
  7. R. Naik, R. Ganesan, K. S. Sangunni, “Optical properties change in amorphous (As2S3)0.87Sb0.13 thin films by photo and thermal induced process,” Mater. Chem. Phys., vol. 125, no. 3, pp. 505 – 509, Feb. 2011.
    DOI: 10.1016/j.matchemphys.2010.10.025
  8. J. F. Facetti-Masulli, H. D. Colman, “Chemical effects of neutron irradiation on arsenic sulfides,” in Proc. 8th Int. Conf. Radiation in Various Fields of Research (RAD 2020), Herceg Novi, Montenegro, 2020, pp. 106 – 108.
    DOI: 10.21175/RadProc.2020.22
  9. J. W. Mellor, “Arsenic,” in A Comprehensive Treatise on Inorganic and Theoretical Chemistry , vol. IX, London, England: Longmans, Green and Co., 1929, ch. LI, pp. 1 – 338.
    Retrieved from: https://library.lol/main/F417349834EF8BD783B7987D507F5AE6
    Retrieved on: Mar. 22, 2022
  10. Wen Li, “Synthesis and Solubility of Arsenic Tri-sulfide and Sodium Arsenic Oxy-sulfide Complexes in Alkaline Sulfide Solutions,” M.Sc. thesis, The University of British Columbia, Mater. Eng., Vancouver, Canada, 2023.
  11. R. B. Firestone, V. S. Shirley, Table of Isotopes, vol. II, 8th ed., New York (NY), USA: J. Wiley & Sons, 1996.
  12. J. F. Facetti-Masulli, H. Colman, A. Vallejos, “Separación por electroforesis de AsIII y AsV en thiocompuestos de arsenico,” Rev. Soc. Cientif. Paraguay , vol. 10, pp. 21 – 23, Jan. 1969.
    (J. F. Facetti-Masulli, H. Colman, A. Vallejos, “Separation of As III and As V in thio compounds of arsenic by High Voltage Electrophoresis,” Rev. Soc. Cientif. Paraguay , vol. 10, pp. 21 – 23, Jan. 1969.)
    Retrieved from: https://www.researchgate.net/publication/281559200_Separation_of_As_III_and_As_V_in_thio_compounds_of_arsenic_by_High_Voltage_Electrophoresis_H_Colman_A_Vallejos_J_F_Facetti_Masulli_Rev_Soc_Cient_Paraguay-_2_epoca-_Vol_10_21_1969
    Retrieved on: Mar. 22, 2022
  13. J. F. Facetti-Masulli, H. D. Colmán, “Chemical effects of neutron capture in thioantimony compounds,” J. Inorg. Nucl. Chem., vol. 33, no. 12, pp. 4019 – 4023, Dec. 1971.
    DOI: 10.1016/0022-1902(71)80500-6
  14. J. F. Facetti, A. Vallejos, “Chemical consequences of thermal annealing in neutron activated thioantimony compounds,” J. Inorg. Nucl. Chem., vol. 34, no. 12, pp. 3659 – 3664, Dec. 1972.
    DOI: 10.1016/0022-1902(72)80010-1
  15. G. Harbottle, “Hot atom chemistry in inorganic solids,” in Hot Atom Chemistry Status Report: Proceedings of a panel , Vienna, Austria: IAEA, 1975, p. 25.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/07/239/7239657.pdf
    Retrieved on: Mar. 22, 2022
  16. G. Harbottle, “Hot atom chemistry in inorganic solids,” in Hot Atom Chemistry Status Report: Proceedings of a panel , Vienna, Austria: IAEA, 1975, pp. 19 – 24.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/07/239/7239657.pdf
    Retrieved on: Mar. 22, 2022
  17. R. B. Firestone, “Adopted data base and user tables,” in Database of prompt gamma rays from slow neutron capture for elemental analysis , Vienna, Austria: IAEA, 2007, ch. 7, pp. 73 – 75.
    Retrieved from: https://www.iaea.org/publications/7030/database-of-prompt-gamma-rays-from-slow-neutron-capture-for-elemental-analysis
    Retrieved on: Mar. 22, 2022
  18. K. Tanaka, “Chemical and medium-range orders in As2S 3 glass,” Phys. Rev. B, vol. 36, no. 18, pp. 9746 – 9752, Dec. 1987.
    DOI: 10.1103/PhysRevB.36.9746
  19. T. T. Meek, T. J. Isaacs, “Structure of amorphous bulk As2S5,” J. Electron. Mater. , vol. 10, no. 4, pp. 653 – 664, Jul. 1981.
    DOI: 10.1007/BF02660126
  20. G. Harbottle, “Effect of nucleogenesis preceding chemical reaction: dissipation of excitation before chemical reaction,” in Chemical Effects of Nuclear Transformations in Inorganic Systems , G. Harbottle, A. G. Maddock, Eds., Amsterdam, Holland: North-Holland Pub. Co., 1979, pp. 39 – 73.



Chiara Cantaluppi, Beatrice Morelli, Raffaele Cavalli, Rosa Greco, Nicolò Pradel

Pages: 24-30

DOI: 10.37392/RapProc.2023.06

The problem of radionuclides contamination in imported wood pellet, used for industrial and domestic heating, emerged for the first time in Italy in June 2009 in a batch from Lithuania, in which a concentration of 137Cs of about 300 Bq/kg was measured, increased to about 40000 Bq/kg after burning. The radioactive fall-out due to the Chernobyl accident (26 April 1986), that deposited over extensive areas of central and northern Europe, affected also areas exploited for agroforestry and forestry resources. The soil contamination occurred almost like “leopard spot” and so in a heterogeneous way also at thousand kilometres away from the Chernobyl site. The eventual radioactive contamination currently present in woody biomasses is almost due to 137Cs radionuclide, which has a half-life of about 30 years and therefore (depending on the contamination of the investigated area) still potentially present in variable quantities in soils and vegetation. The biomass represented by pellet and wood chips are nowadays of a great importance due to its extreme thermal efficiency, its cheapness and its relative low environmental impact in terms of carbon dioxide emissions; the major problem involved in this biomass, in the Italian context, is represented by the fact that the demand for pellets is much greater than the territorial possibility of self-production, therefore there is the need to import this resource from external countries and thus with potentially non-negligible levels of radioactivity. This work, conducted at ICMATE-CNR in Padua, aimed to investigate the activity concentration of 137Cs, 40K and other radionuclides possibly present in 27 samples of forest chips (woody flour mainly produced by Picea abies species) from the autonomous province of Trento and the ashes produced by the same samples burned in similar to domestic combustion conditions (pellet stove at about 550° C). The taken samples were subsequently analysed by high-resolution gamma spectrometry in order to evaluate the activity concentration of 137Cs and of the natural 40K, first in the “fresh” samples of forest chips and afterwards in the same samples incinerated after their pelletization, with the aim of comparing the amount of radionuclides of the former with respect to the latter and to determine the concentration factor. The extensive sampling to the whole province allowed to have a reliable and composite map of distribution of 137Cs radioactivity in the wooded areas on the surface of the Trento province. 134Cs had been also searched for, but it was below the instrumental limits of detection in all the samples. Results thus obtained were then compared and evaluated with respect both to dataset previously obtained from the same ICMATE-CNR laboratory consisting of 65 pellet samples from different areas of Eastern Europe (Bosnia, Croatia, Ukraine, Serbia and Russia) analysed in 2010-2011; and with respect to literature data relating to woody biomass for combustion of European and non-European origin.
  1. M. De Cort et al., Atlas of Caesium Deposition on Europe after the Chernobyl Accident , European Commission, Luxembourg, Luxembourg, 2009.
    Retrieved from: https://op.europa.eu/en/publication-detail/-/publication/110b15f7-4df8-49a0-856f-be8f681ae9fd
    Retrieved on: Sep. 22, 2022
  2. S. Manera, D. Milani, Pellet radioattivo Indagine radiometrica e considerazioni di radioprotezione , Università degli studi di Pavia, Pavia, Italia, 2009.
    (S. Manera, D. Milani, Radioactive pellet Radiometric Investigation and Radioprotection considerations , University of Pavia, Pavia, Italy, 2009.)
    Retrieved from: http://www.puntosicuro.info/documenti/documenti/090810_Universita_Pavia_Pellet_radioattivo.pdf
    Retrieved on: Sep. 22, 2022
  3. B. D. Amiro, S. C. Sheppard, F. L. Johnston, W. G. Evenden, D. R. Harris, “Burning radionuclide question: What happens to iodine, caesium and chlorine in biomass fires?,” Sci. Total Environ ., vol 187, no. 2, pp. 93 – 103, Aug. 1996.
    DOI: 10.1016/0048-9697(96)05125-X
    PMid: 8766727
  4. M. Belivermiş et al., “The usability of tree barks as long term biomonitors of atmospheric radionuclide deposition,” Appl. Radiat. Isot., vol. 68, no. 12, pp. 2433 – 2437, Dec. 2010.
    DOI: 10.1016/j.apradiso.2010.07.010
    PMid: 20678943
  5. M. Calabrese, M. Quarantotto, C. Cantaluppi, A. Fasson, “Caratteristiche merceologiche e radiometriche del pellet in importazione,” Atti del XXV Congresso Nazionale di Scienze Merceologiche , Trieste-Udine, Italia, 2011, pag. 286 – 291.
    (M. Calabrese, M. Quarantotto, C. Cantaluppi, A. Fasson, “Commodity and Radiometric Characteristics of imported pellets,” in Proc. 25th National Congress of Commodity Science , Trieste-Udine, Italy, 2011, pp. 286 – 291.)
    Retrieved from: http://www.aisme.it/accademia-italiana-scienze-merceologiche/attivita/congressi.html
    Retrieved on: Jan. 12, 2023
  6. D. Desideri, A. Rongoni, C. Roselli, D. Saetta, L. Feduzi, “Analytical methods for the determination of 137Cs and 90Sr in ash of fuel pellets used in Italy,” Microchem. J ., vol. 103, pp. 131 – 134, Jul. 2012.
    DOI: 10.1016/j.microc.2012.02.007
  7. G. Zambelli et al., “Sostanze radioattive nelle biomasse: rischio di esposizione a radiazioni ionizzanti nella combustione di pellets e di biomasse di legno derivanti da aeree sensibili,” negli Atti di 24° Convegno di Igiene Industriale (AIDII 2018), Corvara, Italia, 2018.
    (G. Zambelli et al., “Radioactive substances in biomass: risk of exposure to ionizing radiation in the combustion of pellets and wood biomass deriving from sensitive areas,” in Proc. 24th Industrial Hygiene Conf. (AIDII 2018) , Corvara, Italy, 2018.)
    Retrieved from: https://www.researchgate.net/publication/324360348
    Retrieved on: Jan. 12, 2023
  8. M. Brambilla, P. Fortunati, F. Carini, “Modello concettuale dinamico per lo studio del trasferimento del radiocesio dal terreno alle piante d` interesse agrario,” Bollettino della Società Italiana della Scienza del Suolo , vol. 52, n. 1-2, Palermo, Italia, Giugno 2003.
    (M. Brambilla, P. Fortunati, F. Carini, “Dynamic Conceptual Model for the Study of the Transfer of Radiocesium from the Soil to Plants of Agricultural Interest,” Bull. Italian Society of Soil Science, vol. 52, no. 1-2, Palermo, Italy, Jun. 2003.)
    Retrieved from: https://www.scienzadelsuolo.org/_docs/bollettini/2003_bollettino_volume_52_n1_2.pdf
    Retrieved on: Sep. 22, 2022
  9. S. Ehlken, G. Kirchner, “Enviromental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review,” J. Environ. Radioact., vol. 58, no. 2-3, pp. 97 – 112, 2002.
    DOI: 10.1016/s0265-931x(01)00060-1
    PMid: 11814196
  10. C. Papastefanou, M. Manolopoulou, S. Stoulos, A. Ioannidou, E. Gerasopoulos, “Soil-to-plant transfer of 137Cs, 40K and 7Be,” J. Environ. Radioact., vol. 45, no. 1, pp. 59 – 65, Oct. 1999.
    DOI: 10.1016/S0265-931X(98)00077-0
  11. E. Smolders, K. Van Den Brande, R. Merckx, “Concentration of 137Cs and K in soil solution predict the plant availability of 137Cs in soils,” Environ. Sci. Technol., vol. 31, no. 12, pp. 3432 – 3438, Dec. 1997.
    DOI: 10.1021/es970113r
  12. C. L. Fogh, K. G. Andersson, “Dynamic behaviour of 137Cs contamination in trees of the Briansk region, Russia,” Sci. Total Environ ., vol. 269, no. 1-3, pp. 105 – 115, Mar. 2001.
    DOI: 10.1016/s0048-9697(00)00819-6
  13. S. Donati, “Distribuzione del Contenuto di Elementi Chimici Radioattivi e Stabili in Pinus Pinaster e Prospettive di Utilizzo in Dendroanalisi,” Tesi di Laurea in Scienze Ambientali, Università di Bologna, Bologna, Italia, 2002.
    (S. Donati, “Distribution of the content of radioactive and stable chemical elements in pinus pinasterand perspectives of use in dendroanalysis,” Environmental Sciences Degree Thesis, University of Bologna, Bologna, Italy, 2002.)
  14. N. V. Soukhova et al., “137Cs distribution among annual rings of different tree species contaminated after the Chernobyl accident,” J. Environ. Radioact ., vol. 65, no. 1, pp. 19 – 28, 2003.
    DOI: 10.1016/S0265-931X(02)00061-9
    PMid: 12683726
  15. I. Lovrencic et al., “Distribution of 137Cs, 40K and 7Be in silver fir-tree (abies alba L.) from Groski Kotar, Croatia,” J. Radioanal. Nucl. Chem., vol. 275, no. 1, pp. 71 – 79, Jan. 2008.
    DOI: 10.1007/s10967-007-7009-2
  16. O. Guilitte, J. Melin, L. Wallberg, “Biological pathways of radionuclides originating from the Chernobyl fallout in a Boreal fores ecosystem,” Sci. Total Environ ., vol. 157, no. 1-3, pp. 207 – 215, Dec. 1994.
    DOI: 10.1016/0048-9697(94)04283-S
    PMid: 7839113
  17. R. Römmelt, L. Hiersche, G. Schaller, E. Wirth, “Influence of soil fungi (Basidiomycetes) on the migration of 137+134Cs and 90 Sr in coniferous forest soils,” in Proc. Workshop on The Transf. Radionucl. Nat. Semi-Natural Environ ., Villa Manin, Italy, 1989, pp. 152 – 160.
    Retrieved from: https://op.europa.eu/en/publication-detail/-/publication/f558d3ff-37d0-4ef5-86f2-a9db1e084b7e
    Retrieved on: Jan. 12, 2023
  18. M. Gravaglia et al., Task 01.02.03: Livelli di riferimento, esenzione, allontanamento (anche NORM) , ISPRA: Dipartimento Nucleare, Rischio Tecnologico ed Industriale, Roma, Italia, 2014, pag. 7 – 29.
    (M. Gravaglia et al., TASK 01.02.03: Levels of containment, exemption, removal (also NORM) , ISPRA: Nuclear department, Technical and Industrial Risk, Rome, Italy, 2014, pp. 7 – 29.)
    Retrieved from: https://www.snpambiente.it/wp-content/uploads/2018/11/Task-01.02.03-Livelli-di-allontanamento-Rev.0.pdf
    Retrieved on: Jan. 12, 2023
  19. N. Pradel, “Analisi del contenuto di radionuclidi nel cippato prodotto in alcune zone della provincia di Trento,” Lauree magistrali tesi, Università degli studi di Padova, Dipartimento Territorio e Sistemi Agro-Forestali, Padova, Italia, 2022.
    (N. Pradel, “Analysis of the radionuclide content in wood chips produced in some areas of the Trento Province,” M.Sc. thesis, University of Padua, Dept. of Territory and Agro-Forestry Systems, Padua, Italy, 2022.)
    Retrieved from: https://thesis.unipd.it/handle/20.500.12608/42386
    Retrieved on: Jan. 12, 2023



Kahramon Mamatkulov, Anka Jevremović, Darya Zakrytnaya, Yersultan Arynbek, Nina Vorobjeva, Grigory Arzumanyan

Pages: 31-35

DOI: 10.37392/RapProc.2023.07

In this study, we aimed to investigate the impact of radiation across a wide range of wavelengths, from UV-A to red visible light, on the role of neutrophils in inflammatory, autoimmune, and oncological diseases. Our focus was on understanding the photoacceptance process involving two cytochromes: cytochrome_b558 and cytochrome_c oxidase. Through the utilization of Raman spectroscopy, we recorded characteristic Raman frequencies corresponding to various reactive oxygen species (ROS) and low-frequency lattice vibrational modes for citrulline. By employing selective inhibitors of NADPH oxidase (apocynin) and PAD4 (GSK484), we were able to establish that when neutrophils are exposed to light of different wavelengths, it activates signaling pathways that lead to the formation of NETs (neutrophil extracellular traps) through the involvement of NADPH oxidase and PAD4. During the irradiation of neutrophils, we observed distinct peaks indicating the presence of ROS and citrulline, suggesting the participation of intracellular ROS during light exposure. Development of novel drugs aimed at suppressing NETs formation could potentially inhibit NET formation at sites exposed to UV and visible light. This could result in a reduction in symptoms related to UV-induced photoaging and other forms of organ damage.
  1. H. Takei, A. Araki, H. Watanabe, A. Ichinose, F. Sendo, “Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis,” J. Leukoc. Biol., vol. 59, no. 2, pp. 229 – 240, Feb. 1996.
    DOI: 10.1002/jlb.59.2.229
    PMid: 8603995
  2. V. Brinkmann et al., “Neutrophil Extracellular Traps Kill Bacteria,” Science , vol. 303, no. 5663, pp. 1532 – 1535, Mar. 2004.
    DOI: 10.1126/science.1092385
    PMid: 15001782
  3. B. E. Steinberg, S. Grinstein, “Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death,” Sci. STKE., vol. 2007, no. 379, p. pe11, Mar. 2007.
    DOI: 10.1126/stke.3792007pe11
    PMid: 17392241
  4. B. Pinegin, N. Vorobjeva, V. Pinegin, “Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity,” Autoimmun. Rev., vol. 14, no. 7, pp. 633 – 640, Jul. 2015.
    DOI: 10.1016/j.autrev.2015.03.002
    PMid: 25797532
  5. N. V. Vorobjeva, B. V. Pinegin, “Neutrophil extracellular traps: Mechanisms of formation and role in health and disease,” Biochemistry (Mosc.), vol. 79, no. 12, pp. 1286 – 1296, Dec. 2014.
    DOI: 10.1134/S0006297914120025
    PMid: 25716722
  6. N. V. Vorobjeva, B. V. Chernyak, NETosis: “Molecular Mechanisms, Role in Physiology and Pathology,” Biochemistry (Mosc.), vol. 85, no. 10, pp. 1178 – 1190, Oct. 2020.
    DOI: 10.1134/S0006297920100065
    PMid: 33202203
    PMCid: PMC7590568
  7. S. B. Owusu, S. Dupré-Crochet, T. Bizouarn, C. Houée-Levin, L. Baciou, “Accumulation of Cytochrome b 558 at the Plasma Membrane: Hallmark of Oxidative Stress in Phagocytic Cells,” Int. J. Mol. Sci., vol. 23,no. 2, 767, Jan. 2022.
    DOI: 10.3390/ijms23020767
    PMid: 35054950
    PMCid: PMC8775928
  8. F. Rijken et al., “Pathophysiology of photoaging of human skin: Focus on neutrophils,” Photochem. Photobiol. Sci., vol. 5, no. 2, pp. 184 – 189, Feb. 2006.
    DOI: 10.1039/b502522b
    PMid: 16465304
  9. G. J. Fisher et al., “Ultraviolet irradiation increases matrix metalloproteinase-8 protein in human skin in vivo,” J. Invest. Dermatol ., vol. 117, no. 2, pp. 219 – 226, Aug. 2001.
    DOI: 10.1046/j.0022-202X.2001.01432.x
    PMid: 11511297
  10. S. Cho et al., “Infrared plus visible light and heat from natural sunlight participate in the expression of MMPs and type I procollagen as well as infiltration of inflammatory cell in human skin in vivo,” J. Dermatol. Sci ., vol. 50, no. 2, pp. 123 – 133, May 2008.
    DOI: 10.1016/j.jdermsci.2007.11.009
    PMid: 18194849
  11. S. Skopelja-Gardner et al., “The early local and systemic Type I interferon responses to ultraviolet B light exposure are cGAS dependent,” Sci. Rep ., vol. 10, no. 1, 7908, May 2020.
    DOI: 10.1038/s41598-020-64865-w
    PMid: 32404939
    PMCid: PMC7220927
  12. S. Skopelja-Gardner et al., “Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation,” Proc. Natl. Acad. Sci. U.S.A ., vol. 118, no. 3, e2019097118, Jan. 2021.
    DOI: 10.1073/pnas.2019097118
    PMid: 33397815
    PMCid: PMC7826360
  13. S. B. Owusu, S. Dupré-Crochet, T. Bizouarn, C. Houée-Levin, L. Baciou, “Accumulation of Cytochrome b558 at the Plasma Membrane: Hallmark of Oxidative Stress in Phagocytic Cells,” Int. J. Mol. Sci., vol. 23, no. 2, 767, Jan. 2022.
    DOI: 10.3390/ijms23020767
    PMid: 35054950
    PMCid: PMC8775928
  14. C. Kohchi, H. Inagawa, T. Nishizawa, G. I. Soma, “ROS and innate immunity,” Anticancer Res., vol. 29, no. 3, pp. 817 – 821, Mar. 2009.
    PMid: 19414314
  15. T. I. Karu, “Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation,” IUBMB Life, vol. 62, no. 8, pp. 607 – 610, Aug. 2010.
    DOI: 10.1002/iub.359
    PMid: 20681024
  16. S. Hallén, P. Brzezinski, “Light-induced structural changes in cytochrome c oxidase: implication for the mechanism of electron and proton gating,” Biochim. Biophys. Acta Bioenerg., vol. 1184, no. 2-3, pp. 207 – 218, Mar. 1994.
    DOI: 10.1016/0005-2728(94)90225-9
    PMid: 8130251
  17. M. Kato, K. Shinzawa, S. Yoshikawa, “Cytochrome oxidase is a possible photoreceptor in mitochondria,” Photobiochem. Photobiophys., vol. 2, no. 4-5, 263 – 270, 1981.
  18. D. Pastore, M. Greco, S. Passarella, “Specific helium-neon laser sensitivity of the purified cytochrome c oxidase,” Int. J. Radiat. Biol., vol. 76, no. 6, pp. 863 – 870, Jun. 2000.
    DOI: 10.1080/09553000050029020
    PMid: 10902741
  19. B. Amulic, C. Cazalet, G. L. Hayes, K. D. Metzler, A. Zychlinsky, “Neutrophil function: From mechanisms to disease,” Annu. Rev. Immunol ., vol. 30, pp. 459 – 489, 2012.
    DOI: 10.1146/annurev-immunol-020711-074942
    PMid: 22224774
  20. A. S. Rohrbach, D. J. Slade, P. R. Thompson, K. A. Mowen, “Activation of PAD4 in NET formation,” Front. Immunol., vol. 3, 360, Nov. 2012.
    DOI: 10.3389/fimmu.2012.00360
    PMid: 23264775
    PMCid: PMC3525017
  21. M. Freitas, G. Porto, J. L. F. C. Lima, E. Fernandes, “Isolation and activation of human neutrophils in vitro. The importance of the anticoagulant used during blood collection,” Clin. Biochem., vol. 41, no. 7-8, pp. 570 – 575, May 2008.
    DOI: 10.1016/j.clinbiochem.2007.12.021
    PMid: 18226596
  22. S. Mütze et al., “Myeloperoxidase-derived Hypochlorous Acid Antagonizes the Oxidative Stress-mediated Activation of Iron Regulatory Protein 1,” J. Biol. Chem ., vol. 278, no. 42, pp. 40542 – 40549, Oct. 2003.
    DOI: 10.1074/jbc.M307159200
    PMid: 12888561
  23. М. А. Симонян, М. А. Бабаян, Г. М. Симонян, “Цитохромы b-558 из сыворотки крови и мембран эритроцитов. выделение, очистка и краткие характеристики,” Биохимия, том 60, но. 12, стр. 1977 – 1987, 1995.
    (M. A. Simonyan, M. A. Babayan, G. M. Simonyan, “Cytochromes b-558 from blood serum and erythrocyte membranes; isolation, purification and characteristics,” Biochemistry, vol. 60, no. 12, pp. 1977 – 1987, 1995.)
    Retrieved from: https://biochemistrymoscow.com/ru/archive/1995/60-12-1977/
    Retrieved on: Sep. 12, 1995
  24. C. Zang et al., “Ultrafast Proteinquake Dynamics in Cytochrome c,” J. Am. Chem. Soc ., vol. 131, no. 8, pp. 2846 – 2852, Mar. 2009.
    DOI: 10.1021/ja8057293
    PMid: 19203189
  25. M. Reth, “Hydrogen peroxide as second messenger in lymphocyte activation,” Nat. Immunol., vol. 3, no. 12, pp. 1129 – 1134, Dec. 2002.
    DOI: 10.1038/ni1202-1129
    PMid: 12447370

Pharmaceutical Sciences


Jasmina Jovanović Mirković , Milica Stanojević, Christos Alexopoulos, Bojana Miljković, Marko Jovanović, Dragana Đorđević Šopalović

Pages: 36-39

DOI: 10.37392/RapProc.2023.08

Poliomyelitis (lat. acute anterior poliomyelitis, Henne-Medin’s disease) is an acute infectious disease caused by Poliovirus (types 1, 2 and 3). The disease most often occurs in childhood, either individually or in epidemics. The routes of transmission of the infection are the oral-fecal route. The infection can occur without any symptoms or as a general infection, such as meningitis or paralysis. The clinical picture of the disease shows the appearance of several stages: the pre-lytic stage, the paralysis stage and the recovery stage. The fastest way to confirm the diagnosis is to prove viral RNA by PCR in stool, blood or cerebrospinal fluid. There are also serological neutralization tests. During the acute phase, symptomatic and supportive therapy is carried out, and after the acute phase, active physical therapy and rehabilitation are carried out in more severe forms of the disease. Today, this disease is very rare, thanks to systemic active immunization. Primary immunization against poliomyelits (polio) is in the first year of life with three doses of pentavalent Pentaxim vaccine, six weeks apart, and revaccinations are carried out according to the mandatory vaccination calendar in the second, seventh and fourteenth years of life. The vaccine given in multiple doses provides protection throughout life. The aim of this paper is to compare the results of successfully implemented vaccine prophylaxis at the level of primary health care for the territory of the Pomoravlje District in Serbia in the period from 2008-2012. Results and discussion. Based on the Report on Immunization against Poliomyelitis in the Pomoravlje District in the period 01.01.2011 - 31.12.2011, it was noted that by far the largest number of persons vaccinated with the OPV vaccine was in the municipalities of Despotovac, Paracin, Rekovac and Svilajnac, where the percentage of those vaccinated was 100%. Based on the data, it can be seen that the smallest response of children was in the territory of the municipality of Cuprija (81.36%). Statistical data processing in the SPSS Statistics 20 showed that the third revaccination carried out at the age of 14 has a statistical significance of p<0.05, χ2=14.02 at the level of the city of Despotovac for the calendar year 2012. compared to the five-year period from 2008-2012. Conclusion. Based on the statistically processed results, a high level of coverage and high success rate of the implemented vaccination for the five-year period from 2008-2012 was observed for the territory of the Pomoravlje District. The key to success in the fight against infectious diseases is reflected in the implementation of mandatory immunizations according to the vaccination calendar prescribed by each country and is considered one of the best ways to reduce morbidity, eliminate, even eradicate infectious diseases.
  1. P. E. Sartwell, “The incubation period of poliomyelitis,” Am. J. Public Health Nations Health , vol. 42, no. 11, pp. 1403 – 1408, Nov. 1952.
    DOI: 10.2105/ajph.42.11.1403
    PMid: 12986020
    PMCid: PMC1525998
  2. V. R. Racaniello, “One hundred years of poliovirus pathogenesis,” Virology , vol. 344, no. 1, pp. 9 – 16, Jan. 2006.
    DOI: 10.1016/j.virol.2005.09.015
    PMid: 16364730
  3. J. R. Paul, D. M. Horstmann, “A survey of poliomyelitis virus antibodies in French Marocco,” Am. J. Trop. Med. Hyg., vol. 4, no. 3, pp. 512 – 524, May 1955.
    DOI: 10.4269/ajtmh.1955.4.512
    PMid: 14376777
  4. A. B. Sabin et al., “Live, orally given poliovirus vaccine. Effects of rapid mass immunization on population under conditions of massive enteric infection with other viruses,” JAMA, vol. 173, no. 14, pp. 1521 – 1526, Aug. 1960.
    DOI: 10.1001/jama.1960.03020320001001
    PMid: 14440553
  5. A. B. Sabin, “Present position of immunization against poliomyelitis with live virus vaccines,” Br. Med. J., vol. 1, no. 5123, pp. 663 – 680, Mar. 1959.
    DOI: 10.1136/bmj.1.5123.663
    PMid: 13629086
    PMCid: PMC1993129
  6. R. N. Basu, “Magnitude of problem of poliomyelitis in India,” Indian Pediatr. , vol. 18, no. 8, pp. 507 – 511, Aug. 1981.
    PMid: 7309212
  7. S. Mueller, E. Wimmer, J. Cello, “Poliovirus and poliomyelitis: a tale of guts, brains, and an accidental event,” Virus Res., vol. 111, no. 2, pp. 175 – 193, Aug. 2005.
    DOI: 10.1016/j.virusres.2005.04.008
    PMid: 15885840
  8. J. E. Salk et al., “Formaldehyde treatment and safety testing of experimental poliomyelitis vaccines,” Am. J. Public Health Nations Health, vol. 44, no. 5, pp. 563 – 570, May 1954.
    DOI: 10.2105/ajph.44.5.563
    PMid: 13148396
    PMCid: PMC1620937
  9. A. J. Mohammed et al., “Fractional doses of inactivated poliovirus vaccine in Oman,” N. Engl. J. Med., vol. 362, no. 25, pp. 2351 – 2359, Jun. 2010.
    DOI: 10.1056/NEJMoa0909383
    PMid: 20573923
  10. D. L. Heymann, R. W. Sutter, R. B. Aylward, “A vision of a world without polio: the OPV cessation strategy,” Biologicals, vol. 34, no. 2, pp. 75 – 79, Jun. 2006.
    DOI: 10.1016/j.biologicals.2006.03.005
    PMid: 16682224
  11. D. A. Gust et al., “Parent attitudes toward immunizations and healthcare providers the role of information,” Am. J. Prev. Med., vol. 29, no. 2, pp. 105 – 112, Aug. 2005.
    DOI: 10.1016/j.amepre.2005.04.010
    PMid: 16005806
  12. B. Abbotts, L. M. Osborn, “Immunization status and reasons for immunization delay among children using public health immunization clinics,” Am. J. Dis. Child., vol. 147, no. 9 , pp. 965 – 968, Sep. 1993.
    DOI: 10.1001/archpedi.1993.02160330055018
    PMid: 8362813
  13. Global poliomyelitis eradication by the year 2000 - plan of action. Global Programme for Vaccines and Immunization. Expanded Programme on Immunization, WHO, Geneva, Switzerland, 1996.
    Retrieved from: https://apps.who.int/iris/bitstream/handle/10665/63160/WHO_EPI_GEN_96.03.pdf?sequence=1&isAllowed=y
    Retrieved on: May 20, 2023
  14. W. Atkins, S. Wolfe, J. Hamborsky, “Poliomyelitis,”inEpidemiology and Prevention of Vaccine-Preventable Diseases, 12th ed., Washington DC, USA: Public Health Foundation, 2012, pp. 249 – 262.
    Retrieved from: https://www.cdc.gov/vaccines/pubs/pinkbook/downloads/table-of-contents.pdf
    Retrieved on: May 20, 2023
  15. Polio vaccines and polio immunization in the pre-eradication era: WHO position paper , WER8523, WHO, Geneva, Switzerland, 2010, pp. 213 – 228.
    Retrieved from: https://www.who.int/publications/i/item/WER8523
    Retrieved on: May 20, 2023
  16. B. Guyer, N. Hughart, “Increasing childhood immunization coverage by improving the effectiveness of primary health care systems for children,” Arch. Pediatr. Adolesc. Med., vol. 148, no. 9, pp. 901 – 902, Sep. 1994.
    DOI: 10.1001/archpedi.1994.02170090015001
    PMid: 8075731
  17. L. Roberts, “Polio eradication. Looking for a little luck,” Science , vol. 323, no. 5915, pp. 702 – 705, Feb. 2009.
    DOI: 10.1126/science.323.5915.702
    PMid: 19197035
  18. R. B. Aylward et al., “Disease eradication as a public health strategy: a case study of poliomyelitis eradication,” Bull. World Health Organ., vol. 78, no. 3, pp. 285 – 297, 2000.
    PMid: 10812724
    PMCid: PMC2560720
  19. K. M. Thompson, R. J. Tebbens, “Eradication versus control for poliomyelitis: an economic analysis,” Lancet,vol. 369, no. 9570, pp. 1363 – 1371, Apr. 2007.
    DOI: 10.1016/S0140-6736(07)60532-7
    PMid: 17448822

Novelties in Covid-19 research


Violeta Ilić Todorović, Jasmina Jovanović Mirković, Christos Alexopoulos, Momčilo Todorović, Nemanja Nenezić, Zorica Kaluđerović

Pages: 40-44

DOI: 10.37392/RapProc.2023.09

In addition to the traditional role of pharmacists in the preparation, distribution and dispensing of medicines, today pharmacists represent an important link in the health system with their active participation in health promotion and prevention of many diseases. There are a number of educational activities of pharmacists aimed at familiarizing the population with the importance of a healthy lifestyle and risk factors for the development of diseases. Self-medication is defined as the application of drugs for the treatment of symptoms and diseases that the patient himself recognizes. Self-medication is the primary resource of any healthcare system. However, only with adequate, professional advice from pharmacists, who can identify, prevent and solve problems related to self-medication, an optimal and safe outcome of therapy can be achieved, as well as improving the quality of life of patients. The aim and tasks of the research work. Monitoring the consumption of the following OTC preparations: zinc, selenium, vitamins C and D, Paracetamol, Naphazoline, Xylometazoline and Ibuprofen (of 200, 400, 600 mg) immediately before the COVID-19 pandemic, during the COVID-19 pandemic and immediately after. Methodology of the research work. A cross-sectional study was applied before the declaration of the COVID-19 pandemic and after the COVID-19 pandemic. The data source was the electronic prescription database (POINTER 2023) of the “Zdravlje 1” pharmacy in Despotovac. The study lasted 4 years (from 01.01.2019 to 31.12.2022). The data were calculated in the SPSS statistics 20 program package and are presented graphically. Results and discussion. By far the highest consumption is for Ibuprofen 400 mg, followed by Ibuprofen 600 mg, while the lowest consumption for the four-year period from 2019-2022 was for Ibuprofen 200 mg. Observed for each year individually, it was noted that the use of Ibuprofen 200 mg during the outbreak of COVID-19 (2020) showed a drastic increase, five times higher values on an annual basis compared to the time period before and after the occurrence of COVID-19. Conclusion. Taking into account the four-year period of supplementation with zinc, selenium, vitamin D and C also shows an increase in the consumption and use of these supplements for the time period of 2020 and 2021, so that in 2022 there will be a reduction in the use and sale of these OTC preparations.
  1. D. Galato, L. M. Galafassi, G. M. Alano, S. C. Trauthman, “Responsible self-medication: Review of the process of pharmaceutical attendance,” Braz. J. Pharm. Sci., vol. 45, no. 4, pp. 625 – 633, Dec. 2009.
    DOI: 10.1590/S1984-82502009000400004
  2. K. Wilbur, S. E. Salam, E. Mohammadi, “Patient perceptions of pharmacist roles in guiding self-medication of over-the-counter therapy in Qatar,” Patient Prefer. Adherence, vol. 4, no. 3, pp. 87 – 93, May 2010.
    DOI: 10.2147/ppa.s9530
    PMid: 20517469
    PMCid: PMC2875718
  3. E. A. Chrischilles, J. H. Lemke, R. B. Wallace, G. A. Drube, “Prevalence and characteristics of multiple analgesic drug use in an elderly study group,” J. Am. Geriatr. Soc.,vol. 38, no. 9, pp. 979 – 984, Sep. 1990.
    DOI: 10.1111/j.1532-5415.1990.tb04419.x
    PMid: 2212451
  4. A. Blenkinsopp, C. Bradley, “Patients, society, and the increase in self-medication,” BMJ,vol. 312, no. 7031, pp. 629 – 632, Mar. 1996.
    DOI: 10.1136/bmj.312.7031.629
    PMid: 8595343
    PMCid: PMC2350384
  5. M. J. Sculpher, I. Watt, A. Gafni, “Shared decision making in a publicly funded health care system,” BMJ,vol. 319, no. 7212, pp. 725 – 726, Sep. 1999.
    DOI: 10.1136/bmj.319.7212.725
    PMid: 10487985
    PMCid: PMC1116585
  6. G. S. Lau, K. K. Lee, C. T. Luk, “Self-medication among university students in Hong Kong,” Asia Pac. J. Public Health, vol. 8, no. 3, pp. 153 – 157, Jul. 1995.
    DOI: 10.1177/101053959500800301
    PMid: 10050180
  7. S. I. Sharif, O. H. M. Ibrahim, L. Mouslli, R. Waisi, “Evaluation of Self-Medication among Pharmacy Students,” Am. J. Pharmacol. Toxicol. , vol. 7, no. 4, pp. 135 – 140, Dec. 2012.
    DOI: 10.3844/ajptsp.2012.135.140
  8. S. A. Sallam, N. M. Khallafallah, N. K. Ibrahim, A. O. Okasha, “Pharmacoepidemiological study of self-medication in adults attending pharmacies in Alexandria, Egypt,” East. Mediterr. Health J., vol. 15, no. 3, pp. 683 – 691, May 2009.
    PMid: 19731784
  9. C. L. Lam, M. G. Catarivas, C. Munro, I. J. Lauder, “Self-medication among Hong Kong Chinese,” Soc. Sci. Med.,vol. 39, no. 12, pp. 1641 – 1647, Dec. 1994.
    DOI: 10.1016/0277-9536(94)90078-7
    PMid: 7846561
  10. N. Morrow, O. Hargie, H. Donnelly, C. Woodman, ““Why do you ask?” A study of questioning behaviour in community pharmacist-client consultations” Int. J. Pharm. Pract., vol. 2, no. 2, pp. 90 – 94, Jul. 1993.
    DOI: 10.1111/j.2042-7174.1993.tb00732.x
  11. P. B. Richman, G. Garra, B. Eskin, A. H. Nashed, R. Cody, “Oral Antibiotic Use without Consulting a Physician: A Survey of ED Patients,” Am. J. Emerg. Med. , vol. 19, no 1, pp. 57 – 60, Jan. 2001.
    DOI: 10.1053/ajem.2001.20035
    PMid: 11146021
  12. H. James, S. S. Handu, K. A. J. Al-Khaja, R. P. Sequeira, “Influence of medical training on self-medication by students,” Int. J. Clin. Pharmacol. Ther. , vol. 46, no. 1, pp. 23 – 29, Jan. 2008.
    DOI: 10.5414/cpp46023
    PMid: 18218294
  13. F. R Chang, P. K. Trivedi, “Economics of self‑medication: Theory and evidence,” Health Econ., vol. 12, no. 9, pp. 721 ‑ 739, Sep. 2003.
    DOI: 10.1002/hec.841
    PMid: 12950092
  14. J. R. Laporte, “Automedicación: la información de los usuarios aumenta al mismo tiempo que el consumo?,” Med. Clin. (Barc)., vol. 109, no. 20, pp. 795 ‑ 796, Dec. 1997.
    (J. R. Laporte, “Self‑medication: Does information to users increase at the same rate as consumption,” Med. Clin. (Barc)., vol. 109, no. 20, pp. 795 ‑ 796, Dec. 1997.)
    PMid: 9493159
  15. M. E. Ruiz, “Risks of self‑medication practices,” Curr. Drug Saf., vol. 5, no. 4, pp. 315 ‑ 323, Oct. 2010.
    DOI: 10.2174/157488610792245966
    PMid: 20615179
  16. M. A. Flaiti, K. A. Badi, W. O. Hakami, S. A. Khan, “Evaluation of self-medication practices in acute diseases among university students in Oman,” J. Acute Dis., vol. 3, no. 3, pp. 249 – 252, 2014.
    DOI: 10.1016/S2221-6189(14)60056-1
  17. J. S. Mogil, “Sex differences in pain and pain inhibition: Multiple explanations of a controversial phenomenon,” Nat. Rev. Neurosci., vol. 13, no. 12, pp. 859 – 866, Dec. 2012.
    DOI: 10.1038/nrn3360
    PMid: 23165262

Pharmaceutical Sciences


Milica Stanojević, Jasmina Jovanović Mirković, Nataša Rančić, Christos Alexopoulos, Violeta Ilić Todorović, Svetlana Čapaković

Pages: 45-49

DOI: 10.37392/RapProc.2023.10

Introduction. Human papillomaviruses (Human Papillomavirus-HPV) are DNA viruses, belonging to the family Papillomaviridae, genus Papillomavirus. It is estimated that at least 80%-100% of people between the ages of 18-25 come into contact with this virus during sexual contact, while only about 30% of people develop symptoms of infection. Chronic HPV infection increases the risk of cervical cancer by 65 times, and in the case of oncogenic “high-risk” types by 130 times (HPV 16, HPV 18, HPV 31, HPV 35), namely cancer of the cervix, vulva and vagina in women, genital organs in men, as well as throat and anus cancer in both sexes. CIN within the framework of HPV infection and pathogenesis can be viewed as a productive infection (replicative) that is most often transient and spontaneously regresses (viral phase) and transformational with the development of dysplasia in a smaller number of HPV-infection-related lesions (neoplastic phase). As a preventive measure, there are vaccines against HPV (Gardasil, Gardasil 9 and Cervarix), which are not mandatory according to the vaccination calendar and contribute to preventing the development of HPV infection, and are particularly effective in the fight against HPV types 16 and 18, which in most cases cause cervical cancer. The aim of this work is to compare the obtained data on the optional Gardasil 9 vaccination carried out on the territory of Pomoravlje and Pcinja districts in Serbia in the year 2022. Methodology of the research work. A descriptive study was applied in this research paper. A special database was created for data entry in the time interval in year 2022. The data were calculated in the SPSS Statistics 20 software package. The data were presented graphically. Results and discussion. Based on statistically processed data, it can be seen that in the south of Serbia, out of the total number of distributed vaccines, which was 253 vaccines for the Pcinja district, 86 vaccines (33.99%) were administered. Comparing the data with the Pomoravlje district, there is a significant difference in the number of distributed (769) and the number of applied vaccines (408), which indicates that 53.06% of the distributed doses were applied for the period from June 2022 by the end of the same year. Statistical processing of the obtained data showed that the Gardasil 9 vaccination with the first and second doses of the vaccine in persons older than 9 years and persons older than 15 years was best carried out in 2022 in the Pomoravlje District in the cities of Jagodina (59.41%) and Svilajnac (54.02%), and the smallest in the cities of Rekovac (35, 71%) and Cuprija (40.35%). While the least was implemented in the territory of the Pcinja District in 2022 were in the cities: Bosilegrad, Presevo and Trgoviste based on distributed doses and remaining unused vaccines (stock). The highest response for optional free vaccination was in the cities of Surdulica (66.675%), Bujanovac (39.58%) and Vranje (36.36%) in Pcinja District. Conclusion. By comparing the statistical data, it can be concluded that the success rate of vaccination is significantly higher in central Serbia, in the territory of the Pomoravlje District (53.06%), than in the south of Serbia, in the territory of the Pcinja District (33.99%). Through educational lectures on vaccination against HPVirus, children, adults and the entire population acquire positive attitudes about prevention as one of the most effective methods in suppressing and spreading the said disease.
  1. M. Muller et al., “Chimeric papillomavirus-like particles,” Virology , vol. 234, no. 1, pp. 93 – 111, Jul. 1997.
    DOI: 10.1006/viro.1997.8591
    PMid: 9234950
  2. E. M. Smith et al., “Human papillomavirus and risk of laryngeal cancer,” Ann. Otol. Rhinol. Laryngol., vol. 109, no. 11, pp. 1069 – 1076, Nov. 2000.
    DOI: 10.1177/000348940010901114
    PMid: 11090000
  3. J. S. Smith et al., “Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update,” Int. J. Cancer, vol. 121, no. 3, pp. 621 – 632, Aug. 2007.
    DOI: 10.1002/ijc.22527
    PMid: 17405118
  4. D. M. Da Silva et al., “Physical interaction of human papillomavirus virus-like particles with immune cells,” Int. Immunol., vol. 13, no. 5, pp. 633 – 641, May 2001.
    DOI: 10.1093/intimm/13.5.633
    PMid: 11312251
  5. F. X. Bosch et al., “Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia,” Vaccine, vol. 26, suppl. 10, pp. K1 – K16, Aug. 2008.
    DOI: 10.1016/j.vaccine.2008.05.064
    PMid: 18847553
  6. D. Dias et al., “Optimization and validation of a multiplexed luminex assay to quantify antibodies to neutralizing epitopes on human papillomaviruses 6, 11, 16, and 18,” Clin. Diagn. Lab. Immunol., vol. 12, no. 8, pp. 959 – 969, Aug. 2005.
    DOI: 10.1128/CDLI.12.8.959-969.2005
    PMid: 16085914
    PMCid: PMC1182182
  7. L. K. Borysiewicz et al., “A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer,” Lancet, vol. 347, no. 9014, pp. 1523 – 1527, Jun. 1996.
    DOI: 10.1016/s0140-6736(96)90674-1
    PMid: 8684105
  8. D. M. Harper et al., “Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial,” Lancet, vol. 364, no. 9447, pp. 1757 – 1765, Nov. 2004.
    DOI: 10.1016/S0140-6736(04)17398-4
    PMid: 15541448
  9. G. M. Clifford, J. S. Smith, M. Plummer, N. Munoz, S. Franceschi, “Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis,” Br. J. Cancer, vol. 88, no. 1, pp. 63 – 73, Jan. 2003.
    DOI: 10.1038/sj.bjc.6600688
    PMid: 12556961
    PMCid: PMC2376782
  10. A. T. Lorincz et al., “Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types,” Obstet. GynecoI., vol. 79, no. 3, pp. 328 – 337, Mar. 1992.
    DOI: 10.1097/00006250-199203000-00002
    PMid: 1310805
  11. J. R. Daling et al., “A population-based study of squamous cell vaginal cancer: HPV and cofactors,” Gynecol. Oncol., vol. 84, no. 2, pp. 263 – 270, Feb. 2002.
    DOI: 10.1006/gyno.2001.6502
    PMid: 11812085
  12. T. C. Wright, T. V. Ellerbrock, M. A. Chiasson, N. Van Devanter, X. W. Sun, “Cervical intraepithelial neoplasia in women infected with human immunodeficiency virus: Prevalence, risk factors, and validity of Papanicolaou smears,” Obstet. Gynecol., vol. 84, no. 4, pp. 591 – 597, Oct. 1994.
    Retrieved from: https://pubmed.ncbi.nlm.nih.gov/8090399/
    Retrieved on: May 20, 2023
  13. K. B. Michels, H. Z. Hausen, “HPV vaccine for all,” Lancet, vol. 374, no. 9686, pp. 268 – 270, Jul. 2009.
    DOI: 10.1016/S0140-6736(09)61247-2
    PMid: 19586657
  14. L. L. Villa et al., “Immunologic responses following administration of a vaccine targeting human papillomavirus Types 6, 11, 16, and 18,” Vaccine , vol. 24, no. 27-28, pp. 5571 – 5583, Jul. 2006.
    DOI: 10.1016/j.vaccine.2006.04.068
    PMid: 16753240
  15. K. Schafer et al., “Immune response to human papillomavirus 16 L1E7 chimeric virus-like particles: induction of cytotoxic T cells and specific tumor protection,” Int. J. Cancer, vol. 81, no. 6, pp. 881 – 888, Nov. 1999.
    Retrieved from: https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0215(19990611)81:6%3C881::AID-IJC8%3E3.0.CO;2-T
    Retrieved on: May 20, 2023
  16. P. Mayaud, D. Mabey, “Approaches to the control of sexually transmitted infections in developing countries: old problems and modern challenges,” Sex. Transm. Infect., vol. 80, no. 3, pp. 174 – 182, Jun. 2004.
    DOI: 10.1136/sti.2002.004101
    PMid: 15169997
    PMCid: PMC1744836
  17. R. E. Rupp, L. R. Stanberry, S. L. Rosenthal, “Vaccines for sexually transmitted infections,” Pediatr. Ann. , vol. 34, no. 10, pp. 818 – 824, Oct. 2005.
    DOI: 10.3928/0090-4481-20051001-14
    PMid: 16285635
  18. S. H. Vermund et al., “High risk of human papillomavirus infection and cervical squamous intraepithelial lesions among women with symptomatic human immunodeficiency virus infection,” Am. J. Obstet. Gynecol., vol. 165, no. 2, pp. 392 – 400, Aug. 1991.
    DOI: 10.1016/0002-9378(91)90101-v
    PMid: 1651648
  19. J. Berumen et al., “Asian-American variants of human papillomavirus 16 and risk for cervical cancer: a case-control study,” J. Natl. Cancer Inst. , vol. 93, no. 17, pp. 1325 – 1330, Sep. 2001.
    DOI: 10.1093/jnci/93.17.1325
    PMid: 11535707
  20. F. X. Bosch et al., “Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group,” J. Natl. Cancer Inst., vol. 87, no. 11, pp. 796 – 802, Jun. 1995.
    DOI: 10.1093/jnci/87.11.796
    PMid: 7791229
  21. A. N. Fiander et al., “Prime-boost vaccination strategy in women with high-grade, noncervical anogenital intraepithelial neoplasia: clinical results from a multicenter phase II trial,” Int. J. Gynecol. Cancer, vol. 16, no. 3, pp. 1075 – 1081, Jun. 2006.
    DOI: 10.1111/j.1525-1438.2006.00598.x
    PMid: 16803488
  22. Y. Lu et al., “Immunological protection against HPV16 E7-expressing human esophageal cancer cell challenge by a novel HPV16-E6/E7 fusion protein based vaccine in a Hu-PBL-SCID mouse model,” Biol. Pharm. Bull., vol. 30, no. 1, pp. 150 – 156, Jan. 2007.
    DOI: 10.1248/bpb.30.150

Pharmaceutical Sciences


Jasmina Jovanović Mirković , Violeta Ilić Todorović, Christos Alexopoulos, Bojana Miljković, Dragana Đorđević Šopalović, Zorica Kaluđerović

Pages: 50-53

DOI: 10.37392/RapProc.2023.11

Introduction. Tuberculosis (TB) is an infectious granulomatous disease caused by the human type of bacillus Mycobacterium tuberculosis. TB infection begins when mycobacteria reach the pulmonary alveoli, where they penetrate and replicate within the endosomes of alveolar macrophages. Bacilli in the alveoli are phagocytosed by alveolar macrophages, where they multiply and spread to regional lymph glands and through the bloodstream to distant organs (miliary tuberculosis). A scar and a cavern filled with caseous necrotic material are created at the site of the affected tissue. The treatment is carried out with a combination of several drugs, most often with the joint use of rifampicin, isoniazid and pyrazinamide, and lasts six months and continues for three months after Koch’s bacillus is not found in the sputum culture. The BCG vaccine is intended for the active immunization of all newborns and high-risk children in order to prevent severe clinical forms of tuberculosis, as well as for the active immunization of adults with a high risk of developing tuberculosis. The aim of the research work is the comparison and interpretation of statistically processed data on the success of vaccination against TB on the territory of the Pomoravlje District for the period from 2008-2012. A descriptive study was applied in this research paper. The data were calculated in the SPSS statistics 20 software package. Results and discussion. Taking into account the total number of live births (1818) in relation to the number of vaccinated (1775) on the territory of the Pomoravlje District for the calendar year 2008, it is concluded that vaccination was successfully carried out for the specified year on the territory of one district because it amounted to 97.64% (it is greater than 95%). The percentage at the level of the entire district in 2009 is 97.34%, which indicates that immunization with the BCG vaccine was successfully implemented. Conclusion. Based on the statistically processed results, a high level of coverage and high success rate of the implemented vaccination for the five-year period from 2008-2012 was observed for the territory of the Pomoravlje District. It is very important to emphasize the essential measures that should be taken in every country of the world with the aim of developing and implementing national programs for the prevention, control and treatment of this disease.
  1. E. Vynnycky, P. E. Fine, “Lifetime risks, incubation period, and serial interval of tuberculosis,” Am. J. Epidemiol.,vol.152, no. 3, pp. 247 – 263, Aug. 2000.
    DOI: 10.1093/aje/152.3.247
    PMid: 10933272
  2. S. M. Blower, T. Chou, “Modeling the emergence of the “hot zones”: tuberculosis and the amplification dynamics of drug resistance,” Nat. Med. , vol. 10, no. 10, pp. 1111 – 1116, Oct. 2004.
    DOI: 10.1038/nm1102
    PMid: 15378053
  3. D. Watrelot-Virieux, E. Drevon-Gaillot, Y. Toussaint, P. Belli, “Comparison of three diagnostic detection methods for tuberculosis in French cattle,” J. Vet. Med. B, vol. 53, no. 7, pp. 321 – 325, Sep. 2006.
    DOI: 10.1111/j.1439-0450.2006.00957.x
    PMid: 16930276
  4. J. Kamerbeek et al., “Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology,” J. Clin. Microbiol. , vol. 35, no. 4, pp. 907 – 914, Apr. 1997.
    DOI: 10.1128/jcm.35.4.907-914.1997
    PMid: 9157152
    PMCid: PMC229700
  5. C. Dye, Z. Fengzeng, S. Scheele, B. G. Williams, “Evaluating the impact of tuberculosis control: number of deaths prevented by short-course chemotherapy in China,” Int. J. Epidemiol., vol. 29, no. 3, pp. 558 – 564, Jun. 2000.
    DOI: 10.1093/intjepid/29.3.558
    PMid: 10869331
  6. R. H. Wichelhausen, T. M. D. Brown, “Tuberculous peritonitis treated with streptomycin,” Am. J. Med., vol. 8, no. 4, pp. 421 – 444, Apr. 1950.
    DOI: 10.1016/0002-9343(49)90225-9
    PMid: 18115173
  7. G. B. Migliori et al., “Frequency of recurrence among MDR-TB cases “successfully” treated with standardized short-course chemotherapy,” Int. J. Tuberc. Lung Dis. , vol. 6, no. 10, pp. 858 – 864, Oct. 2002.
    Retrieved from: https://books.google.rs/books?id=5wFM7Bu8FG0C&pg=PA647&lpg=PA647&dq=7.+G.+B.+Migliori+et+al.,+%22Frequency+of+recurrence+among+MDR-TB+cases+%E2%80%9Csuccessfully%E2%80%9D+treated+with+standardized+short
    Retrieved on: Jun. 10, 2023
  8. D. Marinova, J. Gonzalo-Asensio, N. Aguilo, C. Martin, “Recent developments in tuberculosis vaccines,” Expert Rev. Vaccines, vol. 12, no. 12, pp. 1431 – 1448, Dec. 2013.
    DOI: 10.1586/14760584.2013.856765
    PMid: 24195481
  9. R. L. Riley, “The contagiosity of tuberculosis,” Schweiz. Med. Wochenschr., vol. 113, no. 3, pp. 75 – 79, Jan. 1983.
    PMid: 6338584
  10. R. Copin, M. Coscolla, E. Efstathiadis, S. Gagneux, J. D. Ernst, “Impact of in vitro evolution on antigenic diversity of Mycobacterium bovis bacillus Calmette-Guerin (BCG),” Vaccine, vol. 32, no. 45, pp. 5998 – 6004, Oct. 2014.
    DOI: 10.1016/j.vaccine.2014.07.113
    PMid: 25211768
    PMCid: PMC4539939
  11. R. De la Rua-Domenech, “Human Mycobacterium bovis infection in the United Kingdom: Incidence, risks, control measures and review of the zoonotic aspects of bovine tuberculosis,” Tuberculosis,vol. 86, no. 2, pp. 77 – 109, Mar. 2006.
    DOI: 10.1016/j.tube.2005.05.002
    PMid: 16257579
  12. E. Sumartojo, “When tuberculosis treatment fails. A social behavioral account of patient adherence,” Am. Rev. Respir. Dis., vol. 147, no. 5, pp. 1311 – 1320, May 1993.
    DOI: 10.1164/ajrccm/147.5.1311
    PMid: 8484650
  13. T. L. Miller, S. J. N. McNabb, P. Hilsenrath, J. Pasipanodya, S. E. Weis, “Personal and societal health quality lost to tuberculosis,” PLoS ONE , vol. 4, no. 4, e5080, Apr. 2009.
    DOI: 10.1371/journal.pone.0005080
    PMid: 19352424
    PMCid: PMC2660416
  14. C. Dye, P. Glaziou, K. Floyd, M. Raviglione, “Prospects for tuberculosis elimination,” Annu. Rev. Public Health, vol. 34, no. 34, pp. 271 – 286, Dec. 2013.
    DOI: 10.1146/annurev-publhealth-031912-114431
    PMid: 23244049
  15. K. Lonnroth, E. Jaramillo, B. G. Williams, C. Dye, M. Raviglione, “Drivers of tuberculosis epidemics: The role of risk factors and social determinants,” Soc. Sci. Med., vol. 68, no. 12, pp. 2240 – 2246, Jun. 2009.
    DOI: 10.1016/j.socscimed.2009.03.041
    PMid: 19394122
  16. C. Dye et al., “Measuring tuberculosis burden, trends, and the impact of control programmes,” Lancet Infect. Dis., vol. 8, no. 4, pp. 233 – 243, Apr. 2008.
    DOI: 10.1016/S1473-3099(07)70291-8
    PMid: 18201929
  17. G. G. Guerrero, A. S. Debrie, C. Locht, “Boosting with mycobacterial heparin-binding haemagglutinin enhances protection of Mycobacterium bovis BCG-vaccinated newborn mice against M. tuberculosis,” Vaccine, vol. 28, no. 27, pp. 4340 – 4347, Jun. 2010.
    DOI: 10.1016/j.vaccine.2010.04.062
    PMid: 20447476
  18. P. Beverley, “TB vaccine failure was predictable,” Nature, vol. 503, no. 7477, 469, Nov. 2013.
    DOI: 10.1038/503469e
    PMid: 24284721
  19. S. J. Moore, M. Good, “The tuberculosis eradication programme in Ireland: a review of scientific and policy advances since 1988,” Vet. Microbiol ., vol. 112, no. 2-4, pp. 239 – 251, Dec. 2006.
    DOI: 10.1016/j.vetmic.2005.11.022
    PMid: 16337345

Radon and Thoron


Dan Savastru, Maria Zoran, Roxana Savastru, Marina Tautan

Pages: 54-59

DOI: 10.37392/RapProc.2023.12

As a potential precursor of earthquakes, this study aims to investigate temporal variations of radon (222Rn) concentration levels in air near the ground by the use of solid-state nuclear track detectors (SSNTD) CR-39 (short term-10 days exposure time) in relation with some important seismic events recorded in Vrancea geotectonic active region, in Romania. The experimental observations reveal a strong correlation between the recorded radon emissions peaks associated with some moderate earthquakes of moment magnitude Mw ≥ 5.0 recorded during 2012-2022 period. The standard deviation of the radon measurements (s) was about 10% of the average radon concentration. The recorded pre-signals radon anomalies of earthquakes during eleven years monitoring period performed with solid state nuclear track detectors CR-39 suggest that earthquake precursors registered before moderate or strong seismic events are associated with some physical processes in or near the Vrancea earthquake fault zones or its neighbouring. This paper considered also the effects of meteorological parameters (air temperature, pressure, relative humidity, wind intensity and rainfall) on radon in air near the ground concentrations. The present results show existence of coupling between lithosphere-surfacesphere-atmosphere-ionosphere associated with preparation and seismic event occurring. Continuously monitoring of radon concentration anomalies in air near the ground in relation with Vrancea seismicity is an important issue and a surveillance tool in the field of earthquake hazard for Romania.
  1. I. Čeliković et al., “Outdoor radon as a tool to estimate radon priority areas—a literature overview,” Int. J. Environ. Res. Public Health, vol. 19, no. 2, 662, Jan. 2022.
    DOI: 10.3390/ijerph19020662
    PMid: 35055485
    PMCid: PMC8775861
  2. Y. Chen et al., “Occurrence characteristics and influencing factors of uranium and radon in deep-buried thermal storage aquifers,” J. Radioanal. Nucl. Chem ., vol. 331, no. 2, pp. 755 – 767, Feb. 2022.
    DOI: 10.1007/s10967-021-08137-5
  3. T. Chetia, S. Baruah, C. Dey, S. Baruah, S. Sharma, “Seismic induced soil gas radon anomalies observed at multiparametric geophysical observatory, Tezpur (Eastern Himalaya), India: an appraisal of probable model for earthquake forecasting based on peak of radon anomalies,” Nat. Hazards , vol. 111, no. 3, pp. 3071 – 3098, Apr. 2022.
    DOI: 10.1007/s11069-021-05168-9
  4. D. H. K. Mohammed, F. Külahcı, A. Muhammed, “Determination of possible responses of Radon-222, magnetic effects, and total electron content to earthquakes on the North Anatolian Fault Zone, Turkiye: an ARIMA and Monte Carlo Simulation,” Nat. Hazards, vol. 108, no. 3, pp. 2493 – 2512, Sep. 2021.
    DOI: 10.1007/s11069-021-04785-8
  5. R. C. Tiwari, H. P. Jaishi, S. Singh, R. P. Tiwari, “A study of soil radon and seismicity along active fault region in northeastern India,” Arab. J. Geosci., vol. 16, 253, Mar. 2023.
    DOI: 10.1007/s12517-023-11341-0
  6. S. Pulinets, D. Ouzounov, “Lithosphere–atmosphere– ionosphere coupling (LAIC) model—A unified concept for earthquake precursors validation,” J. Asian Earth Sci ., vol. 41, no. 4-5, pp. 371 – 382, Jun. 2011.
    DOI: 10.1016/j.jseaes.2010.03.005
  7. M. Radulian et al., “Revised catalogue of earthquake mechanisms for the events occurred in Romania until the end of twentieth century: REFMC,” Acta Geod. Geophys ., vol. 54, no. 1, pp. 3 – 18, Mar. 2019.
    DOI: 10.1007/s40328-018-0243-y
  8. L. Petrescu, F. Borleanu, M. Radulian, A. Ismail-Zadeh, L. Maţenco, “Tectonic regimes and stress patterns in the Vrancea Seismic Zone: Insights into intermediate-depth earthquake nests in locked collisional settings,” Tectonophysics, vol. 799, 228688, Jan. 2021.
    DOI: 10.1016/j.tecto.2020.228688
  9. T. Haider et al., “Identification of radon anomalies induced by earthquake activity using intelligent systems,” J. Geochem. Explor., vol. 222, 106709, Mar. 2021.
    DOI: 10.1016/j.gexplo.2020.106709
  10. S. Sukanya, J. Noble, S. Joseph, “Application of radon (222Rn) as an environmental tracer in hydrogeological and geological investigations: An overview,” Chemosphere, vol. 303, pt. 3, 135141, Sep. 2022.
    DOI: 10.1016/j.chemosphere.2022.135141
    PMid: 35660388
  11. F. Khan, S. A. Khattak, Z. Wazir, M. Waqas, “Spatial distribution of radon concentrations in Balakot-Bagh (B–B) Fault Line and adjoining areas, Lesser Himalayas, North Pakistan,” Environ. Earth Sci., vol. 80, 291, Mar. 2021.
    DOI: 10.1007/s12665-021-09569-8
  12. M. A. Khan, N. U. Khattak, M. Hanif, “Radon emission along faults: a case study from district Karak, Sub-Himalayas, Pakistan,” J. Radioanal. Nucl. Chem ., vol. 331, no. 5, pp. 1995 – 2003, May 2022.
    DOI: 10.1007/s10967-022-08283-4
  13. P. S. Miklyaev et al., “Radon transport in permeable geological environments,” Sci. Total Environ., vol. 852, 158382, Dec. 2022.
    DOI: 10.1016/j.scitotenv.2022.158382
    PMid: 36049692
  14. J. Planinić, V. Radolić, B. Vuković, “Radon as an earthquake precursor,” Nucl. Instrum. Methods Phys. Res. Sect. A, vol. 530, no. 3, pp. 568 – 574, Sep. 2004.
    DOI: 10.1016/j.nima.2004.04.209
  15. I. P. Dobrovolsky, S. I. Zubkov, V. I. Miachkin, “Estimation of the size of earthquake preparation zones,” Pure Appl. Geophys., vol. 117, no. 5, pp. 1025 – 1044, Sep. 1979.
    DOI: 10.1007/BF00876083
  16. I. P. Dobrovolsky, N. I. Gershenzon, M. B. Gokhberg, “Theory of electrokinetic effects occurring at the final stage in the preparation of a tectonic earthquake,” Phys. Earth Planet. Inter., vol. 57, no. 1-2, pp. 144 – 156, Oct. 1989.
    DOI: 10.1016/0031-9201(89)90224-0
  17. B. R. Arora et al., “Assessment of the response of the meteorological/hydrological parameters on the soil gas radon emission at Hsinchu, northern Taiwan: A prerequisite to identify earthquake precursors,” J. Asian Earth Sci., vol. 149, pp. 49 – 63, Nov. 2017.
    DOI: 10.1016/j.jseaes.2017.06.033
  18. V. Walia et al., “Temporal variation of soil gas compositions for earthquake surveillance in Taiwan,” Radiat. Meas., vol. 50, pp. 154 – 159, Mar. 2013.
    DOI: 10.1016/j.radmeas.2012.11.007
  19. H. Woith, “Radon earthquake precursor: A short review,” Eur. Phys. J. Spec. Top ., vol. 224, no. 4, pp. 611 – 627, May 2015.
    DOI: 10.1140/epjst/e2015-02395-9
  20. Y. Mao, L. Zhang, H. Wang, Q. Guo, “The temporal variation of radon concentration at different depths of soil: A case study in Beijing,” J. Environ. Radioact ., vol. 264, 107200, Aug. 2023.
    DOI: 10.1016/j.jenvrad.2023.107200
    PMid: 37210779
  21. Z. Chen et al., “Radon emission from soil gases in the active fault zones in the Capital of China and its environmental effects,” Sci. Rep., vol. 8, no. 1, 16772, Nov. 2018.
    DOI: 10.1038/s41598-018-35262-1
    PMid: 30425320
    PMCid: PMC6233208
  22. H. Friedmann, “Radon in earthquake prediction research,” Radiat. Prot. Dosimetry , vol. 149, no. 2, pp. 177 – 184, Apr. 2012.
    DOI: 10.1093/rpd/ncr229
    PMid: 21669940
  23. X. Han et al., “Rn and CO2 geochemistry of soil gas across the active fault zones in the capital area of China,” Nat. Hazards Earth Syst. Sci., vol. 14, no. 10, pp. 2803 – 2815, Oct. 2014.
    DOI: 10.5194/nhess-14-2803-2014
  24. G. Haquin, H. Zafrir, D. Ilzycer, N. Weisbrod, “Effect of atmospheric temperature on underground radon: a laboratory experiment,” J. Environ. Radioact ., vol. 253-254, 106992, Nov. 2022.
    DOI: 10.1016/j.jenvrad.2022.106992
    PMid: 36058181
  25. P. S. Miklyaev et al., “Radon transport in permeable geological environments,” Sci. Total Environ., vol. 852, 158382, Dec. 2022.
    DOI: 10.1016/j.scitotenv.2022.158382
    PMid: 36049692
  26. A. Muhammad, F. Külahcı, S. Birel, “Investigating radon and TEC anomalies relative to earthquakes via AI models,” J. Atmos. Sol. Terr. Phys., vol. 245, 106037, Apr. 2023.
    DOI: 10.1016/j.jastp.2023.106037
  27. M. Zoran, R. Savastru, D. Savastru, “Radon levels assessment in relation with seismic events in Vrancea region,” J. Radioanal. Nucl. Chem., vol. 293, no. 2, pp. 655 – 663, Aug. 2012.
    DOI: 10.1007/s10967-012-1712-3
  28. M. Zoran, R. Savastru, D. Savastru, D. Mateciuc, “Presignal Signature of Radon (Rn222) for Seismic Events,” in Seismic Hazard and Risk Assessment , R. Vacareanu, C. Ionescu, Eds., 1st ed., Cham, Switzerland: Springer Int. Publishing AG, 2018, pt. I, pp. 117 – 130.
    DOI: 10.1007/978-3-319-74724-8_8
  29. M. Zoran, R. Savastru, D. Savastru, D. Mateciuc, “Investigation of earthquake precursors in Vrancea active geotectonic region through geospatial and field data,” AIP Conf. Proc., vol. 2075, no. 1, 120027, Feb. 2019.
    DOI: 10.1063/1.5091285

Radiation Detectors


Marios K. Tzomakas, Vasiliki Peppa, Antigoni Alexiou, Georgios Karakatsanis, Anastasios Episkopakis, Christos Michail, Ioannis Valais, George Fountos, Ioannis S. Kandarakis, Nektarios Kalyvas

Pages: 60-64

DOI: 10.37392/RapProc.2023.13

In this work, the effect of the scintillator on EPIDs signal transfer properties was examined. Modulation Transfer Function, Signal Power Spectrum and Light Output were assessed by analytical models while radiation incidence was estimated by Monte Carlo techniques. The frequency dependent Contrast Transfer Function (CTF) of a Gd2O2 S:Tb based EPID system was experimentally determined by imaging the QC3 phantom in an iViewGT™ R3.4.1 MV Portal Imaging system for 6MV, 2MU and 400 DR irradiation conditions. In addition, an approximation of experimental MTF was determined. The Eu activator showed the highest light output per incident photon. A more detailed study should include the effect of scatter on MTF and the determination of the experimental MTF through CTF.
  1. F. Cremers et al., “Performance of electronic portal imaging devices EPID used in radiotherapy: Image quality and dose measurements,” Med. Phys ., vol. 31, no. 5, pp. 985 – 996, May 2004.
    DOI: 10.1118/1.1688212
    PMid: 15191282
  2. J. Seco, B. Clasie, M. Partridge, “Review on the characteristics of radiation detectors for dosimetry and imaging,” Phys. Med. Biol., vol 59, no. 20, pp. R303 – R347, Oct. 2014.
    DOI: 10.1088/0031-9155/59/20/R303
    PMid: 25229250
  3. S. J. Blake et al., “Characterization of optical transport effects on EPID dosimetry using Geant4,” Med. Phys., vol. 40, no. 4, 041708, Apr. 2013.
    DOI: 10.1118/1.4794479
    PMid: 23556878
  4. H. Gustafsson, P. Vial, Z. Kuncic, C. Baldock, P. B. Greer, “EPID dosimetry: Effect of different layers of materials on absorbed dose response,” Med. Phys., vol. 36, no. 12, pp. 5665 – 5674, Dec. 2009.
    DOI: 10.1118/1.3245886
    PMid: 20095279
  5. N. Dogan et al., “AAPM Task Group Report 307: Use of EPIDs for Patient-Specific IMRT and VMAT QA,” Med. Phys., vol. 50, no. 8, pp. e865 – e903, Aug. 2023.
    DOI: 10.1002/mp.16536
    PMid: 37384416
  6. Chia-Lung Chien, X. Zhao, B. Guo, R. Zhang, “Technical note: Preprocessing of portal images to improve image quality of VMAT-CT,” Med. Phys., Sep. 2023.
    DOI: 10.1002/mp.16741
    PMid: 37727132
  7. L. E. Antonuk, “Electronic portal imaging devices: a review and historical perspective of contemporary technologies and research,” Phys. Med. Biol ., vol. 47, no. 6, pp R31 – R65, Mar. 2002.
    DOI: 10.1088/0031-9155/47/6/201
    PMid: 11936185
  8. S. Y. Son et al., “Evaluation of Image Quality for Various Electronic Portal Imaging Devices in Radiation Therapy,” J. Radiol. Sci. Technol ., vol. 38, no. 4, pp. 451 – 461, Dec. 2015.
    DOI: 10.17946/JRST.2015.38.4.16
  9. I. J. Das et al., “A quality assurance phantom for electronic portal imaging devices,” J. Appl. Clin. Med. Phys., vol. 12, no. 2, pp. 39 1- 403, Feb. 2011.
    DOI: 10.1120/jacmp.v12i2.3350
    PMid: 21587179
    PMCid: PMC5718680
  10. J. Baek, H. Kim, B. Kim, Y. Oh, H. Jang, “Assessment of portal image resolution improvement using an external aluminum target and polystyrene electron filter,” Radiat. Oncol., vol. 14, no. 1, 70, Apr. 2019.
    DOI: 10.1186/s13014-019-1274-4
    PMid: 31023340
    PMCid: PMC6485051
  11. M. K. Tzomakas et al., “A phantom based evaluation of the clinical imaging performance of electronic portal imaging devices,” Helyion, vol. 9, no. 10, e21116, Oct. 2023.
    DOI: 10.1016/j.heliyon.2023.e21116
    PMid: 37916082
    PMCid: PMC10616349
  12. Z. Zarrini-Monfared, S. Karbasi, A. Zamani, M. A. Mosleh-Shirazi, “Full modulation transfer functions of thick parallel- and focused-element scintillator arrays obtained by a Monte Carlo optical transport model,” Med. Phys., vol. 50, no. 6, pp. 3651 – 3660, Oct. 2023.
    DOI: 10.1002/mp.16306
    PMid: 36779548
  13. S. David et al., “Evaluation of Gd2O2S:Pr granular phosphor properties for X-ray mammography imaging,” J. Lumin., vol. 169, pt. B, pp. 706 – 710, Jan. 2016.
    DOI: 10.1016/j.jlumin.2015.01.044
  14. C. M. Michail et al., “Evaluation of the Red Emitting Gd2O2S:Eu Powder Scintillator for Use in Indirect X-Ray Digital Mammography Detectors,” IEEE Trans. Nucl. Sci., vol. 58, no. 5, pp. 2503 – 2511, Oct. 2011.
    DOI: 10.1109/TNS.2011.2162002
  15. C. M. Michail et al., “Experimental and Theoretical Evaluation of a High Resolution CMOS Based Detector Under X-Ray Imaging Conditions IEEE Trans. Nucl. Sci. , vol. 58, no. 1, pp 314 – 322, Feb. 2011.
    DOI: 10.1109/TNS.2010.2094206
  16. C. M. Michail et al., “Light emission efficiency of Gd2O2S:Eu (GOS:Eu) powder screens under X-ray mammography conditions,” IEEE Trans. Nucl. Sci ., vol. 55, no. 6, pp. 3703 – 3709, Dec. 2008.
    DOI: 10.1109/TNS.2008.2007562
  17. C. M. Michail et al., “Light emission efficiency and imaging performance of Gd2O2S:Eu powder scintillator under x-ray radiography conditions,” Med. Phys., vol. 37, no. 7, pp. 3694 – 3703, Jul. 2010.
    DOI: 10.1118/1.3451113
    PMid: 20831077
  18. N. Kalyvas et al., “Studying the luminescence efficiency of Lu2O3:Eu nanophosphor material for digital X-ray imaging applications,” Appl. Phys. A , vol. 106, no. 1, pp. 131 – 136, Jan. 2012.
    DOI: 10.1007/s00339-011-6640-5
  19. I. E. Seferis et al., “On the response of a europium doped phosphor-coated CMOS digital imaging detector,” Nucl. Instrum. Methods Phys. Res. A , vol. 729, pp. 307 – 315, Nov. 2013.
    DOI: 10.1016/j.nima.2013.06.107
  20. I. E. Seferis et al., “Light emission efficiency and imaging performance of Lu2O3:Eu nanophosphor under X-ray radiography conditions: Comparison with Gd2O2S:Eu,” J. Lumin ., vol. 151, pp. 229 – 234, Jul. 2014.
    DOI: 10.1016/j.jlumin.2014.02.017
  21. S. David et al., “Evaluation of powder/granular Gd2O2S:Pr scintillator screens in single photon counting mode under 140 keV excitation,” JINST, vol 8, P01006, Jan. 2013.
    DOI: 10.1088/1748-0221/8/01/P01006
  22. C. Michail et al., “On the response of GdAlO3:Ce powder scintillators,” J. Lumin., vol. 144, pp. 45 – 52, Dec. 2013.
    DOI: 10.1016/j.jlumin.2013.06.041
  23. I. S. Kandarakis, “Luminescence in medical image science,” J. Lumin. , vol. 169, pp. 553 – 558, Nov. 2014.
    DOI: 10.1016/j.jlumin.2014.11.009
  24. N. B. Nill, Conversion between sine wave and square wave spatial frequency response of an imaging system , Rep. MTR 01B0000021, MITRE, Bedford (MA), USA, 2001.
    Retrieved from: https://www.mitre.org/sites/default/files/pdf/nill_conversion.pdf
    Retrieved on: May 8, 2023
  25. N. Kalyvas, P. Liaparinos, “Analytical and Monte Carlo comparisons on the optical transport mechanisms of powder phosphors,” Opt. Mater., vol. 88, pp. 396 – 405, Feb. 2019.
    DOI: 10.1016/j.optmat.2018.12.006
  26. J. Sempau, A. Badal, L. Brualla, “A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields,” Med. Phys., vol. 38, no. 11, pp. 5887 – 5895, Nov. 2011.
    DOI: 10.1118/1.3643029
    PMid: 22047353
  27. J. Sempau, E. Acosta, J. Baro, J. M. Fernández-Varea, F. Salvat, “An algorithm for Monte Carlo simulation of coupled electron-photon transport,” Nucl. Instrum. Methods Phys. Res. B, vol. 132, no. 3, pp. 377 – 390, Nov. 1997.
    DOI: 10.1016/S0168-583X(97)00414-X
  28. J. Baró, J. Sempau, J. M. Fernández-Varea, F. Salvat, “PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter,” Nucl. Instrum. Methods Phys. Res. B , vol. 100, no. 1, pp. 31 – 46, May 1995.
    DOI: 10.1016/0168-583X(95)00349-5
  29. F. Salvat, PENELOPE: A code system for Monte Carlo simulation of electron and photon transport , OECD Nuclear Energy Agency, Issy-les-Moulineaux, France, 2015.
  30. A. De Martinis et al., “Luminescence and Structural Characterization of Gd2O2S Scintillators Doped with Tb3+, Ce3+, Pr3+ and F for Imaging Applications,” Crystals, vol. 12, no. 6, 854, Jun. 2022.
    DOI: 10.3390/cryst12060854
  31. P. Liaparinos et al., “Grain Size Distribution Analysis of Different Activator Doped Gd2O2S Powder Phosphors for Use in Medical Image Sensors,” Sensors, vol. 22, no. 22, 8702, Nov. 2022.
    DOI: 10.3390/s22228702
    PMid: 36433300
    PMCid: PMC9695128
  32. I. Kandarakis, D. Cavouras, “Experimental and theoretical assessment of the performance of Gd2O2S:Tb and La2O2S:Tb phosphors and Gd2O2S:Tb-La2O2S:Tb mixtures for X-ray imaging,” Eur. Radiol., vol. 11, no. 6, pp. 1083 – 1091, May 2001.
    DOI: 10.1007/s003300000715
    PMid: 11419159
  33. R. Nowotny, XMuDat: Photon Attenuation Data on PC Version 1.0.1, Rep. IAEA-NDS-195, IAEA, Vienna, Austria, 1998.
    Retrieved from: https://nds.iaea.org/publications/nds/iaea-nds-0195/
    Retrieved on: May 8, 2023

Radiation Protection


J. Elío, M. Janik, P. Bossew

Pages: 65-74

DOI: 10.37392/RapProc.2023.14

The Linear-No Threshold Hypothesis (LNT) states that risk from ionizing radiation is linearly related to dose with no dose threshold below which there was no risk. The LNT is an important fundament in practical radioprotection and for assessment of population risk, e.g., of estimating lung cancer risk or incidence attributable to exposure to indoor radon. The popularity of the LNT stems largely from its mathematical simplicity and therefore, its practicability. It seems that this has obscured the question of whether it is physically true, or “only” a useful practical rule. Distribution of exposure and dose to radon through the population is strongly right-skew, with the bulk of dose low. Therefore, attribution of risk, i.e., mainly lung cancer incidence, depends strongly on the risk model for low dose. As long as no micro-dosimetric model exists which causally relates incident radiation flux or exposure to radon progeny to a sequence of effects, starting on sub-cellular level, which results in clinical evidence, it is impossible to make statements on the effect of very low doses, since it is in principle impossible to extend empirical epidemiological inference to arbitrarily small doses. Therefore, epidemiological findings are extrapolated towards low doses. The most quoted large-scale epidemiological radon meta-study is Darby et al. (2006), which concludes that the LNT model is statistically compatible with the findings. This has been essentially corroborated by newer studies. However, with availability or more data, there seems to be increasing evidence that the model may not be applicable to estimate risk for low doses, which represent the bulk of exposure, if the objective is assessment of population risk. We review literature about the strongly debated question about validity of the LNT. Data are not publicly available, therefore statistical re-analysis is impossible. However, published information in the form of graphs and statistics allows some hypotheses alternative to the LNT. The debate is so serious because of the political consequences regarding radon abatement policy. We refrain from stating any “alternative truth” but investigate the possible consequences for risk assessment and what they entail for radon regulation and policy, resulting from different risk models.
  1. WHO Handbook on Indoor Radon: A Public Health Perspective, WHO, Geneva, Switzerland, 2009.
    Retrieved from: https://www.who.int/publications/i/item/9789241547673
    Retrieved on: Jun. 24, 2023
  2. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards , Safety Standards No. GSR Part 3, IAEA, Vienna, Austria, 2014.
    Retrieved from: www.pub.iaea.org/MTCD/Publications/PDF/Pub1578_web-57265295.pdf
    Retrieved on: Jun. 24, 2023
  3. The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM on laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
    Retrieved from: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2014:013:FULL&from=EN
    Retrieved on: Jun. 24, 2023
  4. G. Cinelli et al., European Atlas of Natural Radiation, 1st ed., Publication Office of the European Union, Luxembourg, Luxembourg, 2019.
    Retrieved from: https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiation
    Retrieved on: Jun. 29, 2023
  5. The 2007 Recommendations of the International Commission on Radiological Protection , vol. 37, ICRP Publication no. 103, Ottawa, Canada, 2007.
    Retrieved from: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20103
    Retrieved on: Jun. 28, 2023
  6. D. B. Richardson et al., “Lung Cancer and Radon: Pooled Analysis of Uranium Miners Hired in 1960 or Later,” Environ. Health Perspect., vol. 130, no. 5, 057010, May 2022.
    DOI: 10.1289/EHP10669
    PMid: 35604341
    PMCid: PMC9126132
  7. P. Duan et al., “Nonlinear dose-response relationship between radon exposure and the risk of lung cancer: evidence from a meta-analysis of published observational studies,” Eur. J. Cancer Prev., vol. 24, no. 4, pp. 267 – 277, Jul. 2015.
    DOI: 10.1097/CEJ.0000000000000066
    PMid: 25117725
  8. B. Grosche, M. Kreuzer, M. Kreisheimer, M. Schnelzer, A. Tschense, “Lung cancer risk among German male uranium miners: A cohort study, 1946-1998,” Br. J. Cancer, vol. 95, no. 9, pp. 1280 – 1287, Nov. 2006.
    DOI: 10.1038/sj.bjc.6603403
    PMid: 17043686
    PMCid: PMC2360564
  9. K. Kelly-Reif et al., “Radon and lung cancer in the pooled uranium miners analysis (PUMA): highly exposed early miners and all miners,” Occup. Environ. Med. , vol. 80, no. 7, pp. 385 – 391, Jul. 2023.
    DOI: 10.1136/oemed-2022-108532
    PMid: 37164624
    PMCid: PMC10369304
  10. H. J. Muller, The production of mutations, Nobel Prize organisation, Stockholm, Sweden, 1946.
    Retrieved from: https://www.nobelprize.org/prizes/medicine/1946/muller/lecture/
    Retrieved on: Jun. 25, 2023
  11. E. J. Calabrese, “Muller’s Nobel lecture on dose-response for ionizing radiation: Ideology or science?,” Arch. Toxicol., vol. 85, no. 12, pp. 1495 – 1498, Dec. 2011.
    DOI: 10.1007/s00204-011-0728-8
    PMid: 21717110
  12. S. Darby et al., “Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies,” Br. Med. J. , vol. 330, no. 7485, pp. 223 – 226, Jan. 2005,
    DOI: 10.1136/bmj.38308.477650.63
    PMid: 15613366
    PMCid: PMC546066
  13. Sources, effects and risks of ionizing radiation, UNSCEAR 2012 Report to the General Assembly, with Scientific Annexes, UNSCEAR, New York (NY), USA, 2015.
    Retrieved from: https://www.unscear.org/unscear/en/publications/2012.html
    Retrieved on: Jun. 25, 2023
  14. K. Kino et al., “Considering Existing Factors That May Cause Radiation Hormesis at <100 mSv and Obey the Linear No-Threshold Theory at ≥100 mSv,” Challenges, vol. 12, no. 2, 33, Dec. 2021.
    DOI: 10.3390/challe12020033
  15. R. Nilsson, J. Tong, “Opinion on reconsideration of lung cancer risk from domestic radon exposure,” Radiat. Med. Prot., vol. 1, no. 1, pp. 48 – 54, Mar. 2020.
    DOI: 10.1016/j.radmp.2020.01.001
  16. A. M. Block, S. R. Silva, J. S. Welsh, “Low-dose total body irradiation: an overlooked cancer immunotherapy technique,” J. Radiat. Oncol., vol. 6, no. 2, pp. 109 – 115, Jun. 2017.
    DOI: 10.1007/s13566-017-0303-x
  17. Z. Chen, Z. Wu, T. A. Muluh, S. Fu, J. Wu, “Effect of low-dose total-body radiotherapy on immune microenvironment,” Transl. Oncol., vol. 14, no. 8, 101118, Aug. 2021.
    DOI: 10.1016/j.tranon.2021.101118
    PMid: 34020371
    PMCid: PMC8142085
  18. L. Dobrzyński, K. W. Fornalski, J. Reszczyńska, “Meta-analysis of thirty-two case–control and two ecological radon studies of lung cancer,” J. Radiat. Res., vol. 59, no. 2, pp. 149 – 163, Mar. 2018.
    DOI: 10.1093/jrr/rrx061
    PMid: 29186473
    PMCid: PMC5950923
  19. Radiation protection 125: Low dose ionizing radiation and cancer risk , European Commission, Brussels, Belgium, 2001.
    Retrieved from: https://energy.ec.europa.eu/system/files/2014-11/125_0.pdf
    Retrieved on: Jun. 25, 2023
  20. A. Marín et al., “Bystander effects and radiotherapy,” Rep. Pract. Oncol. Radiother. , vol. 20, no. 1, pp. 12 – 21, Jan.-Feb. 2015.
    DOI: 10.1016/j.rpor.2014.08.004
    PMid: 25535579
    PMCid: PMC4268598
  21. M. Tubiana, L. E. Feinendegen, C. Yang, J. M. Kaminski, “The linear no-threshold relationship is inconsistent with radiation biologic and experimental data,” Radiology, vol. 251, no. 1, pp. 13 – 22, Apr. 2009.
    DOI: 10.1148/radiol.2511080671
    PMid: 19332842
    PMCid: PMC2663584
  22. A. Gaziev, G. Shaikhaev, “Limited Repair of Critical DNA Damage in Cells Exposed to Low Dose Radiation,” in Current Topics in Ionizing Radiation Research , M. Nenoi, Eds., Rijeka, Croatia: InTech, ch. 4, 2012, pp. 51 – 80.
    DOI: 10.5772/33611
  23. Optimisation: Rethinking the Art of Reasonable, Workshop Summary Report NEA/CRPPH/R(2020)2, NEA, Paris, France, 2020.
    Retrieved from: https://www.oecd-nea.org/jcms/pl_60901/optimisation-rethinking-the-art-of-reasonable-workshop-summary-report?details=true
    Retrieved on: Jul. 10, 2023
  24. A. Rosenberger et al., “On the non-linearity of radon-induced lung cancer,” deposited at Research Square, Oct. 03, 2022.
    DOI: 10.21203/rs.3.rs-1933741/v2
  25. L. E. Feinendegen, “Evidence for beneficial low level radiation effects and radiation hormesis,” Br. J. Radiol., vol. 78, no. 925, pp. 3 – 7, Jan. 2005.
    DOI: 10.1259/bjr/63353075
    PMid: 15673519
  26. R. E. Thompson, D. F. Nelson, J. H. Popkin, Z. Popkin, “Case-control study of lung cancer risk from residential radon exposure in Worcester County, Massachusetts,” Health Phys., vol. 94, no. 3, pp. 228 – 241, Mar. 2008.
    DOI: 10.1097/01.HP.0000288561.53790.5f
    PMid: 18301096
  27. R. E. Thompson, “Epidemiological evidence for possible radiation hormesis from radon exposure: A case-control study conducted in Worcester, MA,” Dose-Response, vol. 9, no. 1, pp. 59 – 75, 2011.
    DOI: 10.2203/dose-response.10-026.Thompson
    PMid: 21431078
    PMCid: PMC3057636
  28. B. L. Cohen, “A test of the linear-no threshold theory of radiation carcinogenesis,” Environ. Res., vol. 53, no. 2, pp. 193 – 220, Dec. 1990.
    DOI: 10.1016/S0013-9351(05)80119-7
    PMid: 2253600
  29. B. L. Cohen, “Updates and extensions to tests of the linear-no threshold theory,” Technology, vol. 7. pp. 657 – 672, Jan. 2000.
  30. B. L. Cohen, “Test of the Linear-No Threshold Theory: Rationale for Procedures,” Dose-Response, vol. 3, no. 3, pp. 369 – 390, May 2006.
    DOI: 10.2203/dose-response.003.03.007
    PMid: 18648621
    PMCid: PMC2475951
  31. K. Becker, “Health Effects of High Radon Environments in Central Europe: Another Test for the LNT Hypothesis?,” Nonlinearity Biol. Toxicol. Med. , vol. 1, no. 1, pp. 3 – 35, Jan. 2003.
    DOI: 10.1080/15401420390844447
    PMid: 19330110
    PMCid: PMC2651614
  32. E. J. Calabrese, “Hormesis: From marginalization to mainstream. A case for hormesis as the default dose-response model in risk assessment,” Toxicol. Appl. Pharmacol. , vol. 197, no. 2, pp. 125 – 136, Jun. 2004.
    DOI: 10.1016/j.taap.2004.02.007
    PMid: 15163548
  33. C. L. Sanders, Radiation hormesis and the linear-no-threshold assumption , 1st ed., Heidelberg, Germany: Springer-Verlag Berlin Heidelberg, 2010.
    DOI: 10.1007/978-3-642-03720-7
  34. M. K. Janiak, M. P. R. Waligórski, “Can Low-Level Ionizing Radiation Do Us Any Harm?,” Dose-Response, vol. 21, no. 1, pp. 1 – 15, 2023.
    DOI: 10.1177/15593258221148013
  35. S. M. J. Mortazavi, M. Ghiassi-Nejad, M. Rezaiean, “Cancer risk due to exposure to high levels of natural radon in the inhabitants of Ramsar, Iran,” Int. Congr. Ser., vol. 1276, pp. 436 – 437, Feb. 2005.
    DOI: 10.1016/j.ics.2004.12.012
  36. G. R. W. Denton, S. Namazi, “Indoor Radon Levels and Lung Cancer Incidence on Guam,” Procedia Environ. Sci., vol. 18, pp. 157 – 166, 2013.
    DOI: 10.1016/j.proenv.2013.04.021
  37. Radon therapies, German Federal Office for Radiation Protection, Salzgitter, Germany.
    Retrieved from: https://www.bfs.de/EN/topics/ion/environment/radon/effects/therapies.html
    Retrieved on: Jul. 04, 2023
  38. H. Tempfer, A. Schober, W. Hofmann, H. Lettner, F. Steger, “Biophysical mechanisms and radiation doses in radon therapy,” in The Natural Radiation Environment VII , vol. 7, J. P. McLaughlin, S. E. Simopoulos, F. Steinhäusler, Eds., Amsterdam, Netherlands: Elsevier, 2005, ch. 4, sec. 78, pp. 640 – 648.
    DOI: 10.1016/S1569-4860(04)07078-0
  39. A. Falkenbach, J. Kovacs, A. Franke, K. Jörgens, K. Ammer, “Radon therapy for the treatment of rheumatic diseases - Review and meta-analysis of controlled clinical trials,” Rheumatol. Int., vol. 25, no. 3, pp. 205 – 210, Apr. 2005.
    DOI: 10.1007/s00296-003-0419-8
    PMid: 14673618
  40. A. Maier et al., “Radon Exposure—Therapeutic Effect and Cancer Risk,” Int. J. Mol. Sci. , vol. 22, no. 1, 316, Dec. 2020.
    DOI: 10.3390/ijms22010316
    PMid: 33396815
    PMCid: PMC7796069
  41. K. Yamaoka, T. Kataoka, “Confirmation of efficacy, elucidation of mechanism, and new search for indications of radon therapy,” J. Clin. Biochem. Nutr. , vol. 70, no. 2, pp. 87 – 92, Mar. 2022.
    DOI: 10.3164/JCBN.21-85
    PMid: 35400814
    PMCid: PMC8921726
  42. S. Kojima et al., “Radon Therapy Is Very Promising as a Primary or an Adjuvant Treatment for Different Types of Cancers: 4 Case Reports,” Dose-Response , vol. 17, no. 2, pp. 1–9, Jun. 2019.
    DOI: 10.1177/1559325819853163
    PMid: 31210758
    PMCid: PMC6552369
  43. D. Passali, G. Gabelli, G. C. Passali, R. Mösges, L. M. Bellussi, “Radon-enriched hot spring water therapy for upper and lower respiratory tract inflammation,” Otolaryngol. Pol., vol. 71, no. 4, pp. 8 – 13, Aug. 2017.
    DOI: 10.5604/01.3001.0010.2242
    PMid: 29116046
  44. Z. Zdrojewicz, J. J. Strzelczyk, “Radon Treatment Controversy,” Dose-Response , vol. 4, no. 2, pp. 106 – 118, Aug. 2006.
    DOI: 10.2203/dose-response.05-025.zdrojewicz
    PMid: 18648641
    PMCid: PMC2477672
  45. Linear no-threshold model, Wikipedia, the free encyclopedia, San Francisco (CA), USA,
    Retrieved from: https://en.wikipedia.org/wiki/Linear_no-threshold_model
    Retrieved on: Jul. 04, 2023
  46. J. Gaskin, D. Coyle, J. Whyte, D. Krewksi, “Global Estimate of Lung Cancer Mortality Attributable to Residential Radon,” Environ. Health Perspect. , vol. 126, no. 5, 057009, May 2018.
    DOI: 10.1289/EHP2503
    PMid: 29856911
    PMCid: PMC6072010
  47. Occupational Intakes of Radionuclides: Part 3, vol. 46, ICRP Publication no. 137, ICRP, Ottawa, Canada, 2017, pp. 1 – 486.
    Retrieved from: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20137
    Retrieved on: Jun. 29, 2023
  48. J. Elío et al., “The first version of the Pan-European Indoor Radon Map,” Nat. Hazards Earth Syst. Sci., vol. 19, no. 11, pp. 2451 – 2464, Nov. 2019.
    DOI: 10.5194/nhess-19-2451-2019
  49. P. Bossew, “The Geographical Pattern of Local Statistical Dispersion of Environmental Radon in Europe,” Math. Geosci., spec. issue, 2023.
    DOI: 10.1007/s11004-023-10073-x
  50. P. Bossew et al., “Current topic discussions in radon research,” presented at the Int. Conf. Radiation and Applications (RAP 2022), Thessaloniki, Greece, Jun. 2022.
    Retrieved from: https://drive.google.com/file/d/1jqIaOMgq_DrM_4zSKKUfShg8KDzWxlNo/view
    Retrieved on: Jun. 29, 2023
  51. E. Petermann, P. Bossew, B. Hoffmann, “Radon hazard vs. radon risk - On the effectiveness of radon priority areas,” J. Environ. Radioact., vol. 244 – 245, 106833, Apr. 2022.
    DOI: 10.1016/j.jenvrad.2022.106833
    PMid: 35131623
  52. E. Petermann, P. Bossew, “Mapping indoor radon hazard in Germany: The geogenic component,” Sci. Total Environ., vol. 780, 146601, Aug. 2021.
    DOI: 10.1016/j.scitotenv.2021.146601
    PMid: 33774294
  53. E. Petermann, H. Meyer, M. Nussbaum, P. Bossew, “Mapping the geogenic radon potential for Germany by machine learning,” Sci. Total Environ., vol. 754, 142291, Feb. 2021.
    DOI: 10.1016/j.scitotenv.2020.142291
    PMid: 33254926
  54. R. Gellermann, J. Breckow, “LNT und Strahlenschutz,” STRAHLENSCHUTZ Prax. , vol. 1, p. 80f, 2023.
    (R. Gellermann, J. Breckow, “LNT and Radiation Protection,” RADIATION PROTECTION Practice , vol. 1, p. 80f, 2023.)
  55. P. Bossew, E. Petermann, “What is the objective of radon abatement policy? Revisiting the concept of radon priority areas,” presented at the15th Int. workshop on the geological aspects of radon risk mapping (GARRM), Prague, Czech Republic, Sep.2021.
    Retrieved from: http://www.radon.eu/workshop2021/pres/bossew_2021.pdf
    Retrieved on: Jun. 23, 2023
  56. E. Petermann, P. Bossew, N. Suhr, B. Hoffmann, “Estimating national indoor radon exposure at a high spatial resolution – improvements by a machine learning based probabilistic approach,” presented at theEGU 2023, Vienna, Austria, Apr. 2023.
    Retrieved from: https://doi.org/10.5194/egusphere-egu23-6423
    Retrieved on: Jun. 23, 2023
  57. A. Onishchenko, M. Zhukovsky, “The influence of uncertainties of radon exposure on the results of case-control epidemiological study,” Int. J. Radiat. Biol ., vol. 95, no. 3, pp. 354 – 359, Mar. 2019.
    DOI: 10.1080/09553002.2019.1547846
    PMid: 30496022
  58. J. S. Puskin, “Smoking as a confounder in ecologic correlations of cancer mortality rates with average county radon levels,” Health Phys., vol. 84, no. 4, pp. 526 – 532, Apr. 2003.
    DOI: 10.1097/00004032-200304000-00012
    PMid: 12705451



Irena Muçollari, Aurora Cangu, Anastela Mano, Gramoz Braçe, Artur Xhumari, Jetmira Kerxhaliu, Blerina Myzeqari

Pages: 75-78

DOI: 10.37392/RapProc.2023.15

Glioblastoma is classified as grade- IV glioma of primary brain tumors, and is faced more often in adult patients. The standard approach to therapy in the newly diagnosed glioblastoma, includes surgery followed by concurrent radiotherapy with chemotherapy. The aim of this study is retrospectively to analyze dosimetric treatment plan quality for patients treated for glioblastoma in our clinic using 3D-conformal radiotherapy. Radiotherapy treatment plans are realized by combining 3 to 6 coplanar and non- coplanar fields, open or wedged, achieving dose coverage, dose homogeneity to tumor within recommendations, while minimizing dose at organs at risk.
  1. P. Symonds, J. Mills, A. Duxbury, Walter and Miller>’s Textbook of Radiotherapy: Radiation Physics, Therapy and Oncology, 8th ed., Amsterdam, Netherlands: Elsevier, 2019.
    Retrieved from: https://library.lol/main/F5E7ACC64E7FEBE2195473F6BD7298FF
    Retrieved on: Feb. 18, 2023
  2. N. Kumar et al., “Can 3D-CRT meet the desired dose distribution to target and OARs in glioblastoma? A tertiary cancer center experience,” CNS Oncol., vol. 9, no. 3, CNS60, Sep. 2020.
    DOI: 10.2217/cns-2020-0010
    PMid: 32945180
    PMCid: PMC7546124
  3. N. Kumar et al., “Impact of volume of irradiation on survival and quality of life in glioblastoma: a prospective, phase 2, randomized comparison of RTOG and MDACC protocols,” Neurooncol. Pract., vol. 7, no. 1, pp. 86 – 93, Feb. 2020.
    DOI: 10.1093/nop/npz024
    PMid: 32257287
    PMCid: PMC7104885
  4. T. Sheu, T. M. Briere, A. M. Olanrewaju, M. F. McAleer, “Intensity Modulated Radiation Therapy Versus Volumetric Arc Radiation Therapy in the Treatment of Glioblastoma-Does Clinical Benefit Follow Dosimetric Advantage?,” Adv. Radiat. Oncol., vol. 4, no. 1, pp. 50 – 56, Jan. 2019.
    DOI: 10.1016/j.adro.2018.09.010
    PMid: 30706010
    PMCid: PMC6349632
  5. M. Niyazi et al., “ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma,” Radiother. Oncol., vol. 184, 109663, Jul. 2023.
    DOI: 10.1016/j.radonc.2023.109663
    PMid: 37059335
  6. M. Niyazi et al., “ESTRO-ACROP guideline “target delineation of glioblastomas”,” Radiother. Oncol., vol 118, no. 1, pp. 35 – 42, Jan. 2016.
    DOI: 10.1016/j.radonc.2015.12.003
    PMid: 26777122
  7. Prescribing, Recording, and Reporting Photon-Beam Therapy, ICRU Report 50, ICRU, Bethesda (MD), USA, 1993.
    Retrieved from: https://journals.sagepub.com/toc/crub/os-26/1
    Retrieved on: Mar. 12, 2023
  8. Recording and Reporting Photon Beam Therapy (supplement to ICRU Report 50) , ICRU Report 62, ICRU, Bethesda (MD), USA, 1999.
    Retrieved from: https://journals.sagepub.com/toc/crub/os-32/1
    Retrieved on: Mar. 12, 2023
  9. Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT) , ICRU Report 83, ICRU, Bethesda (MD), USA, 2010.
    Retrieved from: https://journals.sagepub.com/toc/crua/10/1
    Retrieved on: Mar. 12, 2023
  10. B. Emami, “Tolerance of Normal Tissue to Therapeutic Radiation,” Rep. Radiother. Oncol., vol. 1, no. 1, pp. 123 – 127, 2013.
    Retrieved from: https://brieflands.com/articles/rro-2782
    Retrieved on: Feb. 18, 2023
  11. A. van’t Riet, A. C. Mak, M. A. Moerland, L. H. Elders, W. van der Zee, “A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate,” Int. J. Radiat. Oncol. Biol. Phys., vol. 37, no. 3, pp. 731 – 736, Feb. 1997.
    DOI: 10.1016/s0360-3016(96)00601-3
    PMid: 9112473
  12. T. Knoos, I. Kristensen, P. Nilsson, “Volumetric and dosimetric evaluation of radiation treatment plans: radiation conformity index,” Int. J. Radiat. Oncol. Biol. Phys., vol. 42, no. 5, pp. 1169 – 1176, Dec. 1998.
    DOI: 10.1016/S0360-3016(98)00239-9
    PMid: 9869245
  13. L. B. Marks et al., “Use of normal tissue complication probability models in the clinic,” Int. J. Radiat. Oncol. Biol. Phys., vol. 76, suppl. 3, pp. S10 – S19, Mar. 2010.
    DOI: 10.1016/j.ijrobp.2009.07.1754
    PMid: 20171502
    PMCid: PMC4041542

Radiation Detectors


K. Kaperoni, M. Diakaki, C. Weiss, M. Bacak, E. Griesmayer, J. Melbinger, M. Kokkoris, M. Axiotis, S. Chasapoglou, R. Vlastou, and the n_TOF collaboration

Pages: 79-83

DOI: 10.37392/RapProc.2023.16

Diamond is considered one of the most promising materials for neutron reaction studies and neutron fluence measurements. A newly built diamond detector and associated electronics were developed by the CIVIDEC Instrumentation for in-beam neutron measurements in harsh environmental conditions (high instantaneous neutron flux, high gamma-ray background, etc). Various tests were performed to determine the detector’s response to neutron environments including a measurement at NCSR “Demokritos” with monoenergetic neutron beams and a corresponding one at the newly built experimental area NEAR station at the n_TOF facility at CERN. The preliminary results of the tests for the development of this novel detection system will be presented and discussed.
  1. V. Krasilnikov, L. Bertalot, R. Barnsley, M. Walsh, “Neutron detector needs for ITER,” Fusion Sci. Technol., vol. 71, no. 2, pp. 196 – 200, Feb. 2017.
    DOI: 10.13182/FST16-108
    PMid: 11901816
  2. M. Angelone, C. Verona, “Properties of Diamond-Based Neutron Detectors Operated in Harsh Environments,” J. Nucl. Eng., vol. 2, no. 4, pp. 422 – 470, Dec. 2021.
    DOI: 10.3390/jne2040032
  3. Detectors, CIVIDEC Instrumentation, Vienna, Austria.
    Retrieved from: https://cividec.at/
    Retrieved on: May 22, 2023
  4. C. Weiss, “A CVD Diamond Detector for (n,α) Cross-Section Measurements,” Ph.D dissertation, Vienna University of Technology, Faculty of Physics, Vienna, Austria, 2014.
    Retrieved from: https://cds.cern.ch/record/1752629/files/CERN-THESIS-2014-101.pdf
    Retrieved on: Jun. 06, 2023
  5. S. Agostinelli et al., “Geant4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A, vol. 506, no. 3, pp. 250 – 303, Jul. 2003.
    DOI: 10.1016/S0168-9002(03)01368-8
  6. P. Kavrigin, “Neutron spectroscopy with sCVD diamond detectors,” Ph.D thesis, Vienna University of Technology, Dept. of Technical Physics, Vienna, Austria, 2018.
    Retrieved from: https://repositum.tuwien.at/handle/20.500.12708/78506
    Retrieved on: Jun. 06, 2023
  7. A. Mengoni et al., The new n\_TOF NEAR Station, CERN-INTC-2020-073; INTC-I-222, CERN Experiments Committees, Geneva, Switzerland, 2020.
    Retrieved from: https://cds.cern.ch/record/2737308
    Retrieved on: Jun. 06, 2023

Aerosol Radioactivity


Anfal Ismaeel, Abdulaziz Aba, Abdullah Al-Dabbous, Mariam Malak, Aishah Al-Boloushi, Hanadi Al-Shammari, Omar Al-Boloushi

Pages: 84-87

DOI: 10.37392/RapProc.2023.17

High-volume air samples (approximately 1800 m3) were collected from three residential areas in Kuwait with different surrounding activities (Al-Jahra, Rumaithiya, and Ahmadi) using high-volume air samplers connected to a three-stage cascade impactor. Sampling duration was three days, and the samples were collected weekly over a period of one year. Low background gamma spectrometry and chemical separation methods were used to determine the concentrations of 7Be,40K, 210Pb, and 210Po in three particle sizes: 0.41 to 0.73 μm, 0.73 to 2.4 μm, and 2.4 to 10.2 μm. Results indicated that most of the activity was concentrated on the fine particle size fractions, except for 40K, which suggests the influence of local dust sources. The activity concentration values of 210Pb, 7Be, and 40K were consistent across all cities, while the 210Po activity concentration was lower in the Al-Jahra area. Also, the ratios of 210Po/210Pb activity concentrations differ across locations; they were higher in the Ahmadi and Rumaithiya areas compared to Al-Jahra.
  1. C. Papastefanou, “Radioactive aerosols,” in Radioactivity in the Environment, vol. 12, 1st ed., Amsterdam, Netherlands: Elsevier, 2008, ch. 2, pp. 11 – 58.
    Retrieved from: https://library.lol/main/757BA853D79F113AD227B363D06B2DA3
    Retrieved on: Apr. 15, 2023
  2. Compendium of dose coefficients based on ICRP publication 60, vol. 41, ICRP Publication no. 119, ICRP, Ottawa, Canada, 2012, pp. 1 – 130.
    Retrieved from: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20119
    Retrieved on: Apr. 15, 2023
  3. B. Jancsek-Turóczi, A. Hoffer, I. Nyírő-Kósa, A. Gelencsér, “Sampling and characterization of resuspended and respirable road dust,” J. Aerosol Sci., vol. 65, pp. 69 – 76, Nov. 2013.
    DOI: 10.1016/j.jaerosci.2013.07.006
  4. A. Aba, A. M. Al-Dousari, A. Ismaeel, “Depositional characteristics of 7Be and 210Pb in Kuwaiti dust,” J. Radioanal. Nucl. Chem., vol. 307, no. 1, pp. 15 – 23, Jan. 2016.
    DOI: 10.1007/s10967-015-4129-y
  5. J. C. Chow et al., “Descriptive analysis of PM2. 5and PM 10 at regionally representative locations during SJVAQS/AUSPEX,” Atmos. Environ., vol. 30, no. 12, pp. 2079 – 2112, Jun. 1996.
    DOI: 10.1016/1352-2310(95)00402-5
  6. A. Ismaeel et al., “Activity size distributions of radioactive airborne particles in an arid environment: a case study of Kuwait,” Environ. Sci. Pollut. Res., vol. 27, no. 26, pp. 33032 – 33041, Sep. 2020.
    DOI: 10.1007/s11356-020-09367-y
    PMid: 32529611
  7. M. A. Alolayan, K. W. Brown, J. S. Evans, W. S. Bouhamra, P. Koutrakis, “Source apportionment of fine particles in Kuwait City,”Sci. Total Environ., vol. 448, pp. 14 – 25, Mar. 2013.
    DOI: 10.1016/j.scitotenv.2012.11.090
    PMid: 23270730
  8. J. M. AL-Awadhi, A. A. Al-Shuaibi, “Dust fallout in Kuwait City: deposition and characterization,” Sci. Total Environ., vol. 461-462, pp. 139 – 148, Sep. 2013.
    DOI: 10.1016/j.scitotenv.2013.03.052
    PMid: 23722090
  9. A. AL-Hemoud et al., “Exposure levels of air pollution (PM2.5) and associated health risk in Kuwait,” Environ. Res., vol. 179, pt. A, 108730, Dec. 2019.
    DOI: 10.1016/j.envres.2019.108730
    PMid: 31550597
  10. M. Behbehani, F. P. Carvalho, S. Uddin, N. Habibi, “Enhanced polonium concentrations in aerosols from the gulf oil producing region and the role of microorganisms,” Int. J. Environ. Res. Public Health, vol. 18, no. 24, 13309, Dec. 2021.
    DOI: 10.3390/ijerph182413309
    PMid: 34948917
    PMCid: PMC8705287
  11. A. Ismaeel, A. Aba, A. Al-Boloushi, H. Al-Shammari, O. Al-Boloushi, “Radiological risk assessment of particulate matters in urban areas in Kuwait,” Arab. J. Geosci., vol. 14, 2176, Oct. 2021.
    DOI: 10.1007/s12517-021-08483-4
  12. A. Al-Boloushi, A. Ismaeel, A. Aba, H. Al-Shammari, O. Alboloushi, “Atmospheric concentrations of 210Po and 210 Pb in Urban Area in Kuwait,” Arab. J. Geosci., vol. 14, 1995, Sep. 2021.
    DOI: 10.1007/s12517-021-08371-x
  13. A. Aba et al., “Atmospheric residence times and excess of unsupported 210Po in aerosol samples from the Kuwait bay-northern gulf,” Chemosphere, vol. 261, 127690, Dec. 2020.
    DOI: 10.1016/j.chemosphere.2020.127690
    PMid: 32736243
  14. H. Vanmarcke, “UNSCEAR 2000: Sources of ionizing radiation,” Annales de L`association Belge de Radioprotection, vol. 27, no. 2, pp. 41 – 65, 2002.
    Retrieved from: https://bvsabr.be/js/tinymce/plugins/moxiemanager/data/files/annals/Vol%2027-2.PDF
    Retrieved on: Apr. 15, 2023

Radiation Measurements


Dritan Prifti, Kozeta Tushe, Brunilda Daci, Elida Bylyku

Pages: 88-91

DOI: 10.37392/RapProc.2023.18

Institute of Applied Nuclear Physics (IANP) is responsible for the safe and secure management of radioactive waste and DSRS at the National level. IANP collaborates with different institutions and private companies for the safe storage and transport of radioactive materials. This study describes the procedure followed to evaluate the total activity of two radioactive sources of unknown activity. During 2018, IANP received in the National Radioactive Waste Storage Facility 5 DSRS from geophysical service center in Fier, Albania due to the closure of their temporary storage facility. Based on the data of radioactive sources from their certificates that IANP possesses, and the measurements carried out on site of these sources, it turned out that the sources were two 241Am-Be of 5 Ci initial activity each and one 137Cs of initial activity 300mCi in separate containers each and two 137Cs of initial activity 52mCi and 51mCi each, into one container. the two 137Cs sources of activity 52mCi and 51mCi each (reference date July 1978), were supposed to be together in one container, and we needed to verify that they were both into one capsule. We estimated the activity of the source using the geometry of a point source. By making a comparison with the actual activity calculated on the basis of the certificate of these sources it resulted that the activity calculated on the basis of the measurements performed was 1.418 GBq, which was approximate to that calculated on the basis of the certificate 1.528 GBq in March 2018 and, finally, we confirmed that the last two 137Cs sources were in the same capsule. Then all sources were transferred to the National Radioactive Waste Storage Facility in Tirana.
  1. Kuvendil popullor i Republikes se Shqipërisë. (Nëntor 9, 1995). Ligj nr. 8025 ndryshuar me ligjin 9973 dhe me ligjin 26/2013. Per mbrojtjen nga rrezatimet jonizuese.
    (People’s Assembly of the Republic of Albania. (Nov. 9, 1995). Law no. 8025 amended by law 9973 and by law 26/2013. On protection from ionizing radiation.)
    Retrieved from: https://www.ishp.gov.al/rrezatimet-jonizuese/ligje-2/
    Retrieved on: May 18, 2022
  2. Këshilli i Ministrave i Republikës së Shqipërisë. (Shtator 7, 2016). Rregullorja nr. 638 për miratimin e rregullores për trajtimin e sigurt të mbetjeve radioaktive në Republikën e Shqipërisë.
    (Council of Ministers of the Republic of Albania. (Sep. 7, 2016). Regulation no. 638 on the approval of the regulation on the safe handling of radioactive waste in the Republic of Albania.)
    Retrieved from: https://www.ishp.gov.al/rrezatimet-jonizuese/rregullore-2/
    Retrieved on: May 18, 2022
  3. Development of Specifications for Radioactive Waste Packages, IAEA-TECDOC-1515, IAEA, Vienna, Austria, 2006.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1515_web.pdf
    Retrieved on: Nov. 11, 2023
  4. Storage of Radioactive Waste, Safety Guide no. WS-G-6.1, IAEA, Vienna, Austria, 2006.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1254_web.pdf
    Retrieved on: Nov. 11, 2023
  5. Categorization of Radioactive Sources, Safety Guide no. RS-G-1.9, IAEA, Vienna, Austria, 2005.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1227_web.pdf
    Retrieved on: Nov. 11, 2023
  6. Këshilli i Ministrave i Republikës së Shqipërisë. (Mund 9, 2012). Rregullorja nr. 313 për mbrojtjen e publikut nga shkarkimet mjedisore, përcaktimin e kampionimit, rajonet dhe shpeshtësinë e matjeve.
    (Council of Ministers of the Republic of Albania. (May 9, 2012). Regulation no. 313 on protection of the public from environmental emissions, the definition of sampling, regions and frequency of measurement.)
    Retrieved from: https://www.ishp.gov.al/rrezatimet-jonizuese/rregullore-2/
    Retrieved on: May 18, 2022
  7. Strategy and Methodology for Radioactive Waste Characterization, IAEA-TECDOC-1537, IAEA, Vienna, Austria, 2007.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1537_web.pdf
    Retrieved on: Nov. 11, 2023
  8. Handling, conditioning and storage of spent sealed radioactive sources, IAEA-TECDOC-1145, IAEA, Vienna, Austria, 2000.
    Retrieved from: https://www.iaea.org/publications/5967/handling-conditioning-and-storage-of-spent-sealed-radioactive-sources
    Retrieved on: Nov. 11, 2023
  9. Regulations for the Safe Transport of Radioactive Material, Specific Safety Requirements no. SSR-6 (Rev. 1), IAEA, Vienna, Austria, 2018.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/PUB1798_web.pdf
    Retrieved on: Nov. 11, 2023
  10. Procedura dhe Programi për Mbrojtjen nga Rrezatimi, Procedura nr. 11, Instituti i Fizikës Bërthamore të Aplikuar, Tiranë, Shqipëri.
    (Procedure and Programme for Radiation Protection, Procedure no. 11, IANP, Tirana, Albania.)
  11. F. Abu-Jarad, “The application of radiation sources in the oil and gas industry and shortages in their services,” At. Peace: an Int. J. (AFP), vol. 2, no. 4, pp. 338 – 349, 2009.
    DOI: 10.1504/AFP.2009.027867
  12. Radiation Answers, Health Physics Society, Herndon (VA), USA.
    Retrieved from: https://www.radiationanswers.org/radiation-sources-uses/industrial-uses/well-logging.html
    Retrieved on: Jan. 22, 2024

Environmental Chemistry


Abdulaziz Aba, Omar Al-Boloushi, Anfal Ismaeel

Pages: 91-96

DOI: 10.37392/RapProc.2023.19

Fallen dust samples from ten Northern Arabian Gulf locations were analyzed for natural radionuclides and 137Cs using ultra-low background gamma spectrometry. A dust trap of 20 cm diameter collected the samples from ten sites in Kuwait, enabling the determination of radionuclide concentrations. Direct measurement of 234Th estimated 238 U, while the 235U concentration was calculated using the sum peak of 226Ra and 235U of 186 keV gamma line. The calculation of the uranium activity ratio showed that the sample contained natural levels of uranium isotopes. The average concentration of various radionuclides demonstrated significant variation. The median concentrations of7Be, 137Cs, 210Pb, 40K, 224 Ra, 226Ra, 228Ra and 234Th were 1113 ± 148, 11.7 ± 0.6, 434 ± 27, 357 ± 6, 23.4 ± 1.7, 20.2 ± 1.5, 12 ± 2 and 44 ± 1.8 mBq g-1respectively. The measured activity ratios of 137Cs/40K and 7Be/210Pb confirmed the effects of the regional dust sources.
  1. A. Al-Hemoud et al., “Health impact assessment associated with exposure to PM10 and dust storms in Kuwait,” Atmosphere, vol. 9, no. 1, 6, Jan. 2018.
    DOI: 10.3390/atmos9010006
  2. A. Aba, A. Ismaeel, A. Al-Boloushi, H. Al-Shammari, O. Al-Boloushi, “Deposited Rates of Radionuclides,” in Atlas of Fallen Dust in Kuwait, A. Al-Dousari, Eds., 1 st ed., Cham, Switzerland: Springer Cham, 2021, ch. 6, pp. 140 – 176.
    DOI: 10.1007/978-3-030-66977-5_6
  3. A. Al-Hemoud et al., “Sand and dust storm trajectories from Iraq Mesopotamian flood plain to Kuwait,” Sci. Total Environ., vol. 710, 136291, Mar. 2020.
    DOI: 10.1016/j.scitotenv.2019.136291
    PMid: 31911252
  4. What are the WHO Air quality guidelines? Improving health by reducing air pollution, WHO, Geneva, Switzerland, 2021.
  5. A. Al-Dousari, N. Al-Dousari, “Deposited Dust,” in Atlas of Fallen Dust in Kuwait, A. Al-Dousari, Eds., 1 st ed., Cham, Switzerland: Springer Cham, 2021, ch. 2, pp. 47 – 56.
    DOI: 10.1007/978-3-030-66977-5_2
  6. H. Bem, F. Bou-Rabee, “Environmental and health consequences of depleted uranium use in the 1991 Gulf War,” Environ. Int., vol. 30, no. 1, pp. 123 – 134, Mar. 2004.
    DOI: 10.1016/S0160-4120(03)00151-X
    PMid: 14664872
  7. E. G. Daxon et al., Health and Environmental Consequences of Depleted Uranium Use in the U.S. Army: Technical Report, Rep. AEPI-0038, AEPI, Atlanta (GA), USA, 1995.
    Retrieved from: https://www.academia.edu/25782366/Health_and_Environmental_Consequences_of_Depleted_Uranium_Use_in_the_U_S_Army_Technical_Report
    Retrieved on: May 18, 2023
  8. M. A. McDiarmid et al., “Health effects of depleted uranium on exposed Gulf War veterans: a 10-year follow-up,” J. Toxicol. Environ. Health Part A, vol. 67, no. 4, pp. 277 – 296, Feb. 2004.
    DOI: 10.1080/15287390490273541
    PMid: 14713562
  9. A. Bleise, P. R. Danesi, W. Burkart, “Properties, use and health effects of depleted uranium (DU): a general overview,” J. Environ. Radioact., vol. 64, no. 2-3,
    pp. 93 – 112, 2003.
    DOI: 10.1016/s0265-931x(02)00041-3
    PMid: 12500797
  10. Z. Hon, J. Österreicher, L. Navrátil, “Depleted uranium and its effects on humans,” Sustainability, vol. 7, no. 4, pp. 4063 – 4077, Apr. 2015.
    DOI: 10.3390/su7044063
  11. R. R. Parrish et al., “Depleted uranium contamination by inhalation exposure and its detection after ∼ 20 years: Implications for human health assessment,” Sci. Total Environ., vol. 390, no. 1, pp. 58 – 68, Feb. 2008.
    DOI: 10.1016/j.scitotenv.2007.09.044
    PMid: 17976690
  12. L. W. Luckett, “Radiological conditions in areas of Kuwait with residues of depleted uranium,” Health Phys., vol. 90, no. 2, pp. 180 – 181, Feb. 2006.
    DOI: 10.1097/00004032-200602000-00011
  13. A. F. Elsayed, M. T. Hussein, S. A. El-Mongy, H. F. Ibrahim, A. Shazly, “Different Approaches to Purify the 185.7 keV of 235U from Contribution of Another Overlapping γ-Transition,” Phys. Part. Nucl. Lett., vol. 18, no. 2, pp 202 – 209, Mar. 2021.
    DOI: 10.1134/S1547477121020060
  14. A. Aba, A. Ismaeel, “Preparation of in-house calibration source for the use in radioactivity analysis of the environmental samples: consideration of homogeneity,” J. Radioanal. Nucl. Chem., vol. 295, no. 1, pp. 31 – 38, Jan. 2013.
    DOI: 10.1007/s10967-012-1893-9
  15. R. L. Lozano et al., “Mesoscale behavior of 7Be and 210Pb in superficial air along the Gulf of Cadiz (south of Iberian Peninsula),” Atmos. Environ., vol. 80, pp. 75 – 84, Dec. 2013.
    DOI: 10.1016/j.atmosenv.2013.07.050
  16. Y. Y. Ebaid, S. A. El-Mongy, K. A. Allam, “235U–γ emission contribution to the 186 keV energy transition of 226Ra in environmental samples activity calculations,” Int. Cong. Ser., vol. 1276, pp. 409 – 411, Feb. 2005.
    DOI: 10.1016/j.ics.2004.12.020

Nuclear Forensics


Jozef Sabol

Pages: 97-99

DOI: 10.37392/RapProc.2023.20

The problems of potential threats of individual CBRN agents, which include chemical, biological, radiological and nuclear dangerous materials, are currently widely discussed. There are always some facilities and installations that are found where CBRN agents were used or stored during military operations which have been damaged or destroyed. As a result of such a situation, some of these agents were lost and went out of control. It is, therefore, essential to detect and identify these dangerous substances to control them and thus minimise their consequences on the local population's health. The principle for all CBRN agents is the same: to locate them, fix them in appropriate containers and store them in a secured place where they should be controlled. The paper summarises some research activities at the Police Academy of the Czech Republic (PA CR) explicitly aimed at areas related to radiological and nuclear components of the CBRN family.
  1. Využití radiačních metod pro detekci a identifikaci CBRNE material, Projekt č. VI20192022171, Ministerstvo vnitra ČR, Praha, Česká republika, 2019-2022.
    (Application of radiation methods for the detection and identification of CBRNE materials, Project no. VI20192022171, Ministry of the Interior of the Czech Republic, Prague, Czech Republic, 2019-2022.)
    Retrieved from: https://www.mvcr.cz/vyzkum/clanek/podporene-projekty.aspx?q=Y2hudW09NQ%3D%3D
    Retrieved on: Jun. 22, 2023
  2. Prvková charakterizace mikrostop a omamných a psychotropních látek jadernými analytickými metodami , Projekt č. VI20192022162, Ministerstvo vnitra ČR, Praha, Česká republika, 2019-2022.
    (Elemental characterisation of microtraces and narcotic and psychotropic substances by nuclear analytical methods, Project no. VI20192022162, Ministry of the Interior of the Czech Republic, Prague, Czech Republic, 2019-2022.)
    Retrieved from: https://www.mvcr.cz/vyzkum/clanek/podporene-projekty.aspx?q=Y2hudW09NQ%3D%3D
    Retrieved on: Jun. 22, 2023
  3. Comprehensive hazard identification and monitoring system for urban areas (CHIMERA) , EU Horizon Project: Grant no. 101121342, European Commission, Luxembourg City, Luxembourg, 2023-2025.
  4. ITTI Sp. z o.o., Poznań, Poland, 1996.
  5. N. Eby, Instrumental neutron activation analysis, University of Massachusetts, Lowell (MA), USA, 2022.
    Retrieved from: https://serc.carleton.edu/research_education/geochemsheets/techniques/INAA.html
    Retrieved on: Jun. 28, 2023
  6. J. Kučera, J. Kameník, P. Povinec, “Radiochemical separation of mostly short-lived neutron activation products,” J. Radioanal. Nucl. Chem., vol. 311, pp. 1299 – 1307, Feb. 2017.
    DOI: 10.1007/s10967-016-4930-2
  7. J. Kučera et al., “Recent achievements in NAA, PAA, XRF, IBA and AMS applications for cultural heritage investigations at Nuclear Physics Institute, Řež,” Physics, vol. 4, no.2, pp. 491 – 503, Jun. 2022.
    DOI: 10.3390/physics4020033
  8. J. Kučera a spol., “Prověřování léčiv na základě jejich elementárního složení stanoveného neutronovou aktivační analýzou – Studie proveditelnosti,” ve Sborníku Mezinárodní Konf.Poktroky v kriminalistice, Praha, Česká republika, 2017.
    (J. Kučera et al., “Provenancing of drugs based on their elemental composition determined by neutron activation analysis – A feasibility study,” in Proc. Int. Conf. Adv. Criminol., Prague, Czech Republic, 2017.)

Environmental Chemistry


Juan F. Facetti Masulli, Cesar Taboada

Pages: 100-105

DOI: 10.37392/RapProc.2023.21

Building up by Paraguay and Brazil on Alto Parana River (APR), the reservoir covers in area 1440 km2 . Its impoundment of the right bank, Paraguayan side, flooded about 570km2 of vegetation, mainly of height and lower forest, crops and soil. Prior to the impoundment Itaipu Binacional conducted a large number of environmental studies, some of them in reference of the chemical effects of the biomass (BM) on water quality such us phosphorus supply and reduction of dissolved oxygen (DO) concentration, inter alia. In the latter, simulation experiment provides interesting data. This submersion/ incubation experiment on DO consumption were carried out with appropriate amounts of BM samples and APR water, in which DO were determined. Through the oxygen consumption decay curves and their kinetic analysis of the oxidation of the BM, they were found, fast processes with a high oxygen avidity, as well as others slower, with a relative low oxygen consumption, following both, e-ln2t/T kinetic; the former, of the order of days, are due to the oxidation of soft parts of the plants, like lives, shoots, petioles and twigs, while the latter, of the order of years are resultant to the hard parts, like trunks, logs, etc. The phosphorus supply by decaying vegetation at the right bank, was low in comparison to the amount carried by the APR. In addition, the low residence time of water in the reservoir allows fast DO input renovations.
  1. A. Melfi, E. Piccirillo, A. Nardy, “Geological and magmatic aspects of the Paraná basin - An Introduction,” in The Mesozoic flood volcanism of the Parana Basin petrogenetic and geophysical aspects, E. M. Piccirillo, A. J. Melfi, Eds., Sao Paulo, Brazil: Instituto Astronómico e Geofísico University of San Paulo, 1988, ch. 1, sec. I.1, pp. 1 – 14.
  2. J. F. Facetti-Masulli, P. Kump, Z. V. de Diaz, “Selected trace and minor elements in sediments of Itaipu dam reservoir,” Czechoslov. J.Phys., vol. 53, suppl. 1, pp. A209–A215, Jan. 2003.
    DOI: 10.1007/s10582-003-0027-6
  3. J. F. Facetti-Masulli, Embalse de Itaipú, Aspectos Limnológicos, Technical Repport to Itaipu Binacional, Asunción, Paraguay, 1982.
    (J. F. Facetti-Masulli, Itaipu Reservoir, Limnological Aspects, Technical Report to Itaipu Binacional, Asunción, Paraguay, 1982.)
  4. Datos suministrados provenientes del Dpto. de Medio Ambiente, Itaipu Binacional, Asunción, Paraguay 1982.
    (Data provided from the Department of Environment, Itaipu Binacional, Asunción, Paraguay 1982.)
  5. COMAN, Estudios de Calidad de Agua, Informe anual para Itaipu Binacional,vol. 1 y anexos, Asunción, Paraguay, 1977.
    (COMAN, Water Quality Studies, Annual Report for Itaipu Binacional, vol. 1 and annexes, Asunción, Paraguay, 1977.)
  6. COMAN, Estudios de Calidad de Agua, Informe anual para Itaipu Binacional, vol. 1 y anexos, Asunción, Paraguay, 1978.
    (COMAN, Water Quality Studies, Annual Report for Itaipu Binacional, vol. 1 and annexes, Asunción, Paraguay, 1978.)
  7. J. F. Facetti-Masulli et al., Estudios de Calidad de Agua, Hydroconsult SRL Informe para Itaipu Binacional, vol. 1 y anexos, Asunción, Paraguay, 1979-80.
    (J. F. Facetti-Masulli et al., Water Quality Studies, Hydroconsult SRL Report for Itaipu Binacional, vol. 1 and annexes, Asunción, Paraguay, 1979-80.)
  8. COMAN, Estudio de Eutrofización, Informe anual para Itaipú Binacional, vol. 1-2-3 y Anexos, Asunción, Paraguay, 1977.
    (COMAN, Eutrophication Study, Annual Report for Itaipú Binacional, vol. 1-2-3 and Annexes, Asunción, Paraguay, 1977.)
  9. COMAN, Estudios de Eutrofización, Informe anual para Itaipú Binacional, vol. 1-2 y Anexos, Asunción, Paraguay, 1978.
    (COMAN, Eutrophication Studies, Annual Report for Itaipú Binacional, vol. 1-2 and Annexes, Asunción, Paraguay, 1978.)
  10. J. F. Facetti-Masulli et al., Estudios de Eutrofización, Hydroconsult SRL Informe Bi anual para Itaipu Binacional, vol. 1-2-3 y Anexos, Asunción, Paraguay, 1979-80.
    (J. F. Facetti-Masulli et al., Eutrophication Studies, Hydroconsult SRL Annual Bi Report for Itaipu Binacional, vol. 1-2-3 and Annexes, Asunción, Paraguay, 1979-80.)
  11. J. F. Facetti-Masulli et al., Estudios Hídrocos y Limnológicos en los Emablses de Itaipú, vol. 1-2-3, Acaray y Yguazú, Paraguay, 1982-85.
    (J. F. Facetti-Masulli et al., Hydrological and Limnological Studies in the Reservoir of Itaipú, vol. 1-2-3, Acaray and Yguazú, Paraguay, 1982-85.)
  12. R. C. Pereira, Limpieza de la Biomasa, Regeneración Vegetal Consumo de OD Informe para Itaipú Binacional, Asunción, Paraguay, 1978.
    (R. C. Pereira, Biomass Cleaning, Plant Regeneration DO Consumption Report for Itaipú Binacional, Asunción, Paraguay, 1978.)
  13. R. C. Pereira, Estudio de Consumo de 0.D., Informe para Itaipu Binacional, Parte II, Asunción, Paraguay, 1979.
    (R. C. Pereira, 0.D. Consumption Study, Report for Itaipu Binacional, Part II, Asunción, Paraguay, 1979.)
  14. J. F. Facetti-Masulli, P. Kump, Z. V. de Diaz, V. R. de González, “Incompatible elements in bottom sediments of the Itaipu Dam Reservoir by EDXRF,” J. Radioanal. Nucl. Chem., vol. 316, no. 2, pp. 861 – 868, May 2018.
    DOI: 10.1007/s10967-018-5801-9
  15. J. F. Facetti-Masulli, “Embalse de Itaipu. Estudios Limnológicosen la margenderechaParte I,” en Actas de 2do Seminario da Itaipú Binacional sobre Meio Ambiente, Foz do Iguazú, Brazil, 1987 .
    (J. F. Facetti-Masulli, “Itaipu Reservoir. Limnological Studies at the margin Part I,” in Proc. 2nd Binational Itaipu Seminar on the Environment, Foz do Iguazú, Brazil, 1987.)
  16. J. A. Fitzpatrick, J. F. Facetti-Masulli, “Secchi Disc and Lago de la Republica, Eastern Paraguay,” Int. J. Earth Sci. Eng., vol.5, pp. 482 – 486, 2015.
    DOI: 10.17265/2159-581X/2015.08.003
  17. G. E. Hutchison, A Treatise on Limnology, New York (NY), USA: J. Wiley and Sons, 1957.
  18. G. E. Hutchison, H. Löffler, “The thermal classification of lakes,” PNAS, vol. 42, no. 2, pp. 84 – 86, Feb. 1956.
    PMCid: PMC528218
  19. F. Henderson, A Limnological Description of Kainji Lake 1969-1971, Rep. FI:DP/NIR 66/524/10, Rome, Italy, FAO, 1973.
    Retrieved from: https://www.fao.org/3/d8476e/d8476e.pdf
    Retrieved on: Sep. 17, 2023
  20. L. C. Beadle, The Inland Waters of Tropical Africa: An Introduction to Tropical Limnology, 1st ed., London, UK: Longman Publishing Group, 1974.
  21. E. K. Balon, A. G. Coche, Lake Kariba: A Man-Made Tropical Ecosystem in Central Africa, 1st ed., Dordrecht, Netherlands: Springer, 1974.
    DOI: 10.1007/978-94-010-2334-4
  22. B. Entz, “Limnological conditions in Volta Lake,” Nat. Resour., vol. 4, pp. 9 – 16, 1969.
  23. J. F. Talling, “Origin of stratification in an African riftlake,” Limnol. Oceanogr., vol. 8, no. 1, pp. 68 – 78, Apr. 1963.
    DOI: 10.4319/lo.1963.8.1.0068
  24. J. F. Talling, “The incidence of vertical mixing, and some biological and chemical consequences, in tropical African lakes,” Verh. - Int. Ver. Theor. Angew. Limnol., vol. 17, no. 2, pp. 998 – 1012, 1969.
    DOI: 10.1080/03680770.1968.11895946
  25. J. F. Talling, “Some Observations on the Stratification of Lake Victoria,” Limnol. Oceanogr., vol. 2, no. 3, pp. 213 – 221, Jul. 1957.
    DOI: 10.1002/lno.1957.2.3.0213
  26. P. H. Freeman, Environmental aspects of a large tropical reservoir (Volta Lake), USAID, Washington D.C., USA, 1974.
    Retrieved from: https://pdf.usaid.gov/pdf_docs/PNRAB300.pdf
    Retrieved on: Sep. 17, 2023
  27. G. W. Begg, “Limnological Observations on Lake Kariba During 1967 with Emphasis on Some Special Features,” Limnol. Oceanogr., vol. 15, no. 5, pp. 776 – 788, Sep. 1970.
    DOI: 10.4319/lo.1970.15.5.0776
  28. B. E. Marshall, “Lake Kariba,” in Status of African Reservoir Fisheries, J. M. Kapetsky, T. Petr, Eds., Rome, Italy: FAO, 1984.
  29. M. P. Paiva, Algunas consideraciones sobre la represa de Brokopondo, Informe a Electrobras.
  30. W. M. Lewis, “The thermal regime of Lake Lanao (Philippines) and its theoretical implications for tropical lakes,” Limnol. Oceanogr., vol. 18, no. 2, pp. 200 – 217, Mar. 1973.
    DOI: 10.4319/lo.1973.18.2.0200
  31. V. W. Ekman, “On the influence of the earth’s rotation on ocean-currents,” Ark. Mat. Astr. Fys., bd. 2, no. 11, 1905.
    Retrieved from: https://jscholarship.library.jhu.edu/items/6026d396-a902-488f-a737-f822ac36f674
    Retrieved on: Sep. 17, 2023
  32. M. C. Rand, A. E. Greenberg, M. J. Taras, Standard methods for the examination of water and wastewater, 14th ed., Washington D.C., USA: American Public Health Association, 1976.
  33. J. F. Facetti-Masulli, M. U. Bordas, “El Modelo de Lewis y el comportamiento del Lago de Itaipú,” Rev. Soc. Cientif. Paraguay-Tercera Época, vol. 15, no. 2, pag. 137 – 152, 2010.
    (J. F. Facetti-Masulli, M. U. Bordas, “The Lewis model and the thermal patterns of the Itaipu Lake,” Rev. Soc. Cientif. Paraguay- Third period, vol. 15, no. 2, pp. 137 – 152, 2010.)
  34. J. A. Fitzpatrick, “Physical Limnological Measurements in the Alto Parana Region of Eastern Paraguay,” Ph.D. dissertation, Susan Anthony University, 1980.

Radiation Measurements


Gregor Kramberger

Pages: 106-110

DOI: 10.37392/RapProc.2023.22

With increasing number of hadron therapy centres the need for proton-CT as a powerful imaging technique is growing. Although a number of experimental p-CT has been developed there is no clinical p-CT yet. The imaging technique is based on measuring entry and exit point of the proton from the tissue as well as the residual energy of the proton. The latter is very demanding in terms of high particle rates and required resolution. The p-CT concept using novel Low Gain Avalanche Detectors (LGADs) will be described where three layers of LGAD timing detectors are used to measure the proton track and its energy. The measurement of proton energy which is vital for image reconstruction (density of electrons) is obtained from time-of-flight measurements rather than conventional scintillator-based calorimeter. The first-time resolution measurements with very thin (35 µm) LGADs and GEANT4 simulations of the p-CT performance are presented.
  1. H. Suit et al., “Proton vs carbon ion beams in the definitive radiation treatment of cancer patients,” Radiother. Oncol., vol. 95, no. 1, pp. 3 – 22, Apr. 2010.
    DOI: 10.1016/j.radonc.2010.01.015
    PMid: 20185186
  2. P. Giubilato, “Monolithic Sensors for Proton Therapy,” presented at the 10th Int. Workshop on Semiconductor Pixel Detectors for Particles and Imaging (Pixel2022), Santa Fe (NM), USA, Dec. 2022.
  3. A. M. Cormack, “Representation of a function by its line integrals with some radiological applications,” J. Appl. Phys., vol. 34, no. 9, pp. 2722 – 2727, Sep. 1963.
    DOI: 10.1063/1.1729798
  4. A. M. Koehler, “Proton radiography,” Science, vol. 160, no. 3825, pp. 303 – 304, Apr. 1968.
    DOI: 10.1126/science.160.3825.303
    PMid: 17788234
  5. K. M. Hanson et al., “The application of protons to computed tomography,” IEEE Trans. Nucl. Sci., vol. 25, no. 1, pp. 657 – 660, Feb. 1978.
    DOI: 10.1109/TNS.1978.4329389
  6. H. F. Sadrozinski et al., “Development of a head scanner for proton CT,” Nucl. Instr. Methods Phys. Res. A, vol. 699, pp. 205 – 210, Jan. 2013.
    DOI: 10.1016/j.nima.2012.04.029
    PMid: 23264711
    PMCid: PMC3524593
  7. G. Poludniowski, N. M. Allinson, P. M. Evans, “Proton Radiography and Tomography with Application to Proton Therapy,” Br. J. Radiol., vol. 88, no. 1053, 20150134, Sep. 2015.
    DOI: 10.1259/bjr.20150134
    PMid: 26043157
    PMCid: PMC4743570
  8. R. W. Schulte et al., “Conceptual design of a proton computed tomography system for applications in proton radiation therapy,” IEEE Trans. Nucl. Sci., vol. 51, no. 3, pp. 866 – 872, Jun. 2004.
    DOI: 10.1109/TNS.2004.829392
  9. G. Pellegrini et al., “Technology developments and first measurements of Low Gain Avalanche Detectors (LGAD) for high energy physics applications,” Nucl. Instr. Methods Phys. Res. A, vol. 765, pp. 12 – 16, Nov. 2014.
    DOI: 10.1016/j.nima.2014.06.008
  10. H. F-W. Sadrozinski, A. Seiden, N. Cartiglia, “4D tracking with ultra-fast silicon detectors”, ROPP, vol. 81, no. 2, 026101, Feb. 2018.
    DOI: 10.1088/1361-6633/aa94d3
  11. ATLAS Collaboration,Technical Design Report: A High-Granularity Timing Detector for the ATLAS Phase-II Upgrade, Rep. ATLAS TDR-031, CERN, Geneva, Switzerland, 2020.
    Retrieved from: https://cds.cern.ch/record/2719855
    Retrieved on: Sep. 20, 2023
  12. CMS, Collaboration,A MIP Timing Detector for the CMS Phase-2 Upgrade, Rep. CMS-TDR-020, CERN, Geneva, Switzerland, 2019.
    Retrieved from: https://cds.cern.ch/record/2667167
    Retrieved on: Sep. 20, 2023
  13. G. Kramberger, “Silicon detectors for precision track timing,” presented at the 10th Int. Workshop on Semiconductor Pixel Detectors for Particles and Imaging (Pixel2022), Santa Fe (NM), USA, Dec. 2022.
    DOI: 10.22323/1.420.0010
  14. G. Kramberger et al., “Annealing effects on operation of thin Low Gain Avalanche Detectors,” JINST, vol. 15, no. 8, P08017, Aug. 2020.
    DOI: 10.1088/1748-0221/15/08/P08017
  15. J. Debevc, “Simulation of Landau fluctuations on timing performance of LGADs,” presented at the 42nd RD50 Workshop on Radiation Hard Semiconductor Devices for Very High Luminosity Colliders, Tivat, Montenegro, Jun. 2023.
  16. S. Agostinelli et al., “Geant4—a simulation toolkit,” Nucl. Instr. Methods Phys. Res. A, vol. 506, no. 3, pp. 250 – 303, Jul. 2003.
    DOI: 10.1016/S0168-9002(03)01368-8
  17. G. Kramberger et al., “Gain dependence on free carrier concentration in LGADs,” Nucl. Instr. Methods Phys. Res. A, vol. 1046, 167669, Jan. 2023.
    DOI: 10.1016/j.nima.2022.167669
  18. G. Paternoster et al., “Trench-Isolated Low Gain Avalanche Diodes (TI-LGADs),” IEEE Electron Device Lett., vol. 41, no. 6, pp. 884 – 887, Jun. 2020.
    DOI: 10.1109/LED.2020.2991351
  19. E. Curras et al., “Inverse Low Gain Avalanche Detectors (iLGADs) for precise tracking and timing applications,” Nucl. Instr. Methods Phys. Res. A, vol. 958, 162545, Apr. 2020.
    DOI: 10.1016/j.nima.2019.162545
  20. M. Mandurrino et al., “Demonstration of 200-, 100-, and 50- μ m Pitch Resistive AC-Coupled Silicon Detectors (RSD) With 100% Fill-Factor for 4D Particle Tracking,” IEEE Electron Device Lett., vol. 40, no. 11, pp. 1780 – 1783, Nov. 2019.
    DOI: 10.1109/LED.2019.2943242
  21. L. Piccolo et al., “The first ASIC prototype of a 28 nm time-space front-end electronics for real-time tracking,” presented at theTopical Workshop on Electronics for Particle Physics (TWEPP2019), Santiago de Compostela, Spain, Sep. 2019.
    DOI: 10.22323/1.370.0022

Radiation Protection


Luljeta Disha, Manjola Shyti

Pages: 111-115

DOI: 10.37392/RapProc.2023.23

During the last decade many European countries have applied and regulated through state legislation quality control (QC) program in diagnostic radiology. Such a program forms an essential part of dose effective radiological practice and should be implemented in every x-ray medical equipment. Implementation of QC tests on diagnostic radiographic equipment can ensure the optimal status of imaging systems, providing in this way high-quality images. QC of radiological medical devices in Albania is applicated since 2015, every three years. QC techniques used to test the components of the radiological system and verify that the equipment is operating satisfactorily are performed from the Institute of Applied Nuclear Physics and all the instruments used for performing these measurements are sponsored by the International Atomic Energy Agency. The aim of this study was to investigate the status of 8 randomly selected X-ray generators used in radiology centers of 6 different cities in Albania during the 2021-2022 period. This study presents only the primary QC parameters: kilovoltage (kVp) accuracy and reproducibility, kVp variation with change of mA, exposure time accuracy and reproducibility, tube output and reproducibility, tube output variation with change in indicated tube current - exposure time product (mAs) and filtration (half value layer). All measurements were performed using Radcal (AGMS-DM+) solid-state multi sensor, plugged into its appropriate (Accu-Gold+) digitizer module. This detector was placed on the radiographic tabletop along with the central axis of the X-ray beam at the focus to detector distance of 100 cm. Based on the findings, this study showed clearly that all the radiographic devices, subject of routine quality control tests were in a very good compliance with the acceptable criteria. Specifically, for the primary QC parameters tests, kVp accuracy was between 1.4 - 5%, kVp reproducibility was between 1-3.1%, kVp variation with change of mA was between 1.4 - 5.4 %, time accuracy and reproducibility was between 0 - 6.6%, tube output value with a total filtration 2.5 mm Al at 100 cm for true 80 kV operation was between 26.1 - 60µGy/mAs, tube output reproducibility was between 0 – 2.5%, tube output variation with change of mAs product was between 1 - 18% and filtration at 70 kV was between 2.6 – 3.9 mm Al. Results of this study showed that, even though radiological devices in Albania are relatively old with high workload, especially during the last years, all the devices met the standard criteria.
  1. Dosimetry in Diagnostic Radiology: An International Code of Practice, Technical Report Series No. 457, IAEA, Vienna, Austria, 2007, pp. 1 – 14.
    Retrieved from: http://www.iaea.org/publications/
    Retrieved on: Jun. 12, 2021
  2. Medical Electrical Equipment — Part 1-3: General Requirements for Basic Safety and Essential Performance — Collateral Standard: Radiation Protection in Diagnostic X-ray Equipment, IEC 60601-1-3:2008, Jan. 22, 2008.
  3. Handbook of Basic Quality Control Tests for Diagnostic Radiology, IAEA Human Health Series No. 47, IAEA, Viena, Austria, 2023, pp. 2 – 16.
    Retrieved from: http://www.iaea.org/Publications/
    Retrieved on: Mar. 10, 2023
  4. Instrumentation Requirements of Diagnostic Radiological Physicists (General Listing), Rep. No. 60, AAPM, Alexandria (VA), USA, 1998, pp. 1 – 35.
    Retrieved from: https://doi.org/10.37206/59
    Retrieved on: Oct. 25, 2020
  5. The Council of the European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM on laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
    Retrieved from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013L0059
    Retrieved on: Jan. 20, 2022
  6. Ministria e Shëndetësisë. (Qershor 18, 2014). Nr 404. Prot për miratimin e rregullores Për rregullat bazë të instalimeve radiologjike në mjekësi.
    (Council of Minister for the approval of the regulation (Jun. 18, 2014). No. 404. On basic rules of radiological installations in medicine.)
    Retrieved from: http://www.ishp.gov.al/rrezatimetjonizuese/
    Retrieved on: Jun. 18, 2020
  7. Quality Control in Diagnostic Radiology, Rep. No. 74, AAPM, Alexandria (VA), USA, 2002, pp. 2 – 19.
    DOI: 10.37206/73
  8. P.-J. P. Lin, A. R. Goode, “Accuracy of HVL measurements utilizing solid state detectors for radiography and fluoroscopy X-ray systems,” J. Appl. Clin. Med. Phys., vol. 22, no. 9, pp. 339 – 344, Sep. 2021.
    DOI: 10.1002/acm2.13389
    PMid: 34375033
    PMCid: PMC8425946
  9. Diagnostic Radiology Physics: A Handbook for Teachers and Students, IAEA, Vienna, Austria, 2014, pp. 93 – 139.
    Retrieved from: http://www.iaea.org/Publications/
    Retrieved on: Sep. 30, 2020
  10. Recommended Standards for the Routine Performance Testing of Diagnostic X-ray Imaging Systems in Medicine, IPEM Rep. No. 91, IPEM, York, UK, 2005, pp. 5 – 7.
  11. Optimization of the Radiological Protection of Patients Undergoing Radiography, Fluoroscopy and Computed Tomography, IAEA-TECDOC-1423, IAEA, Vienna, Austria, 2004, pp. 4 – 44.
    Retrieved from: http://www-ns.iaea.org/standards/
    Retrieved on: Sep. 30, 2020
  12. A. K. Jones et al., “Ongoing quality control in digital radiography: Report of AAPM Imaging Physics Committee Task Group 151,” Med. Phys., vol. 42, no. 11, pp. 6658 – 6670, Nov. 2015.
    DOI: 10.1118/1.4932623
    PMid: 26520756
  13. J. Malone et al., “Criteria and suspension levels in diagnostic radiology,” Radiat. Prot. Dosim., vol, 153, no. 2, pp. 185 – 189, Feb. 2013.
    DOI: 10.1093/rpd/ncs295
    PMid: 23173220
  14. Criteria for Acceptability of Medical Radiological Equipment Used in Diagnostic Radiology, Nuclear Medicine and Radiotherapy, Radiation Protection
    No. 162, European Commission, Luxembourg, Luxembourg, 2013, pp. 16 – 30.
    Retrieved from: http://op.europa.eu/EUpublication/
    Retrieved on: Oct. 25, 2021

Food Irradiation


U. Bliznyuk, P. Borshchegovskaya, A. Chernyaev, V. Ivantsova, V. Ipatova, Z. Nikitina, E. Nasibov, D. Yurov, I. Rodin

Pages: 116-120

DOI: 10.37392/RapProc.2023.24

A study was carried out on the effect of 1 MeV accelerated electrons on the survival rate of suspensions of Escherichia coli bacteria and suspensions of Aspergillus fumigatus fungi at various initial concentrations and followed by plating on various nutrient media after irradiation. The samples were irradiated in the dose range from 0.15 kGy to 4 kGy. It was established that the concentrations of viable bacterial and fungal cells decreased nonlinearly with radiation dose. The doses required to reduce populations by a factor of 10 ranged from 0.20 kGy to 0.56 kGy for Escherichia coli at initial concentrations of 103 CFU/g to 105 CFU/g when plated on agar Thioglycollate medium; 1.28 kGy and 1.23 kGy for Aspergillus fumigatus at an initial concentration of 106 CFU/g when plated on Sabouraud medium and Modified Czapek-Dox medium, respectively.
  1. Estimating the burden of foodborne diseases, WHO, Geneva, Switzerland.
    Retrieved from: https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases
    Retrieved on: Dec. 12, 2023
  2. Food irradiation: Requirements for the development, validation and routine control of the process of irradiation using ionizing radiation for the treatment of food , ISO 14470:2011, Dec. 2011.
    Retrieved from: https://www.iso.org/standard/44074.html
    Retrieved on: Dec. 12, 2023
  3. U. A. Bliznyuk et al., “Effect of electron and X-ray irradiation on microbiological and chemical parameters of chilled turkey,” Sci. Rep., vol. 12, no. 1, 750, Jan. 2022.
    DOI: 10.1038/s41598-021-04733-3
    PMid: 35031660
    PMCid: PMC8760279
  4. U. A. Bliznyuk et al., “Determination of Chemical and Microbiological Characteristics of Meat Products Treated by Radiation,” Inorg. Mater., vol. 58, pp. 1422 - 1428, Dec. 2022.
    DOI: 10.1134/S0020168522140047
  5. A. P. Chernyaev et al., “Study of the Effectiveness of Treating Trout with Electron Beam and X-Ray Radiation,” Bull. Russ. Acad. Sci.: Phys., vol.84, Moscow, Russia, Apr. 2020.
    DOI: 10.3103/S106287382004005X
  6. A. Adu-Gyamfi, W. Torgby-Tetteh, V. Appiah, “Microbiological Quality of Chicken Sold in Accra and Determination of D10-Value of E. coli,” Food and Nutrition Sci., vol. 3, no. 5, pp. 693 – 698, May 2012.
    DOI: 10.4236/fns.2012.35094
  7. C. H. Sommers, O. J. Scullen, S. Sheen, “Inactivation of uropathogenic Escherichia coli in ground chicken meat using high pressure processing and gamma radiation, and in purge and chicken meat surfaces by ultraviolet light,” Front. Microbiol., vol. 7, 413, Apr. 2016.
    DOI: 10.3389/fmicb.2016.00413
  8. A. Xu, O. J. Scullen, S. Sheen, J. R. Johnson, C. H. Sommers, “Inactivation of extraintestinal pathogenic E. coli clinical and food isolates suspended in ground chicken meat by gamma radiation,”Food Microbiol., vol. 84, 103264, Dec. 2019.
    DOI: 10.1016/j.fm.2019.103264
    PMid: 31421757
  9. J. Lee et al., “Radiation sensitivity of Aspergillus flavus in semi-dried beef jerky,” Food Sci. Biotech., vol. 13, no. 5, pp. 613 – 615, 2004.
  10. N. H. Aziz, L. A. A. Moussa, F. M. E. Far, “Reduction of fungi and mycotoxins formationin seeds by gamma-irradiation,” J. Food Safety, vol. 24, no. 2, pp. 109 – 127, Jul. 2004.
    DOI: 10.1111/j.1745-4565.2004.tb00379.x
  11. F. Hossain et al., “Radiosensitization of Aspergillus niger and Penicillium chrysogenum using basil essential oil and ionizing radiation for food decontamination,” Food Control, vol. 45, pp. 156 – 162, Nov. 2014.
    DOI: 10.1016/j.foodcont.2014.04.022
  12. S. Aryal, “Microbial spoilage of meat and meat products,” Microbe Notes , Apr. 18, 2021.
    Retrieved from: https://microbenotes.com/microbial-spoilage-of-meat-and-meat-products/
    Retrieved on: Nov. 28, 2023
  13. О. В. Фадейкина, “Аттестация стандартного образца мутности бактерийных взвесей,” Эталоны. Стандартные образцы, нo. 2, стр. 41 – 47, 2014.
    (O. V. Fadeikina, “Certification of a standard sample of turbidity of bacterial suspensions,” Certif. Reference Mater., no. 2, pp. 41 – 47, 2014.)
    Retrieved from: https://www.rmjournal.ru/jour/article/view/17
    Retrieved on: Nov. 28, 2023
  14. U. Bliznyuk, N. Chulikova, V. Ipatova, A. Malyuga, “Effect of ionizing radiation with 1 MeV on phenology of potatoes inhabited by fungi Rhizoctonia solani Kuhn,” in Book of Abstr. Int. Conf. Advances in Agrobusiness and Biotechnology Research (ABR 2021), Krasnodar, Russia, 2021, 02001.
    DOI: 10.1051/e3sconf/202128502001
  15. C. M. Ma, S. B. Jiang, “Monte Carlo modelling of electron beams from medical accelerators,” Phys. Med. Biol., vol. 44, no. 12, pp. 157 – 189, Dec. 1999.
    DOI: 10.1088/0031-9155/44/12/201
    PMid: 10616140
  16. З. К. Никитина, И. К. Гордонова, Э. М. Насибов, “Изучение коллагенолитических свойств коллекционных штаммов микромицетов при длительном хранении,” Вопросы биол., мед. и фарм. химии, т. 24, нo. 3, стр. 33 – 39, 2021.
    (Z. K. Nikitina, I. K. Gordonova, E. M. Nasibov, “Study of the collagenolytic properties of collection strains of micromycetes during long-term storage,” Quest. biol. med. farm. chemistry, vol. 24, no. 3, pp. 33 – 39, 2021.)
    DOI: 10.29296/25877313-2021-03-05
  17. “Микробиологическая чистота,” в XII Государственная фармакопея РФ, ч. 1, Москва, Россия: НЦЭСМП, 2007, сек. 32, стр. 160 – 193.
    (“Microbiological purity,” in XII State Pharmacopoeia of the Russian Federation , vol. 1, Moscow, Russia: Sci. Center for Expertise of Med. Products, 2007, sec. 32, pp. 160 – 193.)
    Retrieved from: https://docs.rucml.ru/feml/pharma/v14/vol1/
    Retrieved on: Nov. 28, 2023
  18. R. R. O. Chirinos, D. M. Vizeu, M. T. Destro, B. D. G. M. Franco, M. Landgraf, “Inactivation of Escherichia coli O157:H7 in hamburgers by gamma irradiation,” Braz. J. Microbiol., vol. 33, no. 1, pp. 53 – 56, Jan. 2002.
    DOI: 10.1590/S1517-83822002000100011
  19. B. M. Youssef, S. R. Mahrous, N. H. Aziz, “Effect of gamma irradiation on aflatoxin B1 production by Aspergillus flavus in ground beef stored at 5C,” J. Food Safety, vol. 19, no. 4, pp. 231 – 239, Dec. 1999.
    DOI: 10.1111/j.1745-4565.1999.tb00248.x
  20. L. Fan et al., “Study on antibacterial mechanism of electron beam radiation on Aspergillus flavus,” Food Biosci., vol. 51, 102197, Feb. 2023.
    DOI: 10.1016/j.fbio.2022.102197
  21. R. D. Jeong, E. J. Shin, E. H. Chu, H. J. Park, “Effects of Ionizing Radiation on Postharvest Fungal Pathogens,” Plant Pathol. J., vol. 31, no. 2, pp. 176 – 180, Jun. 2015.
    DOI: 10.5423/PPJ.NT.03.2015.0040
    PMid: 26060436
    PMCid: PMC4453998

Radiation Measurements


Manjola Shyti, Erjon Spahiu

Pages: 121-124

DOI: 10.37392/RapProc.2023.25

This paper aims to evaluate the performance of gamma-ray spectrometry in the Institute of Applied Nuclear Physics (IANP), Albania using Proficiency Tests (PTs). Participation in different proficiency tests is an essential tool for the improvement and testing of High Purity Germanium detector (HPGe) performance. The gamma - ray spectrometry laboratory in the last years has participated in different worldwide open proficiency tests organized by International Atomic Energy Agency (IAEA) with satisfactory results. For this paper, we selected the proficiency test organized by the IAEA in 2020 due to the analytical challenge of recognizing radioactive disequilibrium and applying appropriate decay corrections, especially for ingrowing radionuclides of broken natural decay series. The PTs of gamma-ray spectrometry measurements are carried out to improve the laboratory’s ability to measure the radioactivity in the environment and foodstuffs at typical routine levels. The activity concentration of the test samples and the evaluation of the associated uncertainties are the main requirements of the test results. This PT was focused on the determination of anthropogenic and natural radionuclides in water, fish, and simulated aerosol filter samples. For this proficiency test, the Laboratory Sourceless Calibration Software (LabSOCS) is used for simulating the absolute efficiency curve. This paper presents the results and discusses the quality of the gamma spectrometry measurements performed in the IANP. The overall performance evaluation showed that 100 % of all reported results have been acceptable. Thus, the gamma-ray spectrometry using an HPGe detector showed high performance in the determination of anthropogenic and natural radionuclides in water, fish and simulated aerosol filter samples.
  1. General requirements for the competence of reference material producers , ISO Guide 34:2000, Feb. 2000.
  2. Measurement of Radionuclides in Food and the Environment: A Guidebook , Tech. Rep. Ser. no. 295, IAEA, Vienna, Austria, 1989.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/trs295_web.pdf
    Retrieved on: Apr. 2, 2023
  3. A. V. Harms, S. M. Jerome, “On the integrated decay and ingrowth equations used in the measurement of radioactive decay families: the general solution,” Appl. Radiat. Isot., vol. 61, no. 2 – 3, pp. 367 – 372, Aug.-Sep. 2004.
    DOI: 10.1016/j.apradiso.2004.03.058
    PMid: 15177373
  4. M. Shyti, “Calibration and performance of HPGe detector for environmental radioactivity measurements using LabSOCS,” AIP Conf. Proc., vol. 2075, no. 1, 130012, Feb. 2019.
    DOI: 10.1063/1.5091297
  5. A. Mauring, S. Patterson, B. Seslak, S. Tarjan, A. Trinkl, IAEA-TEL-2020-03 WorldWide Open Proficiency Test Exercise, Pie-charts, S-Shapes and Reported Results with Scores , Rep. IAEA-TEL-2020-03, IAEA, Vienna, Austria, 2021.
    Retrieved from: https://nucleus.iaea.org/sites/ReferenceMaterials/Shared%20Documents/ProficiencyTests/IAEA-TEL-2020-03/s_shape_report_IAEA-TEL_2020_03.pdf
    Retrieved on: Apr. 2, 2023
  6. H. Bateman, “The solution of a system of differential equations occurring in the theory of radioactive decay,” in Proceedings of the Cambridge Philosophical Society, Mathematical and physical sciences , vol. 15, Cambridge, UK: Cambridge University Press, 1910, pp. 423 – 427.
    Retrieved from: https://ia801307.us.archive.org/1/items/proceedingsofcam15190810camb/proceedingsofcam15190810camb.pdf
    Retrieved on: Apr. 2, 2023

Radiation Measurements

Measurements of 232Th/238U ratio using different techniques: A comparative study

W. Arafa, H. M. Mahmoud, E. Yousf, A. Ashry, A. Elsersy, I. Elaassy, H. El Samman

Pages: 125-130

DOI: 10.37392/RapProc.2023.26

The present work was conducted to determine Th/U ratios in different types of natural rock samples (sedimentary, conglomerate, igneous and sediments) using high-purity germanium detector, solid state nuclear track detectors and inductively coupled plasma mass spectrometers. A thin source approach method for alpha tracks measurements was used. A new method was introduced for forming a thin layer of the rock sample. The track densities were obtained using an optical microscope coupled with a digital camera and spark counter. Even though the measurements were carried out using very different techniques, they showed comparable values of Th/U ratio for most of the rock samples.
  1. A. Olanya, D. Okello, B. Oruru, A. Kisolo, “The Primordial Radionuclides Activity Concentrations and Associated Minerals in Rocks from Selected Quarries in Northern Uganda,” IJSBAR, vol. 66, no. 1, pp. 45 – 65, Dec. 2022.
    Retrieved from: https://core.ac.uk/download/552586824.pdf
    Retrieved on: Sep. 22, 2023
  2. L. Cao et al., “Discussion on the applicability of Th/U ratio for evaluating the paleoredox conditions of lacustrine basins,” Int. J. Coal Geol., vol. 248, no.1, 103868, Dec. 2021.
    DOI: 10.1016/j.coal.2021.103868
  3. C. L. Kirkland, R. H. Smithies, R. J. M. Taylor, N. Evans, B. McDonald, “Zircon Th/U ratios in magmatic environs,” Lithos, vol. 212 – 215, pp. 397 – 414, Jan. 2015.
    DOI: 10.1016/j.lithos.2014.11.021
  4. C. Yakymchuk, C. L. Kirkland, C. Clark, “Th/U ratios in metamorphic zircon,” J. Metamorph. Geol., vol. 36, no. 6, pp. 715 – 737, Aug. 2018.
    DOI: 10.1111/jmg.12307
  5. L. P. Rikhvanov, “Using Radioactive Elements and the Th/U Ratio in Study of the Geochemical Typification of Granitoids and Their Intrusive Character,”Russ. Geol. Geophys., vol. 60, no. 9, pp. 1018 – 1025, Sep. 2019.
    DOI: 10.15372/RGG2019067
  6. A. G. Doroshkevich, D. A. Chebotarev, V. V. Sharygin, I. R. Prokopyev, A. M. Nikolenko, “Petrology of alkaline silicate rocks and carbonatites of the Chuktukon massif, Chadobets upland Russia: Sources, evolution and relation to the Triassic Siberian LIP,” Lithos, vol. 332 – 333, pp. 245 – 260, May 2019.
    DOI: 10.1016/j.lithos.2019.03.006
  7. B. M. Al-Zahrani, H. S. Alqannas, S. H. Hamidalddin, “Study and Simulated the Natural Radioactivity (NORM) U-238, Th-232 and K-40 of Igneous and Sedimentary Rocks of Al-Atawilah (Al-Baha) in Saudi Arabia,” WJNST, vol. 10, no. 4, pp. 171 – 181, Oct. 2020.
    DOI: 10.4236/wjnst.2020.104015
  8. M. M. El Galy, A. M. El Mezayn, A. F. Said, A. A. El Mowafy, M. S. Mohamed, “Distribution and environmental impacts of some radionuclides in sedimentary rocks at Wadi Naseib area, southwest Sinai, Egypt,” J. Environ. Radioact., vol. 99, no. 7, pp. 1075 – 1082, Jul. 2008.
    DOI: 10.1016/j.jenvrad.2007.12.012
  9. J. D. DePaolo, V. E. Lee, J. N. Christensen, K. Maher, “Uranium comminution ages: Sediment transport and deposition time scales,” C. R. Geosci., vol. 344, no. 11 – 12, pp. 678 – 687, Nov. 2012.
    DOI: 10.1016/j.crte.2012.10.014
  10. T. A. Salama, U. Seddik, T. M. Dsoky, A. А. Morsy, R. El-Asser, “Determination of thorium and uranium contents in soil samples using SSNTD’s passive method,” PRAMANA, vol. 67, no. 2, pp. 269 – 276, Aug. 2006.
    DOI: 10.1007/s12043-006-0071-4
  11. L. Oufni, M. A. Misdaq, “Radon emanation in a limestone cave using CR-39 and LR-115 solid state nuclear track detectors,” J. Radioanal. Nucl. Chem., vol. 250, no. 2, pp. 309 – 313, Nov. 2001.
    DOI: 10.1023/A:1017951713943
  12. GammaVision Analysis version 8, ORTEC, Oak Ridge (TN), USA, 2015.
  13. Standard reference source number 122162B, Eckert & Ziegler Analysis, product code:8503-EG-SD, Jan. 2022.
  14. M. O. Miller, “Modeling a HPGe detector’s absolute efficiency as a function of gamma energy and soil density in uncontaminated soil,” SDRP J. Earth Sci. Environ. Stud., vol. 3, no. 4, Dec. 2018.
    DOI: 10.25177/JESES.3.4.2. 2018
  15. N. Q. Huy, T. V. Luyen, “A method to determine 238U activity in environmental soil samples by using 63.3-keV-photopeak-gamma HPGe spectrometer,” Appl. Radiat. Isot., vol. 61, no. 6, pp. 1419 – 1424, Dec. 2004.
    DOI: 10.1016/j.apradiso.2004.04.016
  16. J. Al-Tuweity, H. Kamleh, M. S. Al-Masri, A. W. Doubal, El M. Chakir, “Self-absorption correction factors: Applying a simplified method to analysis of Lead-210 in different environment samples by direct counting of low-energy using HPGe Detector,” E3S Web Conf., vol. 240, 03002, 2021.
    DOI: 10.1051/e3sconf/202124003002
  17. A. K. Mheemeed, A. Kh. Hussein, R. B. Alkhayat, “Characterization of alpha-particle tracks in cellulose nitrate LR-115 detectors at various incident energies and angles,” Appl. Radiat. Isotopes, vol. 79, pp. 48 – 55, Sep. 2013.
    DOI: 10.1016/j.apradiso.2013.04.020
  18. M. D. Salim, A. A. Ridha, N. F. Kadhim, A. El- Taher, “Effects of Changing the Exposure Time of CR-39 Detector to Alpha Particles on Etching Conditions,” J. Rad. Nucl. Appl., vol. 5, no. 2, pp. 119 – 125, May 2020.
    DOI: 10.18576/jrna/050206
  19. D. Stanić, M. P. Sovilj, I. Miklavčić, V. Radolić, “Determination of track counting loss threshold of spark counter due to high track densities on strippable LR115 II nuclear track detectors,” Radiat. Meas., vol. 106, pp. 591 – 594, Nov. 2017.
    DOI: 10.1016/j.radmeas.2017.03.035
  20. A. F. Hafez “A new method for determining uranium and thorium,” Nucl. Instr. Methods Phys. Res., vol. 69, pp. 373 – 381, 1992.
  21. S. A. Eman, S. H. Nageeb, A. R. El-Sersy, “U and Th Determination in Natural Samples Using CR-39 and LR-115 Track Detector,” WJNST, vol. 2, no. 1, pp. 36 – 40, Jan. 2012.
    DOI: 10.4236/wjnst.2012.21006
  22. M. Charles, “UNSCEAR Report 2000: Sources and Effects of Ionizing Radiation,” J. Radiol. Prot., vol. 21, no. 1, pp. 83 – 86, Mar. 2001.
    DOI: 10.1088/0952-4746/21/1/609
  23. N. K. Ahmed, A. G. M. El-Arabi, “Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, upper Egypt,” J. Environ. Radioact., vol. 84, no. 1, pp. 51 – 64, 2005.
    DOI: 10.1016/j.jenvrad.2005.04.007
  24. M. Tzortzis, H. Tsertos, “Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus,” J. Environ. Radioact., vol. 77, no. 3, pp. 325 – 338, 2004.
    DOI: 10.1016/j.jenvrad.2004.03.014



Angela Dameska, Milena Teodosievska Dilindarski, Dushko Lukarski

Pages: 131-135

DOI: 10.37392/RapProc.2023.27

Volumetric modulated arc therapy (VMAT) is the next step in the improvement of the dynamic intensity modulated radiotherapy by improving the delivery efficiency and reducing the treatment time. In this study we have evaluated the delivery accuracy of different types of VMAT plans by performing an end-to-end test using the CIRS IMRT Thorax 002LFC phantom on two different radiotherapy units, a Varian iX Clinac and a Halcyon unit. We have created 10 different VMAT plans and measured the dose in different points according to a modified IAEA CRP E24017 protocol. For the measurement points representing the target volumes we have found that using two or three arcs gives acceptable results, but for single arc treatments the results were suboptimal. For low-dose regions, field size was found to have a more pronounced effect especially on the iX unit, with larger fields leading to slightly reduced accuracy. Inaccuracies are usually highest where the inhomogeneity of the body is greatest, such as the points representing the lungs and the spinal cord regions, where the computational algorithms themselves also contribute to the overall inaccuracy. In conclusion, the end-to-end test showed that the plans are clinically acceptable, but the recommendations for these particular machines would be not to use single arc treatments and to consider algorithm inaccuracies in regions of greater inhomogeneity during the treatment planning process.
  1. K. Otto, “Volumetric modulated arc therapy: IMRT in a single gantry arc,” Med. Phys., vol. 35, no. 1, pp. 310 – 317, Jan. 2008.
    DOI: 10.1118/1.2818738
    PMid: 18293586
  2. E. Vanetti et al., “Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypo-pharynx and larynx: a treatment planning comparison with fixed field IMRT,” Radiother. Oncol., vol. 92, no. 1, pp. 111 – 117, Jul. 2009.
    DOI: 10.1016/j.radonc.2008.12.008
    PMid: 19157609
  3. J. Gomez-Millan Barrachina et al., “Potential advantages of volumetric arc therapy in head and neck cancer,” Head & Neck, vol. 37, no. 6, pp. 909 – 914, Jun. 2015.
    DOI: 10.1002/hed.23685
    PMid: 24623665
  4. U. Akbas et al., “Nasopharyngeal carcinoma radiotherapy with hybrid technique,” Med. Dosim., vol. 44, no. 3, pp. 251 – 257, Sep. 2019.
    DOI: 10.1016/j.meddos.2018.09.003
    PMid: 30366620
  5. N. Zhao et al., “A hybrid IMRT/VMAT technique for the treatment of nasopharyngeal cancer,” Biomed Res. Int., vol. 2015, 940102, 2015.
    DOI: 10.1155/2015/940102
    PMid: 25688371
    PMCid: PMC4320861
  6. X. Jin et al., “CBCT-based volumetric and dosimetric variation evaluation of volumetric modulated arc radiotherapy in the treatment of nasopharyngeal cancer patients,” Radiat. Oncol., vol. 8, no. 1, 279, Dec. 2013.
    DOI: 10.1186/1748-717X-8-279
    PMid: 24289312
    PMCid: PMC4222038
  7. J. M. Park, H. G. Wu, H. J. Kim, C. H. Choi, J. I. Kim, “Comparison of treatment plans between IMRT with MR-linac and VMAT for lung SABR,” Radiat. Oncol., vol. 14, no. 1, 105, Jun. 2019.
    DOI: 10.1186/s13014-019-1314-0
    PMid: 31196120
    PMCid: PMC6567463
  8. E. E. Klein et al., “Task Group 142 report: Quality assurance of medical accelerators,” Med. Phys., vol. 36, no. 9, pp. 4197 – 4212, Sep. 2009.
    DOI: 10.1118/1.3190392
    PMid: 19810494
  9. J. Hanley et al., “AAPM Task Group 198 Report: An implementation guide for TG 142 quality assurance of medical accelerators,” Med. Phys., vol. 48, no. 10, pp. e830 – e885, Oct. 2021.
    DOI: 10.1002/mp.14992
    PMid: 34036590
  10. M. Miften et al., “Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218,” Med. Phys., vol. 45, no. 4, pp. e53 – e83, Apr. 2018.
    DOI: 10.1002/mp.12810
    PMid: 29443390
  11. T. C. Zhu et al., “Report of AAPM Task Group 219 on independent calculation-based dose/MU verification for IMRT,” Med. Phys., vol. 48, no. 10, pp. e808 – e829, Oct. 2021.
    DOI: 10.1002/mp.15069
    PMid: 34213772
  12. P. Kazantsev et al., “IAEA methodology for on-site end-to-end IMRT/VMAT audits an international pilot study,” Acta Oncol., vol. 59, no. 2, pp. 141 – 148, Feb. 2020.
    DOI: 10.1080/0284186X.2019.1685128
    PMid: 31746249
  13. P. Wesolowska et al., “Testing the methodology for a dosimetric end-to-end audit of IMRT/VMAT: results of IAEA multicentre and national studies,” Acta Oncol., vol. 58, no. 12, pp. 1731 – 1739, Dec. 2019.
    DOI: 10.1080/0284186X.2019.1648859
    PMid: 31423867
  14. T. Santos et al., “IMRT national audit in Portugal,” Phys. Med., vol. 65, pp. 128 – 136, Sep. 2019.
    DOI: 10.1016/j.ejmp.2019.08.013
    PMid: 31450123
  15. L. Tuntipumiamorn et al., “Multi-institutional evaluation using the end-to-end test for implementation of dynamic techniques of radiation therapy in Thailand,” Rep. Pract. Oncol. Radiother., vol. 24, no. 1, pp. 124 – 132, Jan-Feb. 2019.
    DOI: 10.1016/j.rpor.2018.11.005
    PMid: 30532660
    PMCid: PMC6265520
  16. H. Schiefer et al., “The Swiss IMRT dosimetry intercomparison using a thorax phantom,” Med. Phys.,nvol. 37, no. 8, pp. 4424 – 4431, Aug. 2010.
    DOI: 10.1118/1.3460795
    PMid: 20879601
  17. D. S. Radojcic et al., “Experimental validation of Monte Carlo based treatment planning system in bone density equivalent media,” Radiol. Oncol., vol. 54, no. 4, pp. 495 – 504, Sep. 2020.
    DOI: 10.2478/raon-2020-0051
    PMid: 32936784
    PMCid: PMC7585341
  18. E. Gershkevitsh et al., “Dosimetric inter-institutional comparison in European radiotherapy centres: Results of IAEA supported treatment planning system audit,” Acta Oncol., vol. 53, no. 5, pp. 628 – 636, May 2014.
    DOI: 10.3109/0284186X.2013.840742
    PMid: 24164104